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er to guarantee to every user an end to end QoS. These systems are
ABSTRACT dertog tee t y dto end QoS. Th yst
Performance evaluation of telecommunication and computer sys- USually represented by multidimensional processes with very large
tems is essential but a complex issue in general. Quantitative anal-State spaces. As a result, quantitative analysis is difficult if there is

ysis of systems represented by multidimensional Markov processesnO specific solution form (product form splutlons_, ). Slnge exact
models is very difficult and may be intractable if there is no spe- performance measures can only be obtained using numerical meth-

cific solution form. In this study, we propose an algorithm in order °9S [11] with small sizes, it is important to develop new powerful

to derive aggregated Markov processes providing upper and |Owermather_‘natlcal tools. ,

bounds on performance measures. We prove using stochastic com- " this paper, we propose to use a mathematical method based on
parisons that these aggregated Markov processes give bounds Oﬁtochast_lc comparisons of Mar_kov processes. The key idea of this
performance measures defined as increasing reward functions orfn€thod is that given a large size Markov process, we propose to

the transient and stationary distributions. The stochastic compari- °°Und it by @ smaller new Markov process which provides bounds

son has been largely applied in performance evaluation however the®" performance measures. .
A stochastic ordering is defined as a relation order between ran-

state space is generally assumed to be totally ordered which induces X .
less accurate bounds for multidimensional Markov processes. 0_'°m varla_bles, or stochastic processes [_12]' The most known stochas-
Our proposed algorithm assumes only a preorder on the stateli Order is the strong stochastic orderifigsy). When the state
space, and is applied to the analysis of an open tandem queuein&pace IS m_ultl_dlmens[onal, weak ?Q’.tOChaSt'C orderings can al_so be
network with rejection in order to derive loss probability bounds. defl_ned using increasing sets fa_mllles [12], [8]. The stochastic or-
Numerical results are computed from two parametric aggregation 9€7ing theory can be also applied between processes represented
schemes : a fine and a coarse in order to show the improvement ofo" different s_tate spaces l_)y_mapplr}g func_tlons on a common state
the accuracy of the bound with respect to the state space size. WeoPace [4]- This formalism is interesting as it can be used in order to
propose an attractive solution to the performance study : given areducg the size of large state space Markov processes by defining
performance measure threshold, we study if it is guaranteed or notP0unding Markov processes on a smaller state space. These pro-
by studying less complex aggregated bounding processes. cesses provide bounds on performar)ce measures. We can |_n_deed
Keywords: Markov processes, Stochastic comparisons, Tandem construct the aggregated process without generating the original

queueing networks, loss probability bounds one, thus there is no supplementary complexity and the bounding
' ' procedure can be included in the construction phase.

The advantage of this method is that it can be applied for dif-
1. INTRODUCTION ferent kinds of network architectures. We have already obtained
Network architectures become very complex due to the variety some interesting results. In [1], we apply this method on mobile
of technologies (such as ADSL, WIFI, WIMAX, satellite, ...) and networks in order to obtain dropping handover bounds. In [3], we
the different traffic flows. It is crucial to evaluate the performance use it to compute loss rates packets in an optical switch, and in [2]
of the whole network from the source to the destination node in or- for the loss rates packets in an IP switch. [10] presents in details
- - this method with different applications.
"This work is supported by ANR-06-SETI-002 CheckBound These different studies Iggd to think the main steps of the gen-
eration of an aggregated bounding Markov process on multidimen-
sional state spaces. In the case of totally ordered state spaces, the
- - . . lumpability and the stochastic ordering have been combined to de-
Permission to make digital or hard copies of all or part of this work for rive bounding Markov chains [5, 13].
personal or classroom use is granted without fee provided that copies are L2 e .
not made or distributed for profit or commercial advantage and that copies 1 h€ originality and the significance of the present paper is the
bear this notice and the full citation on the first page. To copy otherwise, to definition of an algorithm which generates bounding Markov pro-
republish, to post on servers or to redistribute to lists, requires prior specific cesses as the aggregated version of a large size multidimensional
permission and/or a fee. Markov process. Bounding Markov processes provide upper or
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) ' : ' ' ower bounds on performance measures. This algorithm can be ap-
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plied for general multidimensional processes, endowed with only
a preorder (so not necessarily a total order, see Definition 1 in the
Appendix for more details) on the state space. We have proved state
using the stochastic comparison methods that the proposed aggre- space E
gated Markov processes provide really bounds. These proofs are
based on the comparisons of the infinitesimal generators, and the
use of the monotonicity property which are complex notions when
the state spaces are multidimensional and not totally ordered.
As an application of our algorithm, we evaluate the performances
of a system represented by a series of network nodes (switches or
routers), where only one flow of packets transits. This system rep- state
resents a path in a network, from a source to a destination node. space S
The performance study of this system is performed in order to ver-
ify that end to end Quality of Service (Q0S) constraints are main- ] ]
tained. This system can be represented as an open tandem gueueing Figure 1. State space aggregation
network with rejection. We represent the tandem queues system by
a Markov process which has not a product-form solution. One way giationary distributior1® exists. We denote bRe a performance
of analyzing such queueing system is to solve numerically for the aasure computed di€ as follows
stationary probability vector of the Markov process. Meanwhile,
memory complexity limits this approach to small queueing net- Re= EEI'Ie(x)f(x) (1)
works. Note that tandem queues with blocking have been analyzed xe
in [9] using approximation algorithms for any number of queues. where f is an increasing reward function d#f according to the
Because of the complexity of systems, most of the studies aboutpreorder defined ok&. If there is no specific solution fdi®, then
tandem queues are approximations based on system decomposii is very difficult to obtain it as the state spages very large. So
tion. we reduceE by gathering some states and by mapping them into
This paper is organized as follows. In the next section, we briefly one state.
explain how to reduce the state space using stochastic comparisons. As we want to compute an upper bound (resp. a lower bound) for
In section 3 we present the algorithm which generates aggregatedRe, then we define a mapping functiéw® (resp. Ad) which pro-
bounding Markov processes. We prove in section 4 that this al- vides the state spa&, whereS® = AgS(E) (resp. S, whereS =
gorithm provides really upper and lower bounds for performance Ad(E)). We build an upper (resp. lower) "aggregated” Markov
measures. In section 5, we apply the algorithm to a tandem queuesprocesse¥3(t) (resp. X! (t)) on S (resp. 9), with the stationary
system in order to evaluate the loss probabilities. Analytical results distributionrs ( resp.n' ) in order to computé&s (resp.R') :
prove that the methodology is really interesting. Achieved results
are discussed in section 6, and comments about further research =Y Nsxf(x) andR = 5 n'(x)f(x) @)
items are given. Finally, we summarize in an appendix the stochas- Xé
tic ordering theory used in this paper.

states where
f (x)>0

xes
with the following relation :

2. STATE SPACE REDUCTION R<R<R

The stochastic comparison is a mathematical tool which allows  In order to haveRS andR' close toRe, the aggregation is per-
to compute bounds on transient distributions and the stationary dis-formed only on some statesc E such thatf(x) = 0. So states
tribution of a Markov process. In fact, if the underlying Markov  used for the computation & are the same as iR andR' , and
process does not have a specific solution form like a product-form we have supposed thétx) has the same values Rf than inRS
or matrix-geometric solutions, etc. the computation of stationary andR'. In Figure 1, we have represented the state space E as a set
probability distributions becomes difficult or intractable for large of grey dots (states wher(x) = 0) and black dots (states where
state spaces. By means of the stochastic comparison method, it isf (x) > 0 ). Some states wherf(x) = 0 are aggregated and are
possible to overcome this problem by reducing the size of the state mapped into one state in the state spafehereSrepresents’® or
space of the underlying Markov process. §), and states wher&(x) > 0 are not aggregated.

We focus on performance measures computed as an increasing Next we will present the algorithm which generates the aggre-
reward function on the stationary distribution. In fact we can con- gated bounding Markov processes. We have the following assump-
sider transient reward functions with stochastic comparison approactions. {X&(t),t > 0} is a Markov process defined on a large state
in the same way, but we give here only the stationary rewards for spaceE with an infinitesimal generator matr@®. It is irreducible,
the sake of brevity. In some cases (for example loss probabilities) so the stationary distributioRi® exists, and=® is the performance
this reward function depends only on few states. It equals O for a measure to compute as given in equation (1).
lot of states, and has a positive value for few states. So it is not We have defined an algorithm which generates aggregated Markov
necessary to represent all the states, and some of them can be pyirocesses providing upper and lower bound on performance mea-
together (which are not used in the computation of the performance sures. This algorithm can be applied only if two conditions are
measure), in order to reduce the size of the state space. We applyerified:
the stochastic comparison approach to define a new Markov pro-
cess which is an aggregation of the initial one and which provides
bounds on the measure of interest.

Let X®(t) be a large state space Markov process defined on a
multidimensional and preordered (not necessarily a totally ordered) 2. Secondly{X®(t), t > 0} must be<st monotone (see Defini-
state spac&. We suppose that the process is irreducible so the tion 7).

1. First, we need to define on the state spBEca preorder=<
compatible withRe (R® is written as an increasing reward
function f on M€ according to<).



We present now the algorithm which generates the aggregatedat this step, but only after the generation of the aggregated state
Markov processes. space, by the Markov chain resolution algorithm.

3. THE PROPOSED ALGORITHM 3.3 Upper and lower bounds

The main steps of the algorithm are the definition of the aggre- State space reduction can generate a lower or an upper bound

gated state spaces with the mapping functions, and the construc2ccording to the choice of the state on which the set of states are

tion of the infinitesimal generator matrices of aggregated processes.[]nappfd' For th? sefixt, .., ¥n} of E wherex; <xz.... < xn, we
Next, we explain how to aggregate the state space with a general ave two cases :
mapping functiomg, and after give the particular cases for the up-

per bound and the lower bound 1. if we define an upper bound, then it is mapped into the "up-

per" statex,. We denote byAg® the mapping function which

3.1 State space definition defines the upper bound. We haveg®(x;) = ... = Ag®(x) =

We explain how to derive the mapping functidg: E — S. - = AG(xn) = xn andx; is called a "macro” state &.

Some states are not aggregated which means that they are exactly 2. if we define a lower bound, then itis mapped into the "lower"
represented, and others are put together in order to be mapped into statex;. We denote byAd the mapping :Ad (x1) = ... =
one state. Ad X)=...= Ad (xn) = X1 andx; is called a "macro" state

1. If a statex; of E is not aggregated with other states, then itis of S.

mapped into the same state SOAg(x ) = % andx; is called As we have defined the increasing mapping functiaf (resp.
a"simple” state of. Ad), then we obtained the state sp&EewhereS® = AgS(E) (resp.

2. If the states of the set of statBs...., X ..., n} Of E where S wheres = Ad (E)). We suppose that the irreducibility condi-
X1 < Xp... < X are put together, then they are mapped into tiONS described a_bove are satlsfle_ql on the state sgacesp. S).
only one state; of the set. The choice of the stagedepends Let us now explain how the transition rates of aggregated Markov
if we define an upper or a lower bound. The mapping func- Processes are computed.

tion Agis such that\g(xy) = ... =Ag(x ) = ... = Ag(Xn) = X; Wg introduceMAgs, thg matrix representation of thg mapping
andyx; is called a "macro” state & function Ag®, described in Theorem 4 of the Appendix. The in-

finitesimal generato®® is defined fromQ® andMag as follows:
Note that the mapping function must be defined as an increasing
function (see Definition 2) in order to have the comparison of the xe S, Qx #] = Q[ Mage
performance measures written as increasing reward functions onwhere Q®[x, ¥] represents the row in matri®® corresponding to
stationary distributions. The definition of an aggregated state spacestatex. Similarly, the infinitesimal generat®' is computed from
S can generate the problem of the irreducibility of the aggregated Qe andM,g as follows:
Markov chain although the original Markov chain is irreducible.

3.2 Transitions and irreducibility conditions

First, we explain how the transitions are defined on the aggre-
gated state space without giving the transition rates (which are de-
fined in the next section for the bounding aggregated Markov pro-
cesses) in order to derive the irreducibility conditions.

When states oE are put together in order to be mapped into
one state, some links between states are removed, so the aggr
gated Markov chains may be not irreducible. When the set of states

vxe 'S, Qx ] = Q%x, x|Mag

The main advantage of this algorithm is to generate automati-
cally an aggregated Markov process providing performance mea-
sure bounds. Obviously, the bounds are more accurd®® #nd
Q' are defined as close as possibleQ®) in order to obtain tight
bounds values. However, the definition of the mapping functions
éé\gs andAd, which means the choice of the states to aggregate is
not simple. It is performed according to different criteria:

{x1,...,%,...,%n} are mapped into the statg then states of the 1. States wheréd is not null in R® expression (see equation 1)
set of stategxy,...,xa} — {x} do not exist in the state spa& are not aggregated, and correspond to simple states. Oppo-
and they are replaced by. All the transitions of the initial Markov sitely to states wheré is null, some states are aggregated,
chain to state$xi, ..., xn} —{x } are removed and replaced by tran- corresponding to macro-states.

sitions tox; in the aggregated Markov chain. And all the transitions

from statesxs,...,xn} — {X} are removed and replaced by transi- 2. Aggregation is performed so as to obtain an irreducible ag-
tions fromx;. gregated Markov process.

Let see first the impact of the suppression of only one state, for ) o ] ]
examplex;. Letx, € E a state which is a predecessor in a transition 3. The choice of states to aggregate is fixed after trying differ-
of x1, andxs a successor of;. As x; belongs to the set of states ent aggregation schemes in order to see their impact on the
which are removed, ther could be not reachable frory, and so quality of the bounds, as it will be presented in section 5.
the aggregated Markov chain may be not irreducible. The condition
to have an irreducible aggregated Markov chain is that there is an
other path connectingp to xs, and soxs will be reachable from
Xp. This condition must be verified for any predecessgrand
successoxs of X;. It must be generalized to all predecessgrand
successorss of {Xy...xn} — {Xi}. If this condition is notqugrified 4. PROOFS
for at least one state, then we come back to step 2. of the state Using the stochastic ordering theory presented in the Appendix,
space definition in order to define another set of states to aggregatewe prove that aggregated Markov processes generated by the algo-
For the moment, in the numerical examples presented in this paperrithm represent bounds for the exact Markov prode¢¥t),t > 0}.

(see Section 5.) the irreducibility conditions have not been verified So we have to verify that :

Next, we prove using the stochastic comparisons of Markov pro-
cesses that the proposed algorithm really provides aggregated bounds
(upper or lower).



{AG(XE(1)),t > 0} =gt {X5(1),t >0} 3)

and

{X'(t),t > 0} st {Ad (X°(1)),t > O} @)

We give only the proof for Equation (3), since the second one
can be similarly proved. We use Theorem 4 of the Appendix,
whereg representdAd®, h is the identity function,{X(t), t > 0}
and{Y(t), t > O} represent respectively®(t) and X5(t). Let us
remark that the theorems and definitions that are applied in this
section are given in the Appendix.

In order to apply Theorem 4, we have to prove the condition 2)
which means the monotonicity of one of the processes by mapping
functions.

4.1 The monotonicity condition

We need to define the following proposition for a Markov pro-
cess{X(t), t > 0} defined orE.

ProposITION 1. If the following conditions 1 and 2 are satis-
fied:

1. {X(t), t > 0} is <st-monotone

2. f:E — Sisanincreasing function
then{f(X(t)), t >} is also<s-monotone

PrROOFE We use Theorem 6, so we have to prove that there exist
two processegX(t),t > 0}, and {X’(t),t > O} governed by the

same infinitesimal generator matrix thgX(t),t > 0}, representing
different realizations ofX(t),t > 0} such that :

F(X(0)) < F(X'(0) = f(X(1)) 2 F(X'(1)). Vt>0  (5)
As {X(t),t > 0} is <st-monotone (from condition 1 of proposi-
tion 1), then according to Theorem 5, we can define two processes
{X(t),t >0}, and{X'(t),t > 0} governed by the same infinitesimal

generator matrix thafiX(t),t > 0}, representing different realiza-
tions of {X(t),t > 0} such that if:

X(0) = X'(0)
then we have:
X(t) < X/(t), vt > 0

Sincef is an increasing function as given in Definition 2, we can
deduce from the precedent inequalities that equation 5 is verified.

Thus it follows from Theorem 6, thaff (X(t)),t > 0} is also
=st-monotone, and Proposition 1 is proved.]

We can apply Proposition 1 to our study. We have supposed as
conditions of the algorithm that{X®&(t), t > 0} is <s-monotone,

and the mapping functioAg® is <-increasing function. Thus with
Proposition 1, we deduce thpAg®(X&(t)),t > 0} is <si-monotone,

and condition 2) of Theorem 4 is verified.

4.2 Infinitesimal generator comparisons

We will prove now that condition 3) of Theorem 4 is also satis-
fied :

VXEE, ye S | AG(X) =Y, Q°Mag X, *] <st Q°[y, #]

As presented in the algorithm, we have two cases for a gtate
S

e if yis a simple state, thepis the mapping of only the same
statey of E such thaty = Ag®(y), and in this case, we have
according to the definition dds, that:

Qs[y7 *] = Qe[y7 *] ,\/IAQS
so for a simple statg we have that:
Q%Y. ¥]Mag =st Q°ly. 4]

o if yis a macro state, theiky, ... X, € E such thatAg®(x1) =
...=Ag’(xn) =Y. Asy represents the upper state, then if
Xn = ..., = X1, we have thay = x,. In this caseQ® is defined

Q°ly, *] = Q%[Xn, ¥|Mags

Since{Ag*(X&(t), t > 0} is <st-monotone, then using Theorem
7 (wheref represent#\g®), we have:

Q°x1, ¥ Mag  =st Q%[X2,*|Mag
Q%2 ¥Mag  =st  Q%[x3,*|Mag
Q°Xn_1,4Mag  =st Q°Xn,*|Mag
and as
Q°lY, *] = Q%[Xn, *|Mag
then:

V1<i<n, Q%x,*|Mag <st Q°[y, #]
so for a macro statge S, we have:
Q%% ¥ Mag =<5t Q°ly, #], VX € E | Ag*(X) =y

So the inequality is established for all states S, then from
Theorem 4, if the condition 1) is satisfied, we deduce that:

{AG(X(t)),t > 0} =t {X5(t),t > 0}

The stochastic comparison of stochastic processes generates the
stochastic comparison of transient and stationary (if it exists) prob-
ability distributions. We consider here only the stationary case.
Thus we can deduce the stochastic comparison of the stationary
probability distributions:

N®Mag =stM°

For all performance measures written as increasing reward func-
tions f on the stationary distributiori3® or NS (if we suppose that
the aggregation is done on states E such thatf (x) = 0), we have
see( Def. 3 of Appendix)

RR<R®

The proof is similar for the lower bound, so we can also verify
that :

¥xeSyeE| x=Ad(y) Q [x #] =st Q°y, <|Mpg

We obtain the stochastic comparison of the stationary distribu-
tions :

M =<5t M®Mag

and also :

R <R®



5. EXAMPLE AND NUMERICAL RESULTS _ o
We propose to apply the proposed algorithm to an open tandem_ ProPOSITION 2. The considered tandem queue with rejection
gueueing network. IS <st-monotone.

. PROOF We use Theorem 5 to prove that there exist two pro-

5.1 Opentandem queueing netw_ork ~ cessegX(t),t>0} and{)?’(t), t > 0} with the same infinitesimal
The system understudy represents a path in a network definedyenerator matrix thafixé(t), t > 0} representing two different re-

as a series of network nodes (switches, routers) where transits onlyz|izations with different initial conditions, and we prove that:

one flow of packets. We suppose that the leftmost node has the R R R R

index 1, and indexes increase in the path until nad€his system X(0) < X'(0) = X(t) < X'(t),t >0

can be represented hyfinite capacity queues in tandem (see Figure

2) Remember thafX€(t),t > 0} is a multidimensional process on

E, it is represented by the vector:

(1 (), . j} XE(t) = (XE(t), -, X5(1), ..., X5(t))
1—) I) also for{X(t), t > O} and{)?’(t), t > 0} which are represented by

n components.
Let suppose thaX(t) < X/(t), and show thaK (t + At) < X/ (t +
) ) At), by considering the evolution in all states even boundary states.
Figure 2: Tandem queueing network We consider all events occurring during the time inteiMal

External arrivals occur only in queue 1, after the flow transits in e an arrival in queue 1: fronXy(t), we obtainXy(t + At) =

queues 2..,nif the_re is e_nough place _in each queue. Wq suppose min{Bl,XAl(t) +1}, and fromxAi(t), we obtainX] (t +At) =

that arrivals are Poisson in queue 1 with raie Each queué has . i .

an Exponential service time with ragg, and a finite capacitg;. min{By,X; (t) +1}, Since others components do not change,

After a service in queug the customer transits to the next queue andX(t) < X/(t) thenX(t +At) < X/(t +At).

i+ 1 if there is enough place, otherwise the customer is lost.
This system is represented by a Markov procgs¥(t), t > 0}

onE = {0,...,B1} x...x{0,...,Bi} x ... x {0,...,By}. Each

statex € E is represented by a vector:

¢ a termination of a service in queue obviously this oc-
curs if Xj(t) > 0 and the customer is accepted in quéde
1 if Xi;1(t) < Biy1, otherwise it is lost. FronX(t), we

X= (X1, %5+, Xn) obtain X; (t + At) = max{0,%; (t) — 1}, and X1 (t + At) =
wherex; is the number of customers waiting in queleWe min{Bi; 1, Xi1(t) +1}. FromX'(t), similarly, X/ (t +At) =
suppose that the stationary distribution dend#éexists. The goal max{0, X/ (t) — 1}, and X/, ; (t +At) = min{Bi 1, X/ 4 (t) +
of this performance study is to compute the loss probabilRfesf 1}. Since others components do not change, (i <
any queue written as follows: >?’(t) then)?(t O < )?’(t ).
R= 5 N%x ® U
XeE|x=B;

As we have verified the two conditions of the algorithm, then
The numerical resolution ofX®(t), t > 0} in order to compute we can apply it to compute performance measures as mean queue

MNe is very difficult or intractable : there is no product-form, and lengths, higher moments on queue lengths, delays, or loss proba-

the number of states increases exponentially with the number of bility bounds. We focus in this paper on the loss probabilities.

components. We propose to apply the algorithm generating aggre- . A

gated bounding Markov processes in order to derive loss probabil- 5.3 Boundlng the loss prObab”'t'eS

ity bounds. Two conditions must be satisfied to apply the algorithm. ~ We use the proposed algorithm in order to derive two aggregated

These conditions are given just before the section 3 about the pre-Markov processes:

sentation of the algorithm.
g 1. The upper boundX3(t),t > 0} on the state spac® C E,

5.2 Algorithm conditions with infinitesimal generato®®. We denote byAg® the map-

The first one is the definition on the state sp&cef an order ping function fromE to .

compatible withR®. We propose the component-wise partial order: 2. The lower bound X' (t),t > 0} on the state spac8 c E,

with infinitesimal generato)'. We denote byAd the map-

VXY EEXZYSX S YL Xn S Yn ping function fromE to S.
We choose this preorder because it allows to establish compar-

isons on each queue, and it is compatible with the loss probabilities

R which can be written as an increasing reward funcfi@ecord-

ing to the order< defined onE. From expression dR® (equation

(6)), for a statex € E, the reward functiorf is: f(x) =1 if x; = B;,

and= 0 otherwise, thug is an increasing reward function accord- v1<i<n, R: <R<F

ing to the order< defined onE. Note that others performance

As aggregated Markov processes are defined to be irreducible,
then we can compute the stationary probability distributidhand
', and we obtain the following relation between the loss probabil-
ities :

measures as mean queues lengths, or delays are also written as il){yhere
creasing reward function. R: — Z M'(x) and F= z M1S(x)
The second condition is the monotonicity so we have to prove xeS =B XeSTx =B,

that{X®(t),t > 0} is <s;-monotone.



We explain now how we define the mapping functidkg and
Ad of the upper bound and the lower bound. As it has been al-

ready stated, states where we have loss of customers are explicitly

if ((F[3] <=F[1]) AND (F[1] <=F[21))
/*F3<=F1<=F2%/
then Aggi(F[3], F[1], F[2D)

represented, but the other states can be aggregated according to dif-End
ferent schemes. We choose two different aggregation schemes ofind Aggregationl

the state space. Each one provides mapping funcfighandAd,

in order to compute upper and lower bounds on the considered per-
formance measure. In this analysis, we are interested in the loss/*
probabilities of the last queue, since in terms of state space size it

is the most costly one. It is possible to derive loss probabilities for

other queues as we consider the component-wise ordering on the

state space.
The first aggregation scheme calléggregationlaggregates by

Procedure Aggl ( X1, X2, X3)
X1<=X2<=X3%/
Begin
if ((X3-X2) >delta)
then X2=X3-delta;
if ((X2-X1)>delta)
then X1=X2-delta;

considering more precisely values of the states. We can say thatEnd Aggi

Aggregationlis a "fine aggregation" andggregation2 a "coarse
aggregation”.

The first one is based on a parameiefdelta) which indicates
the absolute difference between the number of packets in queues
and j. The states for which the difference between the number of
packets in queueisand j is greater thar are aggregated topper
states for the upper bounds anddwer states for the lower bounds.
The aggregation scheme fopperstates is given in the procedure
called Aggregationl and it is presented below in this section. It is
defined for three tandem queues and where we denofgibthe
number of packets in queigl <i < 3. As we can see, several

Aggregationl procedures

The second scheme is based on two parametessandA (delta),
where for any state, thmaxis the maximum of the number of
packets in all queues. The states for which the difference between
the number of packets in queiieand maxis greater tham\ are
aggregated tapperstates for the upper bounds. The aggregation
scheme for the upper bound is given in the following procedure
called Aggregation2.

Procedure Aggregation2 (In Out F[0], F[1],F[2])

calls to the procedure Aggl are made in order to test the difference Begin

between the components. For lower states, it is the same princi-
ple except that, if the difference between the number of packets

in queues and | is greater tham, then the number of packets in
gueuei becomes equal to the number of packets in quse).
Obviously, the accuracy will be better for larger valuesAodnd

we have the exact processAf= B. This aggregation scheme is
interesting since it lets to find a tradeoff between the accuracy of
bounds and the numerical complexity.

max=Max (F[0], F[1], F[2]);

if (F[0]< max-delta)
F[0]=max-delta;

if (F[1]< max-delta)
F[1]=max-delta;

if (F[2]< max-delta)
F[2]=max-delta;

End Aggregation2

In this considered aggregation scheme, we suppose that all the

buffers have the same si® However, our aggregated scheme
can be more general, in fact, we can have a model with different
capacities at each buffer. We take paramefgras the difference

of packets in queueandi + 1 and we have the exact process for
Aj = maxB;, Bit1).

Procedure Aggregationl (F[1], F[2],F[3])
/* F[i]: number of packets in queue i */
Begin
if ((F[1] <=F[2]) AND (F[2] <=F[31))
/*F1<=F2<=F3x%/
then Aggi(F[1], F[2], F[3])
if ((F[1] <=F[3]) AND (F[3] <=F[2]))
/*F1<=F3<=F2x/
then Aggi(F[1], F[3], F[2])
if ((F[2] <=F[1]) AND (F[1] <=F[31))
/*F2<=F1<=F3x%/
then Aggil(F[2], F[1]1, F[3])
if ((F[2] <=F[3]) AND (F[3] <=F[11))
/*F2<=F3<=F1%/
then Aggil(F[2], F[3], F[1])
if ((F[3] <=F[2]) AND (F[2] <=F[1]))
/*F3<=F2<=F1x/
then Aggl(F[3], F[2], F[1])

Aggregation2 procedure

For lower states, it is the same principle except that, we do not
consider the maximum but the minimum of the packet number of
all queues. To illustrate these aggregation schemes, we give an
example: if we have the stat, 10, 13) which means that in queue
1, we have 5 packets, in queue 2, we have 10 packets and 13 packets
in queue 3 and\ = 2. With the Aggregation] the upperstate is
(9,11, 13) and with Aggregation2the upperstate is upper than the
precedent: itig11,11 13), which shows that the first aggregation
is finer than the second one.

We give numerical results for the model with four buffers in tan-
dem. We suppose that the service natén each queue is 100b,
and the packet size is 512 bytes. We plot the Packet Loss Prob-
abilities (PLP) of the last queue for input bit ratevarying from
50 Mb/s to 90 Mb/s. We construct directly by means of evolution
equations the discrete time bounding Markov chains which are the
uniformized versions for the proposed aggregation schemes.
First we consider a system with capacitigs= B=20 for 1<i <4
in order to compare the exact values with the bounds. The size of
the exact Markov process is 194481 and we take different values of
A = {10,15}. Let us give the sizes of the bounding chains for the
considered aggregation schemes. &ggregation 1with A = 10,
the size of the aggregated Markov process is 158071 while with
A =15, the size is 191751. Féggregation2 with A = 15, the size
of the aggregated Markov process is 140091 while with 10, the
size is 61051.
In Figures 3, 4 we present upper bounds on loss probabilities ob-
tained byAggregation landAggregation 2vith A= 10 andA = 15
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under different arrival throughputs. Clearly, the loss probabilities
obtained withA = 10 provide upper bounds on the loss probabili-
ties obtained witl\ = 15 for both aggregation schemes. Thus the
bounds obtained with = 15 are more accurate. Moreover we can
see that forAggregation 2the difference between the bounds ob-
tained withA = 10 andA = 15 decreases when the arrival through-
put increasesAggregation 1provides tighter bounds thakggre-
gation 2as expected, in the expense of larger bounding chains.

In Figure 5, we give the lower and upper bounds of loss proba-
bilities by the aggregated model with= 15, and the exact values
to show the quality of the bounds. Clearlfyggregation1scheme
provides interesting results.

0.006 |-

0.004 |-

ss Probabilities

Los

0.002 |-

0.001 |-

T T T
Upper Bounds Delta=10 0
Upper Bounds Delta=15 - 50

0.05 [

Figure 5: Upper and Lower bounds and Exact values for Ag-

gregationl
3 B | A | A | RE Aggregationl|| RE Aggregation2
g 20| 15| 50 13.48 274.36
g ooz 1 20| 15| 60 5.31 151.38
) 20| 15| 70 2.30 79.18
20| 15| 80 1.03 24.81
T | 20| 15( 90 0.49 7.06

Table 1: Relative Errors (RE)

60 65 70 75 80 85 20
Arrival Throughput

Figure 3: Upper bounds for Aggregation1 In Table 2, we give upper packet loss probabilities for buffer sizes

equal to 40 ana\ = 20 where the size of the exact Markov chain is
2825761. The size of aggregated chain witggregationlis equal
to 2296141 and withAggregationat is equal to 884101.

T T T
Upper Bounds Delta=10 —+—

[ Upper Bounds Delta=15 ---%---

. ] B | A | A | PLP Aggregationll| PLP Aggregation2
40| 20|50 3392108 11541073
g or ] 40| 20 | 60 12871076 24561073
2 o} ] 40(20| 70| 282410° 42911073
g 40| 20 | 80 3862104 44241073
. ] 40[20] 9| 200910° 44581073

Table 2: Packet Loss Probabilities (PLP)

In Table 3, we give upper packet loss probabilities for buffer sizes
equal to 40 ana\ = 15 where the size of the exact Markov chain is
2825761. The size of aggregated chain witggregationlis equal

to 1587311 and withAggregationat is equal to 438311.

0 Memmmzzzzoommpomtt TR L L L L L
50 55 60 65 70 75 80 85 90

Arrival throughput

Figure 4: Upper bounds for Aggregation2

In Table 1, we present the Relative Errors (ER) defined as the BIA|A|PLP Aggrega5t|0n1 PLP Aggreg%tlonz
ratio of the absolute error to the exact value : 401 15150 5592 104 5281 103
40| 15| 60 6344 10~ 5819 10
|exact—U pperBound 40| 15|70 | 32041073 58251073
exact 40 | 15 | 80 4359103 5843103
computed both withAggregationland AggregationZor the packet 40| 15| 90 62701073 58.86 103

loss probabilities. We can see that for both schemes the accuracy
increases with the arrival throughput and this is more important
for Aggregation 2 Aggregation 1 provides generally very tight
bounds.

In the following, we present only the upper bounds for the model The choice of the aggregation scheme and the valddesf to find

with four buffers in tandem. We consider both aggregations with a tradeoff between the accuracy of the bounds and the complex-
buffer sizes equal to 40 and two values9fA = 15 andA = 20. ity of numerical resolution. We can start with the less expensive

Table 3: Packet Loss Probabilities (PLP)



scheme and try to see if the constraint on the loss probability is sat- The definition of the<st is [12]:

isfied or not : if the upper bounding value is less than the imposed

constraint, then the system would satisfy this constraint. Otherwise  DEFINITION 3. X =Y < E[(f(X))] < E[(f(Y))] Vf:E —

we can increase the value Afor apply Aggregation 1to derive R, <-increasing whenever the expectations exist.

tighter bounds.

Thus, this approach seems promising to study if the constraints onDifferent methods are associated to tkg ordering: the coupling
QoS are guaranteed or not for large Markovian models. We have [12], [6], or the increasing set theory [8].

only considered loss probabilities, but other performance measures  First, we present the coupling theorem (from Strassen’s theorem
defined as increasing rewards on queue length distributions can be) [12], [6]:

considered. As mentioned before we obtain transient distribution

comparisons, thus transient performance measures may be studied THEOREM 1. ‘We say t that X<t Y, if and only if there exists a

by this approach. Note that we have proposed in this paper partic-random variableX (resp.Y) with the same probability distribution
ular aggregation schemes, others must be tried in order to see theys X (resp. Y), such that
impact on the quality of the bounds.

6. CONCLUSION almost surely.

We apply stochastic comparisons methods in order to reduce the
size of large state Markov processes. We define an algorithm which  Increasing set method is a more general formalism and and lets to
generates aggregated Markov processes in order to compute uppe(ﬂeﬁne different stochastic orderings in the case of multidimensional
and lower performance measures bounds. Our algorithm has beerénd partially ordered state spaces. IndeedLheordering can be
applied to the analysis of an open tandem queueing network with defined, but also other orderings called weak orderifngg;, <wk-
rejection. Loss probability bounds have been computed to illus- [8]. We focus in this paper only on thes: ordering. The key idea
trate the feasibility and the efficiency of the proposed methodology. is to define a stochastic ordering from a family of increasing sets
Different aggregation schemes can be performed by this approach[8]. Letl” C E, we denote by 1= {ycE |y = x,xcT}.
since the constraints on the aggregated states are not very restric-
tive. Thus we can have a tradeoff between the accuracy of bounds DEFINITION 4. [ is called an increasing set if and onlylif=
and the computation complexity. As a next work, we are applying I T
the proposed algorithm to the computation of others performance
measures as end to end mean delays. We are also applying it td-et ®si(E) the family of increasing sets which induces tkig or-
other communication systems in order to see if it is sufficiently dering:
general for the quantitative analysis of multidimensional Markov
processes.

X =Y

®gt(E) = {all increasing sets 0B}

The =gt ordering theorem using the increasing set theory [8]

APPENDIX states as follows:

We present in this appendix some theorems and definitions about
stochastic orderings used in proofs presented in this paper.

Two formalisms can be used for the definitions: increasing func- X <stY & p=stq<e pl) < q),Vredg(E)
tions [12], [4] or increasing sets [8] .

The =g ordering is the most known stochastic ordering, it is where
equivalent to the sample path ordering (see Strassen’s theorem [12]). (r) = (x)
Stochastic orderings are defined only on discrete and countable P Zp
state spac&, where a binary relatiorx is defined at least as a

preorder [12]: We present now the comparison of stochastic processe$X\(ett > 0}
and{Y(t),t > 0} be stochastic processes definedon

THEOREM 2.

DEFINITION 1. < is called a preorder if and only if it is a re-

flexive, and transitive relation. DEFINITION 5. We say that
If < has also the anti-symmetric property, then itis called a par- (X(t),t > 0} =g {Y(t),t > O}
[t S L=

tial order, and it is a total order if it verifies also

VX,ye E, x=yory=<x

As an example, on the state sp&ce R", component-wise order if X(t) 2t Y(1), "t >0

is a partial order, and 0B = R, < is a total order. . . .

In the sequel=< denotes at least a preorder Bn We consider Methods as increasing sets and coupling can also be_ used for
two random variableX andY defined respectively oB, and their Markov processes. Here we give the theorem of the coupling of the
probability measures given respectively by the probability vectors Processes [6], [12]. Two processes are defined in this theorem:

p andq wherep[i] = Prob(X =), Vi € E (resp.q]i] = Prob(Y = ~ o

i), Vi € E). The =< ordering can be defined using real increasing o Let {X(t)7t 2 0} have the same infinitesimal generator as
functions. Let us give first the definition of an increasing function {X(@),t>0}

taking values in any state spaSe

DEFINITION 2. We say that f E — S is<-increasing if and

e and {?(t),t > 0}) have the same infinitesimal generator as
only if: ¥x,y € E, x <y = f(x) < f(y) {y).t

>0}



THEOREM 3. We say that
{X(t),t >0} =5t {Y(t),t >0}

if and only if there exists the couplingX(t),Y(t)),t > 0} such
that:

When the processes are defined on different states spaces we caﬁl
compare them on a common state space using mapping functions

Let:
e X(t) (resp.Y(t) ) defined orE (resp.F),
e g (resp.h) be a many to one mapping from(resp.F) to S

whereQs [, #] is the row in the matriXQ; corresponding to the state
x. And,

Q1[X, ¥]Mg =gt Q2[y, *]Mp,
is equivalent tovx € E,y € F | g(x) = h(y)

z Ql(x7 Z) < z QZ(y7 2)7 vl e CDSI(S)
g(z)er h(z)er

Note that the stochastic comparison of Markov processes by map-
ing functions can be interesting for reducing the state space size of
arkov processes, in order to define bounding aggregated Markov
processes as we will see in this paper. The monotonicity of the
Markov process is used in condition (2) of this theorem. If we
suppose thaX(t) is a Markov process, then to establish the mono-
tonicity of a procesgX(t),t > 0}, we can use the coupling of the
processes [6], [7]. As presented in [6], [7], it remains to define two

The stochastic comparisons of these processes by mapping funcProcesses:

tions is [4]:
DEFINITION 6. We say that
{9(X(t)).t > 0} =5 {h(Y(1)).t > O}

it g(X(t)) <st h(Y(1)),¥ > 0

{X(t), t >0} and{X'(t), t >0}

governed by the same infinitesimal generator matrix>é&),t >

0}, and representing different realizations and initial conditions.
The theorem of the monotonicity using the coupling states as fol-
lows:

THEOREM 5. We say tha{X(t),t > 0} is <st -monotone if and
only if there exists the couplinf(X(t),X/(t)), t > 0} such that:

For processes defined on different states spaces, Theorem 3 can
be reformulated [4]. We present in the sequel only the increas-
ing set theory using infinitesimal generators matrices because it is
the formalism developed in the algorithms presented in this paper.
Some times, the comparison of the processes uses the monotonicThis theorem may also hold when infinitesimal generators are dif-
ity property in order to establish the comparison of the infinitesimal ferent, for the comparison of Markov processes by coupling [7],

X(0) < X'(0) = X(t) = X/(t), ¥t > 0

generators.

[6], [12] as presented in Theorem 3. When we study the mapping

The monotonicity of a stochastic process is defined as an increas-of a process, we can also define the monotonicity, and it is formu-

ingint [6] :

DEFINITION 7. We say thaf{X(t),t > 0} is <st -monotone if
X(s) 2 X(t),Vs, t e RT, s<t

If we suppose tha{X(t), t > 0} (resp. {Y(t),t >0} )is a
Markov process with infinitesimal generator mat@x (resp.Q),

lated as follows [12], [6]:

DEFINITION 8. We say tha{ f (X(t)),t > 0} is <5t -monotone
if f(X(s)) =g F(X(t)),Vs, t eRT, s<t

The coupling also holds for the monotonicity of the mapping of a
Markov process [12], [6]. As presented in [6], [7], it remains to

then we present the theorem of the stochastic comparison of Markovyefine two processes:
processes defined on different state spaces using increasing set for-
malism [8], [12].

The mapping functions are represented by a matrix formalism
as follows. LetMq (resp. My) denote the matrix representing the
mappingg (resp.h).

{X(t), t >0} and{X'(t), t >0}

governed by the same infinitesimal generator matrix fét),t >

0}, representing different realizations PX(t),t > 0} with differ-

ent initial conditions. And the coupling states as follows for the
e . monotonicity of the mapping of a Markov process:

- 1 ifg(i)=]

Mgli, ilice andjes = { 0 else

andMy, is similar, usingh instead ofg, andF instead ofE.

THEOREM 6. We say tha{ f (X(t)),t > 0} is <st -monotone if
and only if there exists the couplifgX (t),X/(t)), t > 0} such that:

THEOREM 4. If the following conditions 1, 2 and 3 are satis-
fied:

1. 9(X(0)) =Zsth(Y(0))
2. {g(X(t)),t >0} or {h(Y(t)),t > 0} is <st-monotone
3. Qu[x,#]Mg =st Qaly, *|Mp, Vx € E,y € F, g(x) = h(y)
then we have:
{g(X(1)),t > 0} =st {h(Y(t)),t > O}

£(X(0)) < F(X(0) = f(X(t)) < F(X(1)), vt >0

The increasing set formalism can be used to formulate the mono-
tonicity of the mapping of a Markov process [12], [6].

THEOREM 7. We say thaf f (X(t)),t > 0} is <st -monotone if
and only if:

Qu[x,*]M¢ Zst Quly, ¥]M¢, VX,y € E | f(x) =< f(y)
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