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ABSTRACT
We consider in this paper a set of connections sharing a
common bottleneck link. We assume first that we have data
transfer using TCP congestion control protocol and real-
time traffic using some TCP-friendly transport protocol that
satisfies the same square-root formula for throughput. The
performance measures are determined according to the op-
erational parameters of a RED buffer management. Those
parameters are assumed to be able to give differentiated ser-
vices to the applications according to their choice of service
class. In terms of loss probabilities and of throughputs, we
consider a best effort type of service differentiation where
the QoS of connections is not guaranteed, but by choosing
a better (more expensive) service class, the QoS parameters
of a session can be improved (as long as that session is the
only one to change its service class). We assume however,
that the system is dimensioned so as to satisfy some aver-
age delay requirement. The choice of a service class of an
application will depend both on the utility as well as on the
cost it has to pay. We first study the performance of each
traffic source as a function of the connections’ parameters
and the pricing policy of the network. We then study the
Stackelberg equilibrium, i.e. the service provider’s problem
of how to choose the pricing so as to maximize its utility,
taking into account the reaction of the users.
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1. INTRODUCTION
We study in this paper the performance of competing con-

nections that share a bottleneck link. All connections are
assumed to have controlled rates that are “TCP friendly”,
i.e. they satisfy the well known square-root relation be-
tween marking probability and throughput [10, 12, 13]. A
RED buffer management is used for early drop of pack-
ets. We allow for service differentiation between the connec-
tions through the packet dropping (or marking) probability
which may depend on the connection (or on the connection
class). More specifically, we consider a buffer management
scheme that uses a single averaged queue length to determine
the dropping probabilities (similar to the way it is done in
the RIO-C (coupled RIO) buffer management, see [14]); for
any given averaged queue size, packets belonging to connec-
tions with higher priority have smaller probability of being
dropped than those belonging to lower priority classes. We
compute the throughput and the average drop probability
for each connection. We assume in our model that the av-
erage queue size is a predetermined system parameter, i.e.
there is a target value for the average queue length which im-
plies also a fixed average queueing delay at the buffer. Since
the throughputs of connections can vary (according to the
price they pay), this means that the link rate is adapted to
the connections’ input rates so as to guarantee this desirable
average queue length.

We then address the question of the choice of priorities.
Given utilities that depend on the performance measures, on
one hand, and on the cost for a given priority (i.e. the pric-
ing strategy of the provider), on the other hand, each user is
faced with an optimization problem, which we solve explic-
itly. This then allows us to determine the choice of pricing
strategy by the service provider which maximizes its own



profits; the solution to this bi-level optimization problem is
known as the Stackelberg equilibrium. Note that through-
out the paper, we use indifferently user or connection (we
place ourselves at the transport/flow layer).

In a previous paper [3], we analyzed a related problem
with TCP and CBR traffic sharing a common bottleneck
buffer without a given target on the average queueing de-
lay. This created a strong coupling between the different
connections, so that the utility of a given connection was in-
fluenced by the user priority choices of all other connections.
This gave rise to a more complicated modeling of the prob-
lem faced by the users (for a fixed pricing strategy of the
provider) which was shown to be a non-cooperative game.
Although some properties of the equilibrium of the game
were obtained in [3], we were not able to obtain explicit for-
mulae for the equilibrium priority choices and therefore did
not treat the Stackelberg problem there.

Related references. We briefly mention other recent
work in that area. Reference [6] has considered a related
problem where the traffic generated by each session was
modeled as a Poisson process, and the service time was expo-
nentially distributed. The decision variables were the input
rates and the performance measure was the goodput (out-
put rates). The paper restricted itself to symmetric flows
and symmetric equilibria and the pricing issue was not con-
sidered. In this framework, with a common RED buffer,
it was shown that an equilibrium does not exist. An equi-
librium was obtained and characterized for an alternative
buffer management that was proposed, called VLRED. We
note that, in contrast to [6], we do obtain an equilibrium
when using RED. For other related papers, see for instance
[11] (in which a priority game is considered for competing
connections sharing a drop-tail buffer), [1] as well as the
survey [2]. In [16], the authors present mechanisms (e.g.,
AIMD of TCP) to control end-user transmission rate into
differentiated services Internet through potential functions
and corresponding convergence to Nash equilibrium. These
references have not studied the Stackelberg equilibrium con-
cept.

Stackelberg equilibrium has been used in other contexts of
networking in [4, 9]. Both references consider M/M/1 type
models for congestion. In our paper we model both TCP
behavior as well as real time traffic, both sharing a common
RED type router as a bottleneck. Other Stackelberg games
in networking which are not directly related to TCP or to
RED are [7, 19].

The structure of this paper is as follows. In Section 2 we
describe the model of RED, then in Section 3 we compute
the throughputs and the loss probabilities of the connections
for given priorities chosen by the connections. In Section 4
we obtain the optimal priority choices of the connections for
given pricing strategies of the network. The optimal pricing
is then discussed in Section 5.

2. THE MODEL
RED is based on the following idea: there are two thresh-

olds qmin and qmax such that the drop probability is 0 if
the average queue length q is less than qmin, 1 if it is above
qmax, and pmax(q − qmin)/(qmax − qmin) if it is q with qmin <
q < qmax; the latter is the congestion avoidance mode of
operation. This is illustrated in Figure 1. pmax is the max-
imum loss probability in the congestion avoidance mode of
operation.
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Figure 1: Drop probability in RED as function q

We consider a set N containing N TCP flows (or TCP
friendly flows) for data transfer and a set I containing I
real time flows, assumed to be TCP friendly (in the sense
that they are rate controlled according so as to achieve the
same throughput that TCP achieves as a function of loss
probabilities and round trip time, see eq. (1)). We assume
that connections can be differentiated by means of RED al-
gorithm; they all share a common buffer yet RED treats
them differently1. We assume that they all have common
values of qmin and qmax but each flow i may have a different
value of pmax(i), which is the value of the drop probability as
the average queue tends to qmax (from the left), see Figure
1. Denote p = {pmax(i), i ∈ I ∪ N}. We identify pmax(i)
as the priority class of a connection. The service rate of the
bottleneck router is given by µ.

3. COMPUTING THE THROUGHPUTS
We use the well-known relation for TCP rate which char-

acterizes both data as well as real time connections (assumed
to be TCP friendly):

λi =
1

Ri

�
θ

pi

, i ∈ N ∪ I, (1)

where Ri and pi are TCP flow i’s round trip time and drop
probability, respectively. Parameter θ is typically taken as
3/2 (when the delayed ack option is disabled) or 3/4 (when
it is enabled). We assume that the rates of connections are
not limited by the receiver window.

We model the bottleneck as a fluid2 queue. We assume
that the buffer size is well dimensioned, i.e. it is suffi-
ciently large so that full utilization of the service rate can
be achieved. This gives�

j∈I∪N

λj(1 − pj) = µ. (2)

The parameters λj and pj are determined from user j choice
of priority level. More precisely,

• pj ’s are assumed to be controlled at the RED router;
each j, pj is assumed to be a function of the priority

1RED punishes aggressive flows more by dropping more
packets from those flows.
2In our study, the fluid (deterministic) assumption results
in a simple yet suitable approximation, see [15].



level of connection j which is determined by user j and
which we identify with the price xj per packet payed
by the jth connection.

• If µ were fixed, the pj would then determine λj through
(1).

• We can thus view equation (2) as providing us with
the rate µ that should be available at the bottleneck
link so as to guarantee the performance measures (loss
probabilities and throughputs) payed for by the con-
nections.

Next, we define some pricing strategy that gives pi in
terms of the flow rate xi of connection i. From Figure 1
for each i the drop probability is

pi = pmax(i)Q, ∀i, where Q =
q − qmin

qmax − qmin

. (3)

We assume, as already mentioned in the introduction, that
q is a fixed target value of the average queue. Note that
0 < Q < 1. We assume that the cost per packet xi is
inversely proportional to pmax(i). Thus pmax(i) is given in
terms of xi by (αxi + β)−1 so that

pi(xi) =
Q

αxi + β
. (4)

where fixed parameters Q, α, β stand for all connections.
In addition, each connection may have a fixed subscription
price S, independent of the quality of service.

For the network, the main difference between data connec-
tions and real-time connections can be represented in their
different utilities, i.e. in the way they perceive quality of
service and prices. Data connections using TCP are not
sensitive to losses since lost packets are retransmitted al-
lowing to recover packet losses. We thus assume that their
utility has a component linear in the throughput and an-
other one related to the costs. The connection utility for
user i (i ∈ N ) is thus:

Ui(xi) = λi(xi)(1− pi(xi))−aiλi(xi)(1− pi(xi))xi −S (5)

where ai is a parameter representing the weight per unit
flow rate of the price component in the utility. We consider
a linear utility in this case to reflect that an increase in
the throughput always affect significatively user welfare. It
can be justified from a mathematical point of view, see [3,
Footnote 2]. This also eases the analysis.

For real time connections, we assume that the utility has a
component concave in the throughput, another component
that represents (direct) sensitivity to losses and a component
representing the evaluation of the cost for obtaining the re-
quested priority level. We thus choose the utility function
to be:

Ui(xi) = wi log10 (1 + λi(xi)(1 − pi(xi)))

−bipi(xi) − aiλi(xi)(1 − pi(xi))xi − S (6)

with wi and bi constant values depending on each connec-
tion i. As usual, wi > 0 corresponds to a preference param-
eter. The logarithmic function3 indicates a quality feature
of real time connections: user reward do not increase in
high flow-rate connections as fast as for slow flow-rate con-
nections (consider for instance a voice or video connection,

3It is very common to use concave payoff functions for user
utilities, see [4].

after some point the user do not detect significant changes
when increasing quality service). Notice the fixed average
queueing delay has not been directly considered in the above
selected utility functions.

4. OPTIMIZING USER’S PRICES

4.1 A numerical example
We begin with a numerical example. The network param-

eters are given by Q = 0.5, α = 10, β = 200; the parameters
describing data or real time connections are ∀i Ri = 0.05,
θ = 1.5 , ai = 0.01. (We do not specify the value of S since it
is a constant that does not affect the optimization problem
faced by a user.) Furthermore the real time connections are
assumed to be such that bi = 0.1 and wi = 1600 ∀i. The
functions (5) and (6) are depicted in Figures 2-3 as a func-
tion of the price x (equivalent to giving the priority level).
Their restriction to nonnegative x provides the utilities. We
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Figure 2: Utility as a function of the priority for

data traffic
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Figure 3: Utility as a function of the priority for real

time traffic

see that the utility as a function of the priority level x has
a clear unique maximum. We shall prove this observation



in the next subsection for general choices of parameters for
data connections.

Below we address the question of how user i should select
a priority level x so that the resulting parameters λi(x) and
pi(x) maximize its utility. This will determine the reaction
of users to a given pricing strategy of the network. In the
next section we then introduce the network’s utility which
will be used to compute the network’s pricing strategy that
maximizes its utility when taking into account users reaction
to that strategy.

4.2 Analysis of the first level optimization prob-
lem

Data connections.
We will consider first the connection utility given by (5).

Proposition 1. There exists a unique maximum of Ui(xi)
at Xi > 0 for data connections. If

ai <
α

2β

β + Q

β − Q
,

it is the unique solution of

Xi = �x :
dUi(xi)

dxi ����x
= 0�

i.e.,

Xi = 1

α6 �α

ai

− 5β + Q

+

� �α

ai

+ β + Q�2

+ 12 Q �α

ai

+ β��� .(7)

Otherwise the maximum is located at Xi = 0.

Proof: The partial derivatives of Ui(xi),
dUi

dxi

(xi), are pro-

portional to

H(Xi, ai) = 	
αxi + β +
Q√

αxi + β � ×
�α(1 − aixi)

2(αxi + β)
− ai� +

2aiQ√
αxi + β

. (8)

The unique solution Xi to dUi

dxi

(xi)|Xi
= H(Xi, ai) = 0 is

given by (7).

We have limxi→+∞
dUi

dxi

(xi) → −∞; straightforward cal-

culations show that dUi

dxi

(0) > 0 if and only if ai <
α

2β

β + Q

β − Q
,

thus the solution Xi corresponds to an absolute maximum
of the function Ui(xi) [18]. Otherwise, if dUi

dxi

(0) ≤ 0 we have

an absolute maximum at Xi = 0 because the function Ui(xi)
is strictly decreasing for all xi ≥ 0. 2

Remark that, using this proposition, the drop probability
pi(Xi) is given by

pi(Xi) =
6Q

�ϕi + Q + �(ϕi + Q)2 + 12 Qϕi�
if ai <

α

2β

β + Q

β − Q
, where ϕi = α

ai

+ β, and p(0) = Q/β

otherwise.

Real-time connections.
Similarly to the approach for the data connections, one

can numerically get the optimal choice xi for real-time con-
nections which maximize user utilities Ui(xi). We have not
been able to determine sufficient conditions for uniqueness
for real-time connections in full generality; we leave it for
future work. Nevertheless, the uniqueness can be observed
for instance in Figure 3.

From now, we focus only on data users. To illustrate
Proposition 1 we consider the following example. the pa-
rameter values Q = 0.5, α = 10, β = 20, θ = 1, Ri = 0.05,

ai = 0.1 ∀i. The value of
α

2β

β + Q

β − Q
results in 0.2628 > 0.1 =

ai. Figure 4 shows the utility Ui(x) of a single data connec-
tion as a function of x for these parameters. The maximum
is then obtained at Xi = 2.06 > 0 as expected.
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5. OPTIMIZING THE NETWORK’S PRIC-
ING STRATEGY

We assume that the network’s payoff is made of two com-
ponents: a cost which is proportional to the resources it
provides, that is to the link rate µ, and a utility that repre-
sents its revenues. The latter is assumed to be simply the
sum of prices payed by the users. Considering a Stackelberg



approach, the network’s utility is thus given by:

Unetwork(ai) =
�

i∈I∪N

(aiλi(Xi)(1 − pi(Xi))Xi + S) − δµ

=
�

i∈I∪N

(aiλi(Xi)(1 − pi(Xi))Xi + S)

−δ
�

i∈I∪N

λi(Xi)(1 − pi(Xi))

i.e., it depends on the equilibrium obtained at users’ level.

Identical data connections.
Consider N identical data users, i.e., Xi = X = X(a) > 0,

given by (7), ai = a, λi = λ, and Ri = R. Network utility
Unetwork simplifies to

Unetwork(a) = N (aX(a) − δ) λ(X(a))(1 − p(X(a))) + N · S.
(9)

As before, the maximum of (9) is obtained by using equa-
tion dUnetwork(a)/da = 0. The solution to this expression
depends also on δ. In particular, for δ = 1, Unetwork(a)

has a maximum a =
α

2β

β + Q

β − Q
> 0. For δ > 1 then it

yields a >
α

2β

β + Q

β − Q
. In these two cases, i.e., when the

optimal parameter a, that the network imposes, satisfies

a ≥ α

2β

β + Q

β − Q
, the utility of the users has an absolute max-

imum at X = 0, see Proposition 1. This means that they
subscribe to the minimal quality of service: they pay only
the subscription fee S and obtain the largest drop probabil-
ity, Q/β (and hence the minimal throughput). Consider a
numerical example, illustrated on Figure 5: a plot of U(a)
is given for N = 10 identical data connections, for δ = 2,
Q = 20/40 = 0.5, α = 10, β = 20, c = 1, R = 0.05. The
maximum then is obtained at a = 0.4708188006 > 0.2628.

At 0 < D < δ < 1, it yields a reasonable value 0 <

a <
α

2β

β + Q

β − Q
; the quantity D is such that the absolute

maximum is obtained at a = 0, on the interval [0,∞). In
Figure 6a we present a plot for δ = 35/100, where a =
0.01255526875 < 0.2628. We have D = 0.3333. In this case
we obtain X = 25.28249042, the cost per packet for the
maximum user’s utility, see Figure 6b.

6. CONCLUSIONS
In this paper, we have analyzed a Stackelberg game where

users choose the price they are willing to pay at a RED
buffer in order to discriminate service. With respect to a
previous result, we use the fact that there is a fixed tar-
get for the average queue length (thus resulting also a fixed
average queueing delay). This simplification allows to ob-
tain explicit formulae for the equilibrium priority choices of
users. Thanks to those expressions, we are able to solve the
Stackelberg formulation of the problem.
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