
SEPCOM: Customizable Zero Copy Model *
Kai Chen

PHD Candidate
State Key Laboratory of Information
Security, Graduate University of the

Chinese Academy of Sciences
Beijing 100049, China

86-01062661709

chenk@is.iscas.ac.cn

Purui Su
Associate Professor

State Key Laboratory of Information
Security, Institute of Software, Chinese

Academy of Sciences
Beijing 100080, China

86-01062661709

supurui@is.iscas.ac.cn
Dengguo Feng

Professor
State Key Laboratory of Information

Security, Institute of Software, Chinese
Academy of Sciences
Beijing 100080, China

86-01062661709

feng@is.iscas.ac.cn

Yingjun Zhang
PHD Candidate

State Key Laboratory of Information
Security, Graduate University of the

Chinese Academy of Sciences
Beijing 100049, China

86-01062661709

yjzhang@is.iscas.ac.cn

ABSTRACT
Fast Ethernet packages management has become a hot topic in the
world since the bandwidth is approaching Gigabit and the magic
speed of worm spreading. It is necessary for a server such as IDS
and firewall to manage packages in an extremely fast way. In the
procedure of transmitting packages, CPU copies each package
twice. In order to make CPU spend less time in the copy
procedure, zero-copy mechanism has been brought forward.
However, in former implementations, almost all the user-face
software needs to be modified and no one has made theoretical
analysis of those implements. We propose SEPCOM (State basEd
Partly Customizable zero cOpy Model) to speed up the package
managing with the maximum compatibility. We also make a
mathematic model to maximize the speed. In the end of the paper,
to test our model, we propose an application to monitor network
flows, which is one of the most popular applications requiring
high speed of package managing.

Categories and Subject Descriptors
C.2.3 [COMPUTER-COMMUNICATION NETWORKS]:
Network Operations – Network management, Network monitor

General Terms
Management, Measurement, Performance, Design, Security.

Keywords
SEPCOM, zero copy, package management, fast Ethernet, system
architecture

1. INTRODUCTION
Today, with the development of network and increasing speed of
worm spreading, handling packages quickly is much more
important than before, especially in the fields of IDS, firewall and
network managing of the backbone network[16] [17] and so on. In
some cases, high speed up to 10G is required. However, if the
system’s own network protocol stack is used, the network flow
can not be managed in the speed of 1 Gigabit for one simple
reason: In the process of transmitting package, it requires CPU to
copy every package twice. First, the package is copied from
Network Interface Card (NIC) to memory. Second, it is copied
from system space to user space. In many cases, these two copy
operations will cause CPU not having time to do normal
transactions. To avoid this, a method called zero copy has been
brought forward. However, as the zero copy method has to
modify the driver program of NIC, almost all of the software in
the user space needs to be modified. We proposed SEPCOM,
which is not only a model of high speed packages management
but also compatible with existing systems. It makes it possible to
customize any software into zero copy one and achieve almost the
utmost speed of the NIC.
We proceed in the remainder of the paper as follows. In Section 2,
we review the related work. We continue in Section 3 by
introducing our SEPCOM. Next, in Section 4, we make
mathematic model for our SEPCOM and evaluate it before
quantity analysis in Section 5. We provide one example of

* This work was supported by Hi-Tech Research and Development
Program of China (863 Program) under Grant No. 2006AA01Z412,
2006AA01Z437 and 2006AA01Z433 and by the National Natural
Science Foundation of China under Grant No.60403006.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Valuetools’07, October 23-25, 2007, Nantes, France.
Copyright 2007 ICST 978-963-9799-00-4

application in the field of monitoring and filtrating and make
some comparison in Section 6; and conclude in Section 7.

2. RELATED WORK
In the past, a lot of efforts have been made to increase the
efficiency of packages transporting. The best way which has
minimal data transfer overhead is that the network memory can be
accessible to user or kernel space. However, this requires difficult
hardware support and many changes of the software. Since the
memory of NIC is so limited, we can hardly do any large scale
use of them. Furthermore, if the software can not manage the
memory well such as leaking memory, it may easily deplete the
interface memory available for use [2]. Cooper [1] used some
analogical ways to do this.
To evade the complicated hardware changes, a different approach
emerged. A block of memory is shared between the network
interface and the kernel, and then use DMA to transmit packages
[3], [4], [5], [6]. Unfortunately, it requires us to modify network
software, the kernel and interface driver. Special attention needs
to be paid to the memory of network software, which is expensive
and not easy to be done. In addition to the complicacy of this
approach, there is another copy operation between the kernel
space and the user space, which diminishes the efficiency.
Then, in order to avoid the two copy operations, Druschel and
Peterson [7] proposed fast buffers (fbufs). In this new approach,
mapping scenario was added between the user and kernel and
DMA was used to transmit packages between the network
interface and the memory. Although this method eliminates the
overhead of the additional copy operation, the software, kernel
and driver also need to be modified. Moreover, all the software
uses its own memory buffer which is pre-mapped to the kernel. So
it may cause the memory corruption and resource competition and
will render the efficiency.
Chu [8] made another schema which remaps memory by editing
MMU table and makes use of copy-on-write techniques. Although
it allows less modification of the software, there are several flaws
in it such as the VM operations’ expense and the boundary
problems just as the author himself says.

On the other hand, SCAMPI[12]和 MAGNeT[13] mapped the
kernel events to the user space to capture packages, which is
unfortunately difficult to deploy. SNORT[14] can also be
managed to capture packages, but it can not exceed the upper
limit of 64000pps[15].
In this paper, we propose SEPCOM, which uses only one block of
kernel buffer instead of allocating for each program. By doing this,
we can easily manage the buffer by modifying the network
interface driver but not the kernel. As the block is managed only
by driver, the memory corruption will be maximally avoided.
Then the overall block is divided into small units on which some
flags can be added to indicate the different states and different
software. Since the mapping mechanics of the kernel is not
changed, we can customize any software we want to be the zero
copy one without any changes to other software. In this way, the
compatibility is maximized. DMA mode and mapping schema are
also used to eliminate the two copy operations of CPU. With zero
copy and little overhead of memory management, we achieve
great speed in the tests. We also make mathematic model for our
approach, which can help us optimize our model and maximize
the speed.

3. SEPCOM
When applying zero copy, the cost of managing memory and
modifying software should be taken into account. If complex
managing mechanics of the user-kernel mapping, memory or
software are used, the overhead of these operations will
counteract the efficiency we get from zero copy. Our SEPCOM
overcomes the deficiencies mentioned above. In order to show
how SEPCOM works clearly, we will introduce our model from
two angles of view: the overall framework of SEPCOM and the
package transmitted process.

3.1 Framework of SEPCOM
Figure 1 shows the architecture of SEPCOM. It can be classified
into three strata: user space, kernel space and hardware. Network
interface is working in the hardware stratum. It receives the
package from the network link and sends the packages of the
network software such as FTP Server. Network Driver works in
the kernel space as a module. In this way, the operating system
kernel does not need to be changed, which makes our approach
more compatibility. In the user space, many software run here
including the network ones and others. Network software can be
divided into two types: zero copy software and other software
which do not need zero copy. As we all know, in large scale
network, the server is almost acting as only one role. For example,
the file server is always used to supply the function of file access.
The log server is always used to log the network or services
information. So we can only change those software which need
fast package management to the zero copy ones while the other
software use the system tcp/ip stack without any changes. In this
way, we reduce the cost of changing all the network software.
Even if the server serves as more than one role, we only need to
make the most used two or more network software to be zero
copy ones. Then I will explain how we achieve this.

Other software

Network interface

Network data bufferNetwork Driver

DMA

Kernel space

User space

Normal data

Hardware

Data flow

Through Protocol Stack

Control flow

Through Protocol Stack

Zero copy software

mapping

Figure 1. The system architecture of SEPCOM
Firstly, the network driver allocates one block of buffer in the
kernel and remapped it to the user space. The overall block can be
divided into n pieces of unit equally. When data come from the
network interface, they will be transferred to one of the unit
through DMA. Next, the driver will try to find whether the
package belongs to zero copy software. If it does, the driver flags
the package and does not take care of them any more. If the

package belongs to other software, the driver reconstructs the
package to the suitable structure (in Linux, it is the sk_buff
structure) and sends it through system TCP/IP stack. In this way,
the zero copy software in user space can access the data without
any copy operation of CPU. What we talk above is about
receiving operations, and then we will talk about sending
operations.
When zero copy software wants to send a package, it can fulfill
the package to the unit of kernel buffer and flag it to be sent. The
network driver has a timer, which makes the driver to inspect
every unit of buffer in a regular time period. When it finds the
package be ready to send, it makes NIC to send it by DMA. Other
software sends packages only in their usual way just like no zero
copy mechanism. To better understand SEPCOM, we can look at
it from the view of the package flag, which shows the different
states when the package is transferred.

3.2 State of Package Transition
When the first package reaches, it is flagged to indicate different
stages of being managed. NFA (Non-Deterministic finite
automaton) M is helpful to describe the process.

Definition 1. 0(, , , ,)M Q q Fδ= ∑

In this definition, Q is the set of states. Q={Flag_No_Use，
Flag_Alloc ， Flag_Recv_0 ， Flag_Read_0 ， Flag_Send_1 ，

Flag_In_Send_1，Flag_Drop}. ∑ is the set of inputs. δ is a
function of state change. The detailed information about ∑ and
δ will be talked below. q0 is the start state of M and F is the final
state. In this case, q0 = F = Flag_No_Use. When the state reaches
F, it means not only the end of one package transference but a
new start of next. All the states and switches among them can be
seen in figure 2 below.
For simplicity, we draw the state-transition figure under the
condition of only one zero copy software. Two or more software
can be distinguished by using additional flags. If software only
sends or receives packages, some parts of figure 2 can be used to
indicate this.
At first, the initial state is Flag_No_Use, which means the unit of
buffer is of no use. When the unit is allocated for receiving
packages, the state will be changed to Flag_Alloc. After a new
package comes, the driver judges whether it belongs to zero copy
software. If so, the state will be changed to Flag_Recv_0 (the
number 0 means the package is received from the first network
interface). Otherwise, it will be changed back to Flag_No_Use.
When the zero copy software reads its package, the state will be
changed to Flag_Read_0. Then if the software wants to send a
respondent package, it can modify the package and set the state to
Flag_Send_1 (the number 1 means to the package is sent from the
second network interface). If the software does not want to make
any response, it can just set the state to Flag_Drop. When the
driver finds a package flagged Flag_Send_1, it will try to send the
package and change the state to Flag_In_Send_1. When finding
Flag_Drop, it simply reclaims the package and sets the state to
Flag_No_Use. At last, the driver changes the state to
Flag_No_Use after sending successfully or it sets the state back to
Flag_Send_1 and continues to send for a second time. If still
failed, the driver sets the flag to Flag_Drop and drops it. A
package ends its life in the above process.

Figure 2. The state-transition figure

Now, we have known the architecture of SEPCOM and how to
manage packages. Next we will analyze and maximize the
efficiency of SEPCOM by means of constructing mathematic
model.

4. MATHEMATIC MODEL OF SEPCOM
Before we can analyze the efficiency of our model, we will firstly
model it.
Definition 2. package managing time tM : indicates the average
life time of a package. From the view of state transition, it means
the average time interval between the start from Flag_No_Use
and the end in Flag_No_Use.
Definition 3. zero copy package managing time tI : indicates
the average life time of a zero copy package.
Definition 4. non-zero copy package managing time tB :
indicates the average life time of a non-zero copy package.
From Definition 2, we can get that:

(1)M I Bt t tρ ρ= ⋅ + − ⋅ (1)

where ρ is the propostion of zero copy software’s packages to all
packages.
We can also get:

B Alloc DMA NMt C C C= + + (2)
where CAlloc is the time we need to allocate one unit of buffer,
which is the time interval between Flag_No_Use and Flag_Alloc;
CDMA is the time needed by DMA to transfer the package from
network to kernel memory buffer; CNM is the managing time of
non-zero copy package after received by driver. All the three
parameters above are constant. Then we can get the expression of
tI from Definition 3:

(1)I IT IDt t tω ω= ⋅ + − ⋅ (3)

where ω is the sending probability of a zero copy package; tIT is
the time if the package is sent and tID is the time if the package is
dropped.

We can easily conclude that when there are no sufficient units of
buffer, the new-coming packages will be dropped by network
interface, which is different from the situation of enough units of
buffer.
Condition 1. There are enough units of buffer that no package
will be dropped.
Under the Condition 1 and Definition 2, we can get (4) from the
state-transition figure:

()
1

1 1
2

n

IT Alloc DMA Scan Send
i

t C C i C C
n n

β α
=

⎛ ⎞
= + + + + ⋅ +⎜ ⎟

⎝ ⎠
∑

 (4)
where β is the managing time of zero copy software; n is the
number of units; α is the time interval between the two times of
buffer scanning by driver; CScan is the time taken by driver to scan
one unit of buffer; CSend is the time interval between the state of
Flag_Send_1 and the state of Flag_No_Use. Note that random
probability is 1/2. We can also get tID:

()
1

1 1
2

n

ID Alloc DMA Scan Drop
i

t C C i C C
n n

β α
=

⎛ ⎞= + + + + ⋅ +⎜ ⎟
⎝ ⎠
∑

 (5)
where CDrop is the time to release a buffer. That is the time
interval between Flag_Drop and Flag_No_Use. From (3) to (5),
we can get:

()
1

(1)

1 1 (1)
2

I IT ID

n

Alloc DMA Scan Send Drop
i

t t t

C C i C C C
n n

ω ω

β α ω ω
=

= ⋅ + − ⋅

⎛ ⎞
= + + + + ⋅ + ⋅ + − ⋅⎜ ⎟

⎝ ⎠
∑

 (6)
Then, from (1), (2), (6), we can know the package managing tM:

()1 1(1) 1
2 2M I B Scant t t C n C
n

ρ ρ ρ α ρ= ⋅ + − ⋅ = ⋅ + ⋅ ⋅ ⋅ + +
 (7)

where

()(1)

(1) (1)
Alloc DMA Send Drop

NM NM

C C C C C

C C

ρ β ρ ω ω

ρ ρ β ρ

= + + ⋅ + ⋅ ⋅ + − ⋅

+ − ⋅ ≈ ⋅ + − ⋅

 (8)

From (7), we can find that C, CScan and ρ are constant. Then the
less value α and n, the less time driver need to manage a package.
However, we can not reduce α and n with no limit for the
following reasons.
① Too low the value of α will cause the scan procedure running

almost every time, which will not allow CPU do any other
jobs.

② Too few of n will make the units of buffer be used up and no
units else can be ready for new coming network packages. In
this situation, Condition 1 will not take effect, which means
all the reasoning above will have no sense.

So it is very important to get the restriction of n. We can do this
from the following two aspects.
All packages should be received. It means p (the sending speed of
network packages) should not be higher than the speed of
managing. That is p≤ 1/ tM. In this way, if we could estimate the
upper speed of p, we can get the range of n. From (7) and the limit
of tM:

()1 1 1
2 2

1 1 2 1

Scan

Scan Scan

C n C
n

C n C C
p n p

ρ α ρ

α
ρ

⋅ + ⋅ ⋅ + +

⎛ ⎞
≤ ⇒ + ⋅ ≤ − −⎜ ⎟

⎝ ⎠

 Let

2 1' ScanC C C
pρ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠ , we may get:

21 ' ' 0

' '
2 2

Scan Scan

Scan Scan

C n C C n C n
n

C Cn
C C

α α+ ⋅ ≤ ⇒ ⋅ − ⋅ + ≤

− ∆ + ∆
⇒ ≤ ≤

× ×

 (9)

where ()2' 4 ScanC C α∆ = − × × .
Although we construct the mathematic model in the form of a
single package, the packages are managed in block in reality. So
the number of units we allocate should be larger than that of the
packages generated in the time interval between two times of
driver scan. Hence,

()()

()

2 (1)
2 2

2
2

I DMA

Scan
Alloc Send Drop

Scan

Scan

n p t C

Cpn C C C
p C

pn p
p C

α β

α ω ω

α α

≥ ⋅ + − −

⎛ ⎞⇒ ≥ ⋅ + + + ⋅ + − ⋅⎜ ⎟− ⋅ ⎝ ⎠

⇒ > ⋅ > ⋅
− ⋅ (10)

Up to now, we know the limit of n under the Condition 1.
However, when package sending speed is higher than the
managing speed, not all of the packages can be received. Then we
will assess the loss of the packages.
Condition 2. Too high the sending speed makes packages
dropping happen.
Under Condition 2, there is no unit else for the new coming
package. If the burst flow of packages makes m pieces of buffers
in the network interface can not be mapped to kernel units, the
driver can not receive any more packages by DMA. Then the
average recovery time is

()1 1 1 1
2 2 2 2

Scan
H M

Ct m t m n C
n
ρ α ρ⎛ ⎞= ⋅ = ⋅ ⋅ + ⋅ ⋅ + +⎜ ⎟

⎝ ⎠ (11)
The number of loss packages in tH is

()1 1 1
2 2 2

Scan
S H

CN p t p m n C
n
ρ α ρ⎛ ⎞= ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ + +⎜ ⎟

⎝ ⎠ (12)

Up until now, we have made a mathematic model for SEPCOM in
the above. We also limit n from the model under Condition 1 and
assess the recovery time and the number of loss packages under
Condition 2. In the next section, we will optimize the managing
time tM and make some numerical computation.

5. QUANTITATIVE ANASYSIS OF
SEPCOM
In this section, we will firstly take our IBM server as an example
to show some concrete limits of model and the optimum value of
n. Then we will assess the number of packages we will lose in
reality under the Condition 2.

5.1 Limit of β
We will estimate some of the parameters we talked above in order
to limit n. The machine we test has two 3GHz Intel Pentium IV
processors. So CScan is approximately 10-9. Suppose p＝2×105pps
(packages per second), ρ＝0.9999≈1, α=1ms. We can get from
(9) that

()

()

2

2

2
9 9 3

5

' 4

2 1 (1) 4

12 10 4 10 10
2 10

Scan

NM Scan Scan

C C

C C C
p

α

ρ β ρ α
ρ

β − − −

∆ = − × ×

⎛ ⎞⎛ ⎞
≈ − ⋅ + − ⋅ − − × ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞≈ − − − × ×⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠

 (13)

Since 0∆ ≥ ,

2
9 9 3 6

5

12 10 4 10 10 0 4 10
2 10

β β− − − −⎛ ⎞⎛ ⎞− − − × × ≥ ⇒ < ×⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠ .
So the managing time of zero copy software for one package
would not be more than 4μs, or we will lose the consequent
packages.

5.2 Limit of n
Suppose β=2×10-6s, from (9), we can get

2
9 9 3 12

5

12 10 4 10 10 32 10
2 10

β − − − −⎛ ⎞⎛ ⎞∆ ≈ − − − × × ≈ ×⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠

' ' 172 5828
2 2Scan Scan

C Cn n
C C
− ∆ + ∆

∴ ≤ ≤ ⇒ < <
× × .

From (10), we will get
5 -32 10 10 200n p α> ⋅ = × × = .

In sum, we can conclude that 200<n<5828. If n is not in the range,
there will be loss of packages.

5.3 Optimum Value of n
To minimize tM, consider (7).

()1 1 11
2 2 2M Scan Scan Scant C n C C C C

n
ρ α ρ ρ α ρ= ⋅ + ⋅ ⋅ ⋅ + + ≥ ⋅ + ⋅ +

If and only if
1 1
2 2 ScanC n

n
ρ α ρ⋅ = ⋅ ⋅ ⋅

, tM has its minimum value. At
this time, 3/ 10Scann Cα= = and

61 3 10
2M Scan Scant C C Cρ α ρ −= ⋅ + ⋅ + ≈ ×

. So if we divide the kernel
buffer to 1000 units, we will get the most efficiency.

5.4 Assess the Loss of the Packages
Under the Condition 2, suppose n=1000, consider (12).

()1 1 1 0.3
2 2 2

Scan
S

CN p m n C m
n
ρ α ρ⎛ ⎞= ⋅ ⋅ ⋅ + ⋅ ⋅ + + ≈⎜ ⎟

⎝ ⎠
So if the burst of package flow makes no unit of kernel memory
for DMA transmission, it will cause 0.3 times package loss. Note
that if α > 15ms, Ns > m. The avalanche effect will make
SEPCOM hard to recover.

6. EXPERIMENTS AND EVALUATION
In order to test the efficiency of SEPCOM and our analysis, we
modify the network interface driver and correspondingly one zero
copy software. The software’s aim is to monitor and filter the
traffic flow. Our testing computer is one IBM server which is
equipped with two 3GHz Intel Pentium IV processors, 4GB
memory, two Intel e1000 network interface cards and the
operating system is Linux 2.6.11. Since we need to generate the
extremely large number of traffic flows, we use SmartBits [11] as
package generator and the equipped software SmartFlow, which
controls SmartBits to generate flows automatically. We choose
two types of test: throughput test and latency test.

6.1 Throughput Test
The Throughput test determines the maximum transmission rate at
which the DUT can forward IP traffic with no frame loss, or at a
user-specified acceptable frame loss [9]. In this test, we will make
a comparison between our SEPCOM and simply use libpcap [10]
to capture packages. We can see figure 3 below. The upper line is
the result of SEPCOM and the lower line is the result of libpcap.
We can easily find out that SEPCOM achieves the utmost of the
network interface card when the size of package comes to 450
Byte. However, when using libpcap, even the package size is
1518 Byte, the maximum size of Ethernet, it can not achieve the
utmost speed. We have no zero copy implements for Gigabit NIC
of others, so we can not make some comparisons between them.

Figure 3. the throughput test results

6.2 Latency Test
Latency test is to measure the latency (transmission delay)
introduced by the DUT [9]. In this test, our goal is to check the
analysis above. So we choose different n, by comparison the
latency results of the tests, we can find the optimum value of n.
In figure 4, the lower line is the result of our computation under
the assumption that α=1ms and β=2×10-6s. The upper line is the
result we get from SmartFlow. From the results above, we can
find our analysis is very precise. The reason why the theoretical
value is less than the testing value may be the result of omitting
some tiny parameters when computing.

Figure 4. the latency test results

7. CONCLUSION AND FUTURE WORK
In this paper, we present SEPCOM, a zero copy model for
extremely fast package management. SEPCOM achieves
significant improvements in speed and compatibility over the
former implements. It can give great help to increase the
managing speed of IDS and firewall. We also make mathematic
analysis of the model and optimize some parameters, which help
us to limit some key parameters when programming. We also
confine the time limit of zero copy software and assess the loss of
packages after a burst of flow, which may also help us in the real
situation.
SEPCOM is a young model. We will optimize the algorithm of
memory management. For example, we can use queue to manage
packages instead of poll method. We will also find a better
algorithm for choosing the right zero copy software if there is
more than one. Finally, we will continue to make clear the
relationship between the CPU and α and to choose the best value
of α.

8. ACKNOWLEDGMENTS
We would like to thank Shengyong Li for his constructive
comments and suggestions. We would also like to thank the
anonymous reviewers for their insightful feedback.

9. REFERENCES
[1] E. Cooper, P. Steenkiste, R. Sansom, and B. Zill: Protocol

Implementation on the Nectar Communication Processor,
Proceedings of SIGCOMM’90 Conference on Comm.
Architectures, Protocols and Applications, Aug. 1994.

[2] B. Traw: Applying Architectural Parallelism to High
Performance Network Subsystems, Ph.D. Dissertation,
University of Pennsylvania, 1995.

[3] C. Dubnicki, E.W. Felten, L. Iftode and K. Li: Software
support for virtual memory-mapped communication, in: Proc.

10th IEEE Int. Parallel Proc. Symp., Honolulu, HI, April
1996, pp. 372–381.

[4] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B.
Shubert, F. Berry, A. Merritt, E. Gronke and C. Dodd: The
virtual interface architecture, IEEE Micro 18(2) (March–
April 1998) 66–76.

[5] T. von Eicken, A. Basu, V. Buch and W. Vogels, U-Net: A
user-level network interface for parallel and distributed
computing, in: Proc. of 15th Symposium on Operating
Systems Principles (SOSP-15), Cooper Mountain, CO, USA,
December 1995 (ACM).

[6] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards,
and J. Lumley: Afterburner - A network-independent card
provides architectural support for high-performance
protocols, IEEE Network, July 1993.

[7] P. Druschel, L Peterson. Fbufs: A High-Bandwidth Cross-
Domain Transfer Facility, Proceedings of the Fourteenth
ACM Symposium on Operating Systems Principles, Dec.
1993.

[8] H.K. Jerry Chu: Zero-Copy TCP in Solaris, in: Proc. of the
USENIX 1996 Annual Technical Conference, San Diego,
CA, USA, January 1996 (The USENIX Association) pp.
253–264.

[9] Spirent Communications, Inc: the User Guide of SmartFlow
version 4.5, pp. 296, 334

[10] Tim Carstens: Programming with pcap.
http://www.tcpdump.org/pcap.htm

[11] Spirent: Spirent SmartBits Trusted Industry Standard for
Router and Switch Testing,
http://www.spirentcom.com/analysis/technology.cfm?media
=7&WS=325&SS=110&wt=2

[12] SCAMPI, a Scalable Monitoring Platform for the Internet,
Lieden University (in collaboration), Mar. 2002,
http://www.ist-scampi.org.

[13] M. K. Gardner, W. Feng, and J. R. Hay, “Monitoring
Protocol Traffic with a MAGNeT,” in Passive & Active
Measurement Workshop, Fort Collins, Colorado, 3 2002.

[14] Martin Roesch and Chris Green, “SNORT: The Open Source
Network Intrusion Detection System 1.9.1,” Nov. 2002,
http://www.snort.org/.

[15] A. Moore, J. Hall, C. Kreibich, et al. Architecture of a
Network Monitor. In PAM, 2003.

[16] Ubik. S, Smotlacha. V, Simar. N, Performance monitoring of
high-speed networks from the NREN perspective, Terena
Networking Conference. 2004

[17] J. Hall, I. L. Ian Pratt, and A. Moore, “The Effect of Early
Packet Loss on Web Page Download Times,” in Passive
&Active Measurement Workshop 2003 (PAM2003), Apr.
2003.

