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ABSTRACT
Simulation output data analysis in performance evaluation
studies of complex stochastic systems such as the Internet
is typically limited to mean values, even though it provides
very limited information about the analysed system’s per-
formance. Quantile analysis is not as common, even though
it can provide much deeper insights into the system of in-
terest. A set of quantiles can be used to approximate a
cumulative distribution function, providing full information
about a given performance characteristic of the simulated
system. In this paper, we will present two new methods
for estimating steady state quantiles and distribution func-
tions. The quantiles are estimated using simulation output
data from concurrently executed independent replications.
They are calculated sequentially and on-line to guarantee
that their final statistical errors do not exceed a permitted
threshold.

Categories and Subject Descriptors
I.6.6 [Simulation and Modeling]: Simulation Output Anal-
ysis; G.3 [Probability and Statistics]: Distribution Func-
tions; Stochastic Processes

General Terms
Performance, Algorithms, Experimentation

Keywords
Discrete-event simulation, steady state, quantiles, sequential
estimation

1. INTRODUCTION
Results of mean value analysis of simulation output data

can answer such questions about a simulated system’s be-
haviour as: “what is the mean delay experienced by a file
sent across a telecommunication network?” or “how many
customers, on average, are waiting in a queue?”. Results of
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quantile analysis can tell us, for example“what is the largest
delay experienced by 90% of files sent across a telecommu-
nication network?” or “what is the probability of more than
k customers waiting in a queue?”. Such results equip the
decision-maker with much better knowledge about analysed
systems than simple mean values.

The complexity of quantile estimation is higher than that
of mean value estimation, but it can provide a deeper insight
into the system of interest. This is true especially when sev-
eral quantiles are estimated. A set of several quantiles can
be used to approximate cumulative distribution functions
(CDFs). The estimation of probability distributions is the
ultimate goal of quantitative simulation, conducted for per-
formance evaluation of such dynamic stochastic systems as
the Internet, logistic systems, etc.

Here, we will discuss two new sequential methods for esti-
mation of multiple quantiles of steady state distributions.
The methods are based on multiple independent replica-
tions. The performance of the proposed methods is assessed
analytically and evaluated by experiments.

In the next section we will review some basic results on
estimation of quantiles and in Section 2.2 we show the advan-
tages of selecting a set of quantiles with disjoint confidence
intervals. This is followed by Section 3, which contains the
discussion of two methods of quantile estimation. In Sec-
tion 4 the methods are evaluated in experiments in which
selected output processes are simulated. Conclusions are
given in Section 5. All discussions and results which are
presented in this article are an excerpt of [7].

2. QUANTILES
A short survey about quantile estimation in simulation

output analysis can be found in [8]. In this section we would
like to briefly discuss the basics of quantile estimation. Our
discussion of order statistics and quantiles in Section 2.1 is
mainly based on [5], [1] and [3].

2.1 Order Statistics and Quantiles
Let x1, x2, . . ., xp be a set of observations of independent

and identically distributed random variables X1, X2, . . ., Xp

with common CDF FX(x). Furthermore, let {yi}p
i=1 be the

ordered sequence of {xi}p
i=1, i.e. y1 ≤ y2 ≤ . . . ≤ yp. Then

Yi is called the ith order statistic and yi is its realisation.
Because yi ≤ yi+1, order statistic are dependent and not



identically distributed. The CDF of Yi is given by

FYi
(x) = Pr [Yi ≤ x] (1)
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(FX(x))j(1 − FX(x))p−j,

see e.g. [20]. This equation allows the construction of distri-
bution free confidence intervals for quantiles.

Let xq define a value in the range of X, so that FX(xq) =
q. Therefore,

xq = F−1
X (q) = inf{x|FX (x) ≥ q}

is the population quantile of order q, if FX(x) is continuous.
We will focus on continuous distributions only. If FX(x) is
non-continuous this definition is ambiguous. We define the
interval [Yl, Yu] to be a distribution-free confidence interval
for a population quantile, where

Pr [Yl ≤ xq ≤ Yu] = Pr [Yl ≤ xq] − Pr [Yu < xq] (2)

≥
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qj(1 − q)p−j .

This equation can be derived from (1) with FX(xq) = q.
Therefore, it is independent of the general form of FX(x).
This property will be used extensively, because it enables us
to establish a confidence interval for an unknown distribu-
tion.

The sample quantile x̂q estimates the population quantile
xq, when a certain value of q is specified. A common esti-
mate is e.g. x̂q = y⌊pq+1⌋. However, many other estimators
are known. For example the weighted sum of two neigh-
bouring order statistics is another common estimator. In
literature regarding simulation output data this is discussed
e.g. in [22].

We will extend beyond estimation of xq for a specified
value of q by estimating the whole CDF of a given measure
on the basis of several quantiles, assuming we are free to
decide which values of q are appropriate, and choosing them
on the basis of the size p of a given sample. A sorted random
sample provides natural order statistics. Therefore, we are
looking for the population quantile xq that is represented
by the expected value of the ith order statistic. q = FX(xq)
has to be estimated and xq is given by yi. We can see the
dependence of q on the form of FX(x), thus, the bias of a
general estimator of q depends on the sample size p. In [4]
properties of the approximation

E [Yi] ≈ F−1
X

„

i

p + 1

«

(3)

are discussed. The error decreases with increasing sample
size p and depends on derivatives of FX(x) as well as on the
location of the quantile. Equation (3) suggests estimating
q by q̂i = i/(p + 1). This estimate is approximately unbi-
ased for any form of FX(x) and it is the best choice for the
uniform case ([5]). If the form of FX(x) is given, specialised
estimators are known. [5] shows that for the exponential case

q̂
(e)
i = i/(p + 0.5) and for the normal case q̂

(n)
i = (i− 0.5)/p

have better asymptotic properties than (3). However, a gen-
eral solution for the unknown case is given by (3) and we
can assume that FX(yi) ≈ q̂i, if p is sufficiently large.

2.2 Disjoint Confidence Intervals
Equation (2) allows us to construct a confidence interval

for a population quantile xq based on two order statistics
Yl and Yu. Pr [Yl ≤ xq ≤ Yu] can be calculated for arbitrary
ranks 1 ≤ l ≤ u ≤ p. It is not necessary, but could be
desirable, that xq splits the confidence interval [Yl, Yu] in
two parts, so that half of the probability mass is in each
part.

Definition 1. Let Yc be an approximately unbiased es-
timator of xq, i.e. E [Yc] ≈ F−1

X (q) = xq. The confidence
interval Pr [Yl ≤ xq ≤ Yu] ≥ 1 − α is balanced if

Pr [Yl ≤ xq ≤ Yc] ≥ 1 − α

2
and (4)

Pr [Yc ≤ xq ≤ Yu] ≥ 1 − α

2

hold.

This definition comes from the concept of mid-p confi-
dence intervals, see e.g. [2]. Other common approaches are
to construct a confidence interval that has minimum width
or that has xq − yl = yu − xq. However, we construct the
confidence interval on basis of (4) because in the balanced
case u and l can be calculated independently of each other.

Let the two confidence intervals Pr [Yl1 ≤ xq1 ≤ Yu1 ] ≥
1 − α and Pr [Yl2 ≤ xq2 ≤ Yu2 ] ≥ 1 − α be balanced. Esti-
mates of xq1 and xq2 are dependent on each other because
they are taken from the same sample. However, by choos-
ing disjoint confidence intervals, i.e. u1 ≤ l2, we can assure
that at most α

2
of the probability mass of both distributions,

given by (2), overlap. If α is sufficiently small, e.g. α ≤ 0.1,
high correlation between estimates of xq1 and xq2 can be
avoided. To split the ordered sequence {yi}p

i=1 into a max-
imum number of disjoint balanced confidence intervals an
algorithmic approach is needed and described in [8]. An
example of a selected set of quantiles with p = 999 and
α = 0.05 is shown in Figure 1. Equation (2) is applied for
the selected q-quantiles and Pr [Yi ≤ xq ≤ Yi+1] is depicted
for all i. The overlapping parts of the graphs show the re-
maining dependence among neighbouring quantiles.

3. NEW METHODS OF SEQUENTIAL
ANALYSIS

We assume that simulation output data are collected dur-
ing steady state, i.e. data are collected after observation in-
dex lF , where

∀(t ≥ lF , ∆ ≥ 0, x) : FXt(x) ≈ FXt+∆(x). (5)

The truncation point lF specifies the boundary between the
initial transient phase of simulation and the onset of analy-
sis of the probability distribution in steady state. A method
for determining this point is presented in [9]. Note that this
truncation point is different from the truncation point which
would be used in the mean value analysis. This new method
of quantile analysis is based on concurrent independent repli-
cations of simulation. In such a scenario, replications of the
same simulation are executed in parallel, using either differ-
ent pseudo random number generators, or non-overlapping
sequences of pseudo-random numbers from the same gener-
ator.

Using p independent replications, we obtain the observa-
tions xj,i, where 1 ≤ j ≤ p is the replication index and
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Figure 1: Pr [Yi ≤ xq ≤ Yi+1] (ordinate), see (2), versus rank i (abscissa) for selected values of q.

lF ≤ i < ∞ is the observation index. The independence of
all replications implies that the observations {xj,i}p

j=1 are
independent of each other. This is valid for all observation
indexes i. Therefore, for a fixed observation index the sta-
tistical methods, which are valid for independent and iden-
tically distributed random samples, are directly applicable
to {xj,i}p

j=1.
The common definition of the population quantile has to

be extended by the observation index i:

xq,i = F−1
Xi

(q) = inf{x|FXi
(x) ≥ q}.

Let {yj,i}p
j=1 be the ordered values of {xj,i}p

j=1 and let
{yj,i}∞i=l be a realisation of the stochastic process {Yj,i}∞i=l.
In this sense Yj,i represents the jth order statistic at obser-
vation index i.

3.1 Mean of Order Statistics
Our aim is to estimate several quantiles of FX∞(x). Here,

a natural approach is to estimate those quantiles xqj
which

are represented by the order statistics Yj,i. For an unknown
distribution, qj can be estimated by (3). The difference in
distributions of Xi, where i ≥ lF , is negligible. Therefore,
the mean of the jth order statistics

X̂q̂j
=

1

n − lF + 1

n
X

i=lF

Yj,i (6)

is a point estimator of F−1
X∞

(qj).

Theorem 1. The mean of the jth order statistics X̂q̂j
is

an approximately unbiased estimator of F−1
X∞

(qj) for large p
and i ≥ lF .

Proof. The expected value of (6) is

E
h

X̂q̂j

i

=
1

n − lF + 1

n
X

i=lF

E[Yj,i]. (7)

E [Yj,i] = F−1
Xi

(qj) holds for large values of p, see (3) and [4]
or [5]. Furthermore, all XlF , XlF +1, . . . are assumed to be
identically distributed, i.e. ∀(i ≥ lF ) : FXi

(x) = FX∞(x).

Equation (7) simplifies to

E
h

X̂q̂j

i

=
1

n − lF + 1

n
X

i=lF

F−1
Xi

(qj) (8)

=
1

n − lF + 1

n
X

i=lF

F−1
X∞

(qj)

= F−1
X∞

(qj).

The estimator X̂q̂j
is asymptotically unbiased, i.e. E[X̂q̂j

]−
F−1

X∞
(qj) = 0, because (8) holds for large p and i ≥ lF .

Every simulation is a statistical experiment. Point esti-
mators never return exact values, even if they are unbiased.
Confidence intervals are essential to provide convincing re-
sults. To establish a confidence interval for (6) its variance

Var[X̂q̂j
] is needed. Note, that all Yj,lF , Yj,lF +1, . . . are au-

tocorrelated and the variance cannot be estimated directly.
The form of (6) is, however, identical to mean value esti-
mators of single simulation runs. Its special feature is that
each component represents a quantile. Therefore, known
techniques for variance estimation of mean value estimators
can be applied. Spectral analysis (see e.g. [13]) and batch
means (see e.g. [10]) are commonly used in mean value anal-
ysis.

Both, spectral analysis and batch means, have already
been suggested in [12] for variance estimation in quantile
analysis. The maximum transformation is used to obtain ex-
treme quantiles of the output process. Here, we replace the
maximum transformation with (6) and extend the method
to multiple independent replications. Further details on how
batch means and spectral analysis methods are applied can
be found in [6].

Sequential analysis is the only way to obtain estimates
with controlled error. Equation (6) is suitable for a sequen-
tial approach because n can be extended. Extensions of
batch means and spectral analysis to a sequential approach
are discussed in [15]. Let ∆qj

be the halfwidth of the con-
fidence interval of point estimate x̂q̂j

, calculated on basis

of Var[X̂q̂j
] and the Student t-distribution. The stopping

criterion ∆qj
/D ≤ ǫmax can be used to stop a sequential

approach. D is a value which is used to standardise the
halfwidth of the confidence interval and ǫmax is the maxi-
mum acceptable relative error, where 0 < ǫmax ≤ 0.1. In
mean value analysis D is usually the point estimate itself.
However, here we have to take into account that it is quite



likely that F−1
Xi

(qj) ≈ 0 holds for one of our quantile esti-
mates. Furthermore, it is desirable to standardise all quan-
tile estimates by the same value D. Therefore, we choose
D = x̂q̂p − x̂q̂1 , which is the estimated range of FX∞(x).
This guarantees small relative errors for all estimated quan-
tiles.

3.2 Pooling Spaced Data
Approximate independence can be achieved by establish-

ing a pool of observations, which are spaced far apart from
each other. Let s be an adequate space size. Then XlF ,
XlF +s, XlF +2s, . . . can be regarded as nearly independent.
When using p replications the pool of observations is given
by

P = {{xj,lF +si}p
j=1}∞i=0.

The size of this pool is unbounded and contains approxi-
mately independent and identically distributed data if lF
and s are large. Then, standard quantile estimators are di-
rectly applicable to estimate F−1

X∞
(q).

The determination of an adequate value of s is similar to
the determination of a batch size for batch means, as pool-
ing is just a special kind of batching: The batch statistic is
the first value of a batch. For this task correlation tests are
needed. Many different correlation tests are known, like run
tests (see e.g. [19]) or permutation tests (see e.g. [21]). The
von Neumann ratio test is probably the most recommended
correlation test today (see e.g. [11]). However, we wish to
estimate a set of quantiles and, thus, have to find an overall
space size s that is valid for all sequences {xj,lF +i}∞i=0, where
1 ≤ j ≤ p. Thus, we select a correlation test based on per-
mutations and the median confidence interval (see e.g. [18]),
which is described next.

Let r̂(p)(P1) be Pearson’s correlation coefficient of the
original lag-1 paired spaced sequence

{(xj,lF +is; xj,lF +(i+1)s)}n−1
i=0 ,

and r̂(p)(Pk) be Pearson’s correlation coefficient for the lag-
1 paired data of the kth permutation of {xj,lF +is}n

i=0 with
2 ≤ k ≤ (n!). In [17] the first four moments of Pearson’s
correlation coefficient are derived. Here, the first and the
third moment are of special interest: E[r̂(p)] = 0 holds even

for small samples and Skew[r̂(p)] = 0 holds approximately.

Skew[r̂(p)] defines the degree of asymmetry of the distribu-

tion of r̂(p). Therefore, Fr̂(p)(0) = 0.5 is approximately true.
The null hypothesis of our test is that {xj,lF +is}n

i=0 is an
independent sequence.

Pr
h

|r̂(p)(Pk)| < |r̂(p)(P1)|
i

=
1

2

holds under the null hypothesis and for a randomly cho-
sen permutation Pk. For K randomly chosen permutations
Pk1 , . . . , PkK

we can derive

Pr
h

∀l(1 ≤ l ≤ K) : |r̂(p)(Pkl
)| < |r̂(p)(P1)|

i

=
1

2K
.

On the basis of this equation the following confidence inter-
val can be established:

Pr
h

−∆ ≤ r̂(p)(P1) ≤ ∆
i

= 1 − 1

2K

with halfwidth

∆ = max
1≤l≤K

“

|r̂(p)(Pkl
)|
”

.

If r̂(p)(P1) is not within the confidence interval, the null
hypothesis must be rejected at significance level 1 − 1

2K .
The advantage of using this confidence interval is that the
assumption of zero skewness is milder than the assumption
of a normal distribution. For only K = 6 permutations the
significance level is already > 0.95 and K can be regarded as
a value of choice. For our purpose of estimating the overall
space size s for p independent replications this correlation
test is performed on {xj,lF +is}n

i=0 for each j.
A sequential approach needs to be able to extend the sam-

ple size. By adding an additional sequence {xj,lF +s(n+1)}p
j=1

of previously unprocessed observations at index n + 1 the
sample size can be extended by p observations. For quan-
tile estimation based on order statistics the sample has to
be sorted. The most efficient way of sorting in this case is
to merge two already sorted samples. Let assume that P of
size pn is already sorted. The new sample {xj,lF +s(n+1)}p

j=1

can be sorted in O (p log(p)). Merging of P and the new
observations can be done in O (pn + p). So the total run-
time of adding new observations to a sorted pool of data is
O (p log(p) + p(n + 1)). Because usually n >> p holds, we
can simplify the runtime to O (pn), which is efficient.

Because our aim is to estimate FX∞(x) on base of sev-
eral quantiles we select quantiles as described in [8]. This
method selects quantiles so that their confidence intervals
do not overlap. This implies that their probability mass is
distributed to different order statistics, see Figure 1. There-
fore, high correlation between quantile estimates is avoided.
How many quantiles are selected, depends on the sample size
pn. Here, a stopping criterion could be defined by simply
setting a minimum number of quantiles which should be se-
lected. The bigger the sample size the more quantiles can be
selected. The simulation experiment can be stopped if the
sample is large enough to estimate the minimum number of
quantiles with disjoint confidence intervals.

On the other hand, a stopping criterion can depend on the
size of the confidence interval. Let the confidence interval
Pr [Yl ≤ xq ≤ Yu] ≥ 1 − α be a confidence interval of the
quantile xq, where Yi is the ith order statistic of P. Similar
to the stopping criterion of the previous section, we can
demand

Yu − Yl

2(Ypn − Y1)
≤ ǫmax.

Yu − Yl is divided by 2 to produce the halfwidth. It is stan-
dardized by the range Ypn − Y1 to avoid a division by a
value close to zero and to standardise all quantiles by the
same value.

3.3 Discussion
In the quantile estimation method of Section 3.1 the sam-

ple size p is given by the number of replications. Our fo-
cus is on performing all p replications in parallel. Then,
the maximum number of replications is usually restricted
by the number of workstations in a LAN, or the number of
processors in a grid computing system. However, replica-
tions could be performed serially involving the overhead of
storing the output data in adequate data structures. If p is
not large enough to fulfil the conditions of Theorem 1, we
can expect biased quantile estimates. However, the method
of Section 3.1 does not allow to apply a mechanism which
would control correlation between quantile estimates in one
set.

This problem is solved by the quantile estimation method
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(d) M/H2/1 queue with ρ = 0.9

Figure 2: Exact and estimated CDFs.

of Section 3.2. Here, the sample P is increased until all quan-
tiles have sufficiently small statistical error. The correlation
between the quantile estimates is controlled by choosing dis-
joint confidence intervals. However, the drawback is that the
memory requirement of this method is not constant.

4. EXAMPLES
In this section we will test the quantile estimation meth-

ods of Section 3.1 and 3.2 on various examples with known
steady state distribution function. We will compare the es-
timated CDF with the expected CDF by comparing their
shapes. Furthermore, we will perform coverage analysis for
all estimated quantiles, which is done according to [16].

Example 1 is a geometrical ARMA process defined by

Xt = 1 + ǫt +
k
X

i=1

1

2i
(Xt−i + ǫt−i),

where ǫt is a Gaussian white noise process, thus, FX∞(x) is
normally distributed. E[X∞] = 4 and Var[X∞] = 117/25
for k = 2 and FX∞(x) = N(x; 4, 117/25) follows. We chose
Xt = 0 for t ≤ 0, but this does not influence the steady state
behaviour.

Example 2 is the response time Xt of an M/M/1 queue
with µ = 1 and λ = 0.9 so that ρ = 0.9. Here, we expect
FX∞(x) = 1− e−xµ(1−ρ) (see e.g. [14]) and the coefficient of
variation is 1.

Example 3 is the response time Xt of an M/E2/1 queue
with µ = 1/0.45 and λ = 1 so that ρ = 0.9. FX∞(x) can
be calculated by inverting the Laplace-Stieltjes transform of
the response time distribution using Maple. We avoid giving
the exact form of FX∞(x) because of its complexity. Here,

the coefficient of variation of the service time is 1/
√

2.
Example 4 is the response time Xt of an M/H2/1 queue,

where the service time is given by a 2 dimensional hyper-
exponential distribution. To give a squared coefficient of
variation equal to 2 with ρ = 0.9 we set λ = 1, µ1 ≈ 0.4696,
µ2 ≈ 1.7526 and the probability of choosing µ1 is ≈ 0.2113.
These parameters and FX∞(x) were again calculated with
Maple.

We started all queueing models with an empty queue and
no customer in service. For every simulation experiment we
performed p = 99 replications in parallel. The run length
of each simulation experiment is not fixed because we ap-
plied sequential analysis of the output data, as described
in Section 3. In Figure 2 we can see the exact CDF com-
pared with the estimated CDFs from mean of order statis-
tics (Section 3.1) and pooling spaced data (Section 3.2) for
all examples. The expected graph is barely distinguishable
from estimated graphs. A Q-Q plot of those graphs confirms
this assumption. This shows that the estimates from both
methods are very close to the exact CDF.

However, we present also results in a practical simulation
framework and perform sequential coverage analysis for ev-
ery estimated quantile separately. The results are presented
in Figure 3. The abscissa shows q of the quantile xq and
the ordinate shows the calculated coverage. In all examples
and for all quantiles the coverage of 0.95 is expected. We
can see that the performance of the quantile estimation by
pooling spaced data is very good because the coverage for all
quantiles in all examples is around 0.95. This shows that es-
timates are approximately unbiased and the estimated confi-
dence intervals have an appropriate size. For all experiments
with pooling spaced data we applied q̂i, as defined in Sec-
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Figure 3: Coverage (ordinate) of q-quantiles (abscissa) estimated by pooling spaced data (PSD) and by mean
of order statistics (MOS).
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(b) Independent and identically distributed process

Figure 4: Empirical CDF of the mean of the 5th order statistic, where p = 99.

tion 2.1, because the accuracy of final estimates is fine and,

thus, there is no need for the specialised cases q̂
(n)
i or q̂

(e)
i .

The coverage of the quantiles estimated by the mean of
order statistics is almost as expected for Example 1 and 2,
as one can see in Figures 3(b) and 3(d). The coverage is sig-
nificantly smaller than 0.95 for extreme quantiles. However,
here we used our knowledge of the form of the distribution

function and applied the more specialised estimates q̂
(e)
i and

q̂
(n)
i , as defined in Section 2.1. In Figures 3(f) and 3(h) one

can see that the coverage of the mean of order statistics for
Example 3 and 4 is not as expected. Even non extreme
quantiles show a coverage significantly smaller than 0.95.

For this examples none of the estimators q̂i, q̂
(e)
i and q̂

(n)
i

are optimal, the best results we obtained by applying q̂
(e)
i .

The bad coverage is caused by a constant value of the sam-
ple size p. Here, all order statistics provide a slightly biased
estimate. The calculation of the mean does not eliminate
this bias.

To prove this we draw the empirical distribution of the
mean of the 5th order statistics for Example 3 in Figure 4(a).
The bold arrow marks the position of the overall mean and
the dashed arrow marks the expected value. The distri-
bution is not centred around the expected value, thus, the
estimator is biased. However, one can also see that the dif-
ference between the expectation and the mean F−1

X (x) −
F̂−1

X (x) ≈ 0.0082 is small. This explains why the distribu-
tions in Figure 2(c) are almost identical and it shows that a
constant sample size p causes the bias.

To show that the estimation of the variance by batch
means or spectral analysis is not the problem we did another
series of experiments. In this case we used an independent
and identically distributed output process. Here, the data is
drawn directly from the steady state distribution of Exam-
ple 3. The empirical distribution of the mean of the 5th or-
der statistics is depicted in Figure 4(b). The distribution of
this process is more focused (smaller variance) compared to
Figure 4(a) and the bias still remains approximately equal
0.0082. This shows that batch means or spectral analysis
does not influence the result. The constant sample size p is
the only source of bias.

Statistical accuracy of sequential estimation methods, in
terms of low bias, is our primary performance measure of in-
terest. Efficiency of sequential estimation methods, in terms
of minimum number of observations to fulfil the stopping cri-
terion, is a secondary performance measure. Even though we

believe that there is no significant difference in the efficiency
of pooling spaced data and the mean of order statistics we
did no detailed investigation on this topic. This is because
pooling spaced data is clearly preferable due to higher accu-
racy.

5. CONCLUSIONS
We have suggested two different methods for steady state

estimation of quantiles in simulation output analysis of mul-
tiple replications. The first method is to calculate the mean
of order statistics of a constant sample size p, whereas the
second method uses a pool P of independent observations.

The examples show that the pool of observations provides
valid quantile estimates. The statistical properties of this
method are as expected. This is true for all examined ex-
amples and all estimated quantiles. Therefore, this method
is robust. It is suitable for automated simulation analysis
because no previous knowledge is assumed.

The mean of order statistics only provides good quantile
estimates if the general form of the distribution is known.
In other cases the estimates are biased because the sample
size p is constant. A constant sample size p violates the
assumption of Theorem 1.

We can see that the use of multiple replications enables
new methods of quantile estimation. Because of the indepen-
dence of the replications standard quantile estimators can be
applied. In Figure 2 we can see that the steady state dis-
tribution can be estimated. The estimated distributions are
almost indistinguishable from the expected distributions. A
small statistical error is guaranteed by a sequential approach
of quantile analysis.
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