Detecting Non-Ergodic Simulation Models
of Logistics Networks”

Falko Bause
LS Informatik IV
Universitat Dortmund
D-44221 Dortmund
falko.bause@udo.edu

ABSTRACT

Simulation is a frequently applied method when analysing
logistics networks. Also within the Collaborative Research
Center 559 “Modelling of Large Logistics Networks” simu-
lation is broadly applied and process chains are used as a
mutual basis for model development and description. Pre-
vious research activities exposed non-ergodicity of models
as one of the typical application-specific problems which are
difficult to discover by simulation.

In order to detect non-ergodic models the problem has
been reduced to its core employing the more analysis ori-
ented modelling formalism of Petri nets. With the help of
the Petri net formalism we developed an efficient method
for the detection of non-ergodic models. Since Petri nets
is not the common modelling paradigm for logisticians, this
method had to be made available in the process chain mod-
elling world of the logistics area, additionally supported by
an appropriate tool.

This paper describes our corresponding approach and also
demonstrates the process of identifying a problem class in
an application area, reducing it to its core, establishing a
solution in an analysis-oriented formalism and making cor-
responding techniques available in the application-oriented
modelling world and thus also available for the end-user.

Categories and Subject Descriptors

1.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms

Performance

Keywords

Logistics, Simulation, Ergodicity, Process Chains, Petri Nets

*This research was supported by the Deutsche Forschungs-
gemeinschaft as part of the Collaborative Research Center
“Modelling of Large Logistics Networks”(559).

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Valuetools'07, October 23-25, 2007, Nantes, France

Copyright 2007 ICST 978-963-9799-00-4.

Jan Kriege
LS Informatik IV
Universitat Dortmund
. D-44221 Dortmund
jan.kriege@udo.edu

1. INTRODUCTION

Process chains are often used for the modelling of logis-
tics networks (cf. [19, 24]). Most process chain paradigms
are informal or at most semi-formal and cannot be directly
used for the analysis of quantitative aspects. The Collab-
orative Research Center 559 “Modelling of Large Logistics
Networks” (CRC 559; [25]) is a research project consisting of
several sub-projects combining the different competences of
the field of logistics: engineering, economics, statistics and
computer science. The CRC 559 aims at handling the com-
plexities of large logistics networks by model based analysis
using the process chain paradigm of [19, 20] as a basic prin-
ciple. The need for a common formalism for the modelling
of logistics networks, that allows for automatic mappings to
analysis techniques, resulted in the ProC/B-paradigm ([6]),
which reduces the gap between informal process chain de-
scriptions and formal models. Modelling in ProC/B is sup-
ported by the ProC/B-toolset ([5]), which allows a, mostly
graphical, description and analysis of ProC/B-models.

Due to size and complexity, ProC/B-models are often
analysed by means of simulation. For some models the sim-
ulation showed surprising results, that are not immediately
understandable (cf. Fig. 3): The results seem stable for
some period of time, but after a longer observation time
the run changes to strange behaviour. Individual inspec-
tion of such models showed, that these results are caused by
non-ergodicity and that this non-ergodic behaviour is caused
by the structure of the model and cannot be avoided by
a change of model parameters like for example interarrival
times. Non-ergodicity essentially means that a steady-state
distribution does not exist (cf. [13, 21]), so that nontermi-
nating simulations are useless. In most cases non-ergodicity
of the model hints at an incorrect modelling of the system,
indicating that specific characteristics have been neglected
or misrepresented.

Since in most cases it takes long and expensive runs to
discover such situations by simulation, it is desirable to de-
tect non-ergodic models before the simulation is started. A
method for detecting such situations has been found for Petri
nets ([2]). This paper describes how the method can be ap-
plied to ProC/B-models and how it can be integrated into
the ProC/B-toolset. Petri nets are a formalism well known
for verifying properties of a model. In [27, 28] for example
Petri nets are used to formalise event-driven process chains
for the description of business processes. While most mod-
elling and simulation tools support the user in checking the
syntactical correctness of the model (cf. [16] for example), to
the best of our knowledge a detection of non-ergodic mod-

els prior to the simulation is not included in any simulation
software.

This paper is organised as follows: In Sect. 2 the ProC/B-
paradigm is introduced. Sect. 3 gives examples for non-
ergodic models of logistics networks and in Sect. 4 a Petri
net-based technique for detecting such models is presented.
Sect. 5 describes the integration of the proposed technique
into the ProC/B-toolset and in Sect. 6 concluding remarks
are given.

2. THE PROC/B-PARADIGM FOR
MODELLING LOGISTICSNETWORKS

The process chain paradigm [19, 20] is used as a com-
mon modelling language within the CRC 559 offering ex-
perts from different areas a mutual basis for communication
and model development. Since it is an informal modelling
paradigm, it offers on the one hand flexibility when describ-
ing systems, but on the other hand makes analysis diffi-
cult. Usually the analyst has to transform the process chain
description manually into a suitable input of some simula-
tion tool. This transformation activity typically includes
adding further details and specifying informal descriptions
more precisely. In addition to extra work for the analyst,
the transformation also raises a consistency problem, since
it is difficult to decide whether the simulation model ex-
presses the intention of the informal model. In order to di-
minish these problems, parts of the process chain paradigm
were enhanced and stated more precisely [5]. The resultant
modelling paradigm is called ProC/B. ProC/B accounts for
the specifics of the application area by capturing the struc-
tural hierarchy of logistics networks in form of functional
units and the behavioural hierarchy by process chains (PCs)
whose activities can be refined into sub-activities which may
be further refined etc. ProC/B combines these two hierar-
chies in one description. Function units (FUs) might offer
services, which can be used by activities of process chains.
Each service is again described by a process chain.

Freight_Village_sketch

1
(randint(0,2):INT) (IO;’[‘;CI,‘;T)
° drive_to_terminal > handle_truck \leave frelgm leage
y 0 (uniform(a.6; data load
EVERY poisson(6) DELAY Tevmlna\ DELAY
truck_handiing

1
train
(randint(SOS0}INT) - &R

° drive_to_terminal > handle_ain \leave frelght leage
0 (uniform(4.6 data loa
EVERY poisson(60) DELAY Termlna\ DELAV
train_handiing

Terminal
truck_handling

D load:INT)-(new_load:INT)

train_handling

O Toad:INT)->(new_load:INTT 5

Figure 1: Freight Village

Figs. 1 and 2 present an example of a ProC/B-model rep-
resenting a (simplified) freight village. The top level of the
model (see Fig. 1) is specified by FU Freight_Village_sketch
whose behavioural part is described by two PCs: truck
and train. The structure part consists of a single (user

Terminal

truck_handling
(load:INT)

->
(new_load:INT)
unload —» use_forklifts _—y\drive_to_load_position

0 ([data.load]) (2 * data.load) (uniform(1,3))
storage. forklifts. DELAY
change request
L determine_load loag use_forklifts
data.new_load := randint(1,3);) -data.new Ioad 2 * data.new Ioad)
CODE storage. forklifts.
change request
train_handling
(load:INT)
>
(new_load:INT)
unload — 5 use_forklifts ___3) shunt

0 ([data.load]) (2 * data.load) (uniform(4,6))
storage. forklifts. DELAY
change request

determine_load use_forklifts
(data.new_load := randint(20,40);) ([- data new. Ioad]) (2 * data.new_load)

CODE storage. forklifts.
change request
CAP=25 MAX=[300]
Tk

request ® @ change
(amoum REAL) (amount: INT|])

Figure 2: Terminal of Freight Village

defined) FU, named Terminal, which offers two services:
truck_handling and train_handling. Services can be com-
pared to functions in programming languages. In the shown
example both services have an input parameter (load) and
an output parameter (new_load). Behaviour and structure
part of a FU specification are interrelated by expressing
which service of which FU performs an activity. In Fig. 1
the two PCs truck and train consist of three process chain
elements (PCEs) each, and in both cases the second activ-
ity calls a service of FU Terminal. The inner view of FU
Terminal is shown in Fig. 2. The offered services are spec-
ified by PCs and some of their activities use the services of
two so-called standard function units which offer predefined
services (request and change). ProC/B offers two kinds
of standard FUs: servers and counters. Servers (see fork-
lifts in Fig. 2) capture the familiar behaviour of traditional
queues and counters (see storage in Fig. 2) support the ma-
nipulation of passive resources. A change to a counter is im-
mediately granted iff its result respects specified upper and
lower bounds; otherwise the requesting process gets blocked
until the change becomes possible.

One of the advantages of ProC/B and process chains in
general is the visualisation of behaviour, which supports the
communication between experts of an application area. So
the freight village model of Figs. 1 and 2 reads as follows:
Processes for process chain truck are generated according to
a Poisson distribution (with a mean of 6 time units). Each
truck has a load which is initially chosen by random accord-
ing to an uniform distribution (0,1 or 2). After incarnation,
the truck “drives” to the terminal which is modelled here by a
delay of the process for a uniformly distributed duration. Af-

terwards the truck “is handled” by service truck_handling
of Terminal. This might result in a change of the truck’s
load. Finally the truck “leaves” the freight village and the
process terminates at the sink. Considering Fig. 2 we see
that handling a truck means first to unload the truck, which
is possible if the storage’s capacity of 300 units is not ex-
ceeded. Afterwards the server forklifts is called, which is
a multi-server queue with 25 servers and a (default) FIFO
service strategy. The service time for the requesting process
is determined by the expression 2 * data.load thus mod-
elling the time for unloading a loaded truck. (Remark: Ac-
cess notations to parameters and variables of processes are
prefixed with keyword data for technical reasons in order to
distinguish them from global variables. Global variables are
not shown in Figs. 1 and 2.) Afterwards the truck “drives”
to a new position (which is again modelled by a delay of the
process) and determines the new load. The new load is re-
moved from the storage if possible (the default lower bound
of a counter is 0) and finally the service request of the server
forklifts is called again before the process “leaves” the ter-
minal. The behaviour of train and service train_handling
reads similarly.

As one might imagine, it is possible to specify ProC/B-
models precisely enough that an automatic analysis becomes
possible. The formerly manual transformation process can
now be automated thus avoiding the mentioned consistency
problem. Within the CRC 559 a corresponding toolset has
been developed which provides a graphical user interface to
specify ProC/B-models and transformer modules which map
ProC/B-models to the input languages of existing analysis
tools. For more details on ProC/B and the corresponding
toolset we refer the reader to [5, 6].

Not surprisingly, simulation is often applied for a detailed
analysis, since it is applicable to all ProC/B-models. In
most cases the logistician is interested in the steady-state
behaviour of the system/model, e.g. in long-term mean val-
ues, but simulation has the disadvantage of providing only
statistical results. In the early beginnings of the CRC 559
an interesting effect was discovered [3]: Several models of
logistics networks (also the simple model of Figs. 1 and 2)
show non-ergodic behaviour, implying that the correspond-
ing steady-state mean values do not exist. Non-ergodicity
per se is not a surprising effect, since overload situations are
often encountered when determining the model’s peak per-
formance. Usually an appropriate choice of the parameters
results in an ergodic model for which steady-state perfor-
mance figures can be determined. But in the domain of
logistics networks one finds typical situations where non-
ergodicity can not be avoided by adjusting parameters. For
those models it turns out that non-ergodicity is an intrinsic
characteristic of the model.

3. NON-ERGODICITY IN MODELS
OF LOGISTICSNETWORKS

The freight village model presented in Sect. 2 is a variant
of the model considered in [3]. Only some parameters have
been changed to reduce the simulation effort. Fig. 3 depicts
a possible simulation result. A point at model time ¢ of
the shown curve denotes the mean number of trains at FU
Terminal for the time interval [0,¢]. Normally one would
expect convergence to some limit value. The first part of
the curve of Fig. 3 suggests convergence.

Inspecting the simulation result in detail, one realizes that
the confidence interval width becomes very small, e.g. at
time 16000 the 95% confidence interval is about 2.4 4+ 2%.
Usually automatic stopping rules would have terminated the
simulation at that point in time or even earlier, so that we
would not have seen the second part of the curve which hints
at non-ergodic behaviour.

mean number of trains at terminal

4 T T T T T T T T T T
ean —
0, nt.int, -
Ll gt |
3l]

#trains

05F E

seed ; INTEGER = 13;))))))

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
model time t

Figure 3: A possible simulation result of the freight
village model from Figs. 1 and 2

[3] also presents an explanation for this behaviour. Infor-
mally explained, non-ergodicity is caused by the interdepen-
dence of trains and trucks: Both type of vehicles deliver and
pickup load units, which are temporarily stored in the stor-
age. Both, trucks and trains, are blocked whenever delivery
or pickup is not possible, because the storage is empty or
full. In a way, loaded vehicles can be interpreted as being
the server for unloaded vehicles and vice versa. Even though
the average number of delivered load units matches the av-
erage number of loaded units, the model is non-ergodic due
to stochastic effects (cf. the specification of arrival streams,
new load units and driving times). The following Markov
chain explains this kind of non-ergodic behaviour in a more
formal manner.

Assume that the storage capacity is n and that we have
only two type of carriers: type V1 carriers which are loaded
by one unit each and are going to deliver their load to the
storage, and type V2 carriers which are unloaded and try
to load one unit from the storage. Further assume that the
corresponding arrival processes are determined by Poisson
streams with rate A for type V1 and p for V2. Let the
chain’s state space consists of all integers

0,1,...,n for 0,1,...,n storage spaces filled
and no carriers waiting
n+1,n+2,...,00 forn storage spaces filled and
1,2,... type V1 carriers waiting
for 0 storage spaces filled and
1,2,... type V2 carriers waiting

If we define that driving, shunting, and using the forklifts
are immediate, i.e. timeless activities, we get the Markov
chain (of tangible states) shown in Fig. 4. The global balance
equations for this Markov chain have the solution

-1,-2,...,—0

i . . A
m = p' * 7o, i =—00,...,00 with p:=—
I

showing that 7 can not be normalised to a probability distri-
bution, i.e. > 52 __ m = 1 can not be satisfied. Of course,
the Markov model is very simple, but shows an interesting
characteristic: Non-ergodicity can not be “fixed” by select-
ing appropriate values for A and p, since it is caused by the

structure of the chain.
jA |A jA A A A A A A A
i u H i u i i i i i
Figure 4: Non-ergodic Markov chain

Also [3] reports about several simulation runs of the freight
village model using different parameter settings. In the end
all simulations showed non-ergodic behaviour. Several other
models of logistics networks turned out to be “structurally
non-ergodic” as well and specific parts of such models have
been identified being responsible for non-ergodicity. E.g.,
stock-keeping activities (cf. Fig. 7) and typical assembly
or packing operations might lead to non-ergodic behaviour
(cf. [2]). In most cases non-ergodicity of the ProC/B-model
hints at an incorrect modelling of the system. Consider-
ing the freight village model, e.g., we ignored existing time
tables for trains and control processes managing delivery
schedules which would have avoided non-ergodicity in this
case. Having Fig. 3 in mind, it is desirable to detect such
incorrect models before starting the simulation, also remem-
bering that we presumably have stopped the simulation of
the freight village model before the effect shows up. In our
example non-ergodicity was caused by the model’s structure,
thus it seems an obvious idea to investigate this structure,
particularly having in mind the usually large complexity of
state-based analysis techniques. In order to develop new
techniques it is often beneficial to select less complex mod-
elling formalisms. Analysis based on the inspection of the
model’s structure is, e.g., the domain of Petri Nets [8, 22].

4. A PETRI NET-BASED TECHNIQUE FOR
DETECTING NON-ERGODIC MODELS

In [4] a simple Generalized Stochastic Petri Net (GSPN)
structure is presented (see Fig. 5), which exhibits the same
effect as the freight village model of Figs. 1 and 2. The
GSPN is non-ergodic, since its Markov chain (of tangible
states) is the same as depicted in Fig. 4. Note that all
timed transitions of a GSPN have, by definition, an exponen-
tially distributed firing delay and that for the net of Fig. 5
we have M (p1) > 0 implying M (p2) = 0 and M (p2) > 0 im-
plying M (p1) = 0, so that i := M(p1) — M (p2) is a suitable
state descriptor for tangible states.

Since our interest is in efficient techniques, the question
is whether one can detect such nets without inspecting the
state space. Ergodicity in bounded, i.e. finite-state (Gener-
alized) Stochastic Petri is related to the existence of home
states and several authors have investigated this property,
very often in the context of special net classes, see e.g. [8,
9, 11, 26]. In case of infinite-state GSPNs the existence of
home states does not characterise ergodicity anymore. It is
still a necessary condition, since it corresponds to the irre-
ducibility of (a subset of) the corresponding Markov chain,
but sufficiency does not hold as shown by the example in

tl P1
A D—»O\ , Legend :
|
I |I immediate timed :
transition transition |

ta P2

Figure 5: A non-ergodic GSPN V), € RT (cf. [4])

Fig. 4.

In the following we will denote with C the incidence ma-
trix of the net (cf. [8]). The i-th column of C' describes the
effect on the marking by firing transition ¢;. E.g., the inci-
dence matrix of the GSPN of Fig. 5is C = (1) (1) :1
Let m € N denote the number of transitions of the GSPN.
The kernel of matrix C is defined by kernel(C) := {z €
R™ | C x z = 0}.

Let N(z) be a vector counting the number of transition
firings in the time interval [0, z]. The mean firing flow vector
N € R™ is then defined by N :=lim,_.o E[N(z)]/z where
E[] denotes the expectation operator.

Assuming an ergodic GSPN; it is obvious that the mean
firing flow vector N exists and that furthermore the expected
input flow of tokens at a place equals its expected output
flow (cf. [2, 14]). The last fact can be expressed using the
incidence matrix C of the GSPN giving

CxN=0 (1)

How can we exploit this equation for detecting non-ergodic
nets? Usually the determination of N is difficult, but for
some transitions we can identify the corresponding compo-
nents easily. Consider our example of Fig. 5 again. Obvi-
ously, the components n1,n2 of the mean firing flow vector
N = (n1,n2,n3) are directly given by definition, because
t1 and t2 are source transitions, i.e. n1 = A\,ne = p. Fur-
thermore, from Eq. (1) we know that N is in the kernel of
matrix C. A basis for the kernel of the incidence matrix
of the net given in Fig. 5 is (1,1,1) showing that A = pu
has to hold, if the GSPN is assumed to be ergodic. This
shows that the net is sensitive towards even small changes
of the firing rates and therefore a critical candidate. Theo-
retically the net might be ergodic for A = p (for our example
we know that it is non-ergodic, but this can not be detected
from Eq. (1) alone), but especially when using simulation for
analysis we might run into a serious problem. The reason is
that, due to the finite number representation in computers,
we might not run the original model, but rather simulate a
(slightly) perturbed, and thus non-ergodic model [23].

Determining information on some components of N is not
only possible for source transitions, but also for transitions
which partially exhibit an Equal-Conflict (PEC) net struc-
ture. Conflicting transitions in an Equal-Conflict net ex-
hibit the important property that at any marking all con-
flicting transitions or none of them are enabled [26]. An
example of such a net structure is shown in Fig. 6. Be-
cause of the net structure, we can deduce that na/nz =
)\2/)\3,%2/714 =)\2/)\4 and ng/n4 =)\3/)\4. Furthermore
a basis for the kernel of the incidence matrix C is given

by {(1,0,1,0,1),(2,1,0,1,1)} implying no = n4 and thus
A2 = A4. The last fact shows that the net of Fig. 6 is sen-
sitive towards changes of the firing rates for transitions to
and t4.

>\2

>\3

t1 Q/ ts

754

Figure 6: Transitions t2,t3,t4 in PEC

In [2] this kind of sensitivity is called e-sensitivity, since it
indicates potential non-ergodic nets. Also in [2] a sufficient
criterion for detection of e-sensitive nets is presented. The
criterion is based on a rank condition which can be efficiently
tested. E.g., for the net of Fig. 6 one only has to take the
components for transitions ts, t3,t4 into account and since

rank(((0,0,1,0,0)(0,1,0,1,0)))
= 2<3=|{te, t3,ta}|

we know that the firing rates are dependent on each other,
showing that the GSPN is e-sensitive.

More precisely stated one can detect e-sensitive GSPNs
by finding a PEC set T' for which

rank ((ij(kl, 7)... Proj(kT,T))) <IT| (@

holds, where ki1, ..., k, is a basis of kernel(C) and Proj de-
notes the projection of vector k; onto T'. Note that all transi-
tions of a PEC set need to be of the same kind, either timed
or immediate, since otherwise the GSPN is not live. Rank
condition (2) can be checked efficiently, since only maximal
PEC sets need to be investigated, cf. [2].

Employing this rank condition shows that typical situa-
tion in logistics networks might lead to non-ergodic models
when not modelled carefully. Fig. 7 shows the main ac-
tivities when using a storage. Assuming that delivery and
pickup is performed by different type of carriers and conse-
quently modelled by different “arrival streams”, the net of
Fig. 7 shows a customary model. Unfortunately, the firing
rates of the two source transitions are dependent or in other
words the net is e-sensitive, since the kernel of the incidence
matrix is one dimensional.

delivery D—>Q—;HT>©—>|:|
) capacity

> N
storage N
b 4

pickup D—>Q—>D—>O—>U

Figure 7: Stock-keeping scenario

The rank condition also identifies our freight village ex-
ample from Sect. 2 as an e-sensitive GSPN, indicating non-
ergodicity. Fig. 8 depicts the core behaviour of the terminal
using averages for loading and unloading volumes.

trucks t;
U(Q—ﬂ
p3, storage
Q—»ﬂ
trains t3

Figure 8: GSPN for freight village

The GSPN has two source transitions, i.e. two transitions
in PEC, namely ¢; and t3. Calculating the kernel of the
incidence matrix gives the base vector (10,10, 1, 1) showing
a dependence of the firing rates of the two source transitions,
since the rank (here 1) is less than the number of elements
in the PEC set (here 2).

The former examples show that the rank condition might
help identifying non-ergodic models. The simplicity of the
modelling formalism, in our case Petri nets, definitely helped
a lot when developing the described technique. Unfortu-
nately, from the point of view of the logistician, which is
our intended end-user, Petri nets are not an adequate mod-
elling formalism for describing logistics networks. Far from
it! We are already happy about the situation that the logis-
tician accepts the more formal version of process chains, i.e.
ProC/B.

So the question comes up how to make the rank condition,
being formulated for Petri nets, available for the detection of
non-ergodic ProC/B-models. Generally one has two possi-
bilities: one is to adapt the Petri net technique for ProC/B,
the other is to map ProC/B-models to adequate Petri nets.
We selected the second possibility, since it additionally offers
the chance to use further Petri net based techniques.

5. TOOL SUPPORT

To apply the technique described in Sect. 4 to ProC/B-
models, the process chain model has to be transformed to
a Petri net. This section shows how the transformation
can be performed and how the technique can be used to
test ProC/B-models for non-ergodicity. The test for detec-
tion of non-ergodic models has been implemented within the
ProC/B-editor, additionally the Petri net can be exported
to the APNN-format ([7]) making further techniques avail-
able being provided by the APNN-toolbox ([10]).

To use the test for non-ergodicity for ProC/B-models ba-
sically three steps have to be performed: First the ProC/B-
model has to be transformed to a Petri net, before in a
second step the test for non-ergodicity can be accomplished.
Finally the results of the test have to be retranslated to the
ProC/B-model.

The toolset maps ProC/B-models to hierarchical coloured
Petri nets ([17]). Function units are represented by sub-
stitution places. Tokens are used to represent processes,

EVERY negexp(1.0)

Figure 9: Mapping from ProC/B to Petri nets:
Source (green rectangle represents timed transition)

while colours are used to distinguish between different pro-
cess chains. The different elements of a ProC/B-model are
mapped separately to Petri net constructs and connected
afterwards. Some ProC/B-elements and their mappings to
Petri net constructs are shown in Figs. 9-12.

Figure 10: Mapping from ProC/B to Petri nets:
Sink

A source, that generates processes in a ProC/B-model is
mapped to a transition, that will generate tokens. Since a
source is the starting point of a process chain it only has an
outgoing arc to which the rest of the process chain is con-
nected (depicted in Fig. 9 by three dots). Each source will
generate tokens of a different colour. When mapping the
services of function units, that are used by several different
process chains, the colours are needed to distinguish between
process chains, such that after service call only that process
continues which initiated the call. A sink as an endpoint of

y PCElement
. negexp(1.0
DELAY

Figure 11: Mapping from ProC/B to Petri nets:
Process-Chain-Element (PCE)

a process chain has only an incoming arc and is mapped to a
place to which the rest of the Petri net is connected, and an
immediate transition, which destroys tokens and thus ter-
minates processes (see Fig. 10).

A PCE can be transformed in different ways, depending on
whether it is used as a Delay-PCE or for calling a service
of a FU. A Delay-PCE and its transformation is shown in
Fig. 11. The transformation of a PCE connected to a FU
(shown in Figs. 13 and 14) will be explained later. A Delay-
PCE is mapped to a place and a timed transition, which
denotes the amount of time the PCE consumes.

Finally Fig. 12 shows the mapping of an And-Connector
as an example for the different connector-types available in
ProC/B. An opening And-Connector splits a process chain
in two or more parallel branches, that are merged again by
the closing And-Connector. The Petri net representation
consists of a transition that is connected to several places
(one for each branch) and will create a token on each of
those places. The closing connector is mapped to a transi-

e —

o i’?k

Figure 12: Mapping from ProC/B to Petri nets:
And-Connector

tion that will destroy one token from each branch.

Figs. 13 and 14 show the Petri net transformation of the
freight village model from Sect. 2. Fig. 13 shows the top-
level of the model. The function unit Terminal is translated
to a substitution place. For each service of the FU, places
and transitions are created where the PCEs that use the ser-
vice are connected. The inner net of the substitution place
is shown in Fig. 14, containing the mapping of the two ser-
vices of the function unit. Please note that the names of the
places and transitions have been taken from the elements of
the ProC/B-model and may not be unique, since the map-
ping of a ProC/B-element may result in several places and
transitions. Though all of the places and transitions have
an additional unique ID not displayed in the figures. The
two figures show the Petri net representation of a PCE con-
nected to a service of a function unit. Depending on the
type of the FU, this representation will look different: In
Fig. 13 two PCEs are connected with the Terminal, Fig. 14
shows the connection of PCEs and counter storage, which
is represented by a single place. The function unit Terminal
is represented by a substitution place. The transitions con-
nected to the substitution place are sockets. Each of those
transitions has a counterpart within the net contained in the
substitution place, the so-called port (see [15] for a detailed
description of substitution places). For each PCE, that uses
the service of a function unit, a unique colour is assigned to
the transitions and places, that are created during the trans-
formation of the service, to make sure, that after returning
from the service call, the process continues at the correct
place. In order to map an access to a counter correctly the
user has to specify average values for the loading and un-
loading volumes, since in most cases those volumes are not
fixed values but taken from a probability distribution (cf.
Sect. 4 and Fig. 8).

It should be noted, that the transformation of the ProC/B-
model to a Petri net underlies some limitations: The ProC/B-
model may contain variables of different data types like inte-
ger, real or boolean, that can hardly be expressed by a Petri
net and are ignored during the transformation. Some parts
of the model, that access those variables, like for example
branching conditions at a connector, cannot be mapped ex-
actly to the Petri net. So basically the created Petri net
reflects the structure of the ProC/B-model, while the be-

Y 1 Y Y i Y
[l TN L1 s O i () L () |
source_trucks drive_to_terminal drive_to_terminal handle_truck handle_truck papdle_fiick handle_truck leave_freight_village leave_freight_willage sink sink.
P

—~ — Y 1 F Y
source_trains drive_to_terminal drive_to_terminal handle_train /handle_train handle_tzin handhe_train leave_freight_willage leave_freight_willage sink sink
truck_hang =
truck_handling
train_handling train_handling train_handling
Figure 13: Petri net transformation of the freight village from Sect. 2
truck_handling . unload . unload. . use_forklifts. us€_forklifts %forkllfts . use_forklifts drive_to_load_position drive_to_load_position
determine_load determine

load 'i}. L;ISE. fis ﬁse_f 1S use_.forlklift.s ﬁse_forkliftétrﬂck;hahdlihg .trﬂck_hahdlihg.

. fo.rklift torage .
train_handling unload unload use_farklift= rse_fork klift= use_forklifts shunt shunt deterrdne_load
A
determine_load load load use_forklifts use_forklifts use_forklifts use_forklifts train_handling train_handling

Figure 14: Petri net transformation of the function unit Terminal of the freight village from Sect. 2

D _pruefen uy_Plaetze_verringern Zugrif?_freigehen Kran_anfordern Kranzustand_ermitteln Ausgabe_Ahstellspur_auf_Zug TE_auflacien _verringerm |

> tdata.wartende_Lachurg) ELSE ¢TI) (11 €1)-+{data. Zustand_AS_4_ZUG) Writeln "A3_A_Zug”, data. Zustand_AS_A_Zug, ", time; (120) ()

ektumschiag_auf_Zug Zug_Plastze Semaphor_Zug_Daten Hraene Hraene ‘ CODE ‘ | DEL&Y ‘ Lager_Zug.
content - shange change content shange

b _sinleten Zugtiff_frelgeben TE sufisten
data wartende_Ladung > 0 {6 LN (80
Direkiumsehlag_auf_Zu3 Semaghor_Zug_Daten DELAY
change
N Zuy_Flastze_verringern Zugrifr_freigeben fier_D _bersithaten Hran_anfordern Kranzustand_ermittsin Ausgabe_Dirskiumsohiag \TE _ablarien Ablac
etn, 20g_Ploetze 5 0 D an Iy D (13> (date. Zustand_DU_L 23 /7 Wiriteln "DU_L Z_", dita. Zustanel_DU_L_Z, ™", tine; 160) data. Alademer
Zug_Plaetze Semaphar_2ug_Daten Direktumschiag_auf_2ug tiraene Hragne [CODE | [oear |
change change change u change content u
Zugriff_freigeben ¥ran_nfordern Kranzustand_ermitieln Ausgabe_LKW_aul_phstellspur TE _sklacien Lagerbestand _erhachen fran _freigeben N
EloE amn T (1> (dala. Zustarid_AS_W/_LKW) iteln "8 __LKW", Hata. Zustand_AS_\/_LKW, ", tims; REH iy L)
Semaphar_zug_Daten raene. Kraene | CopE | [oear | Lager_zug. Krane
change content change change

Figure 15: Results from non-ergodicity test

haviour may not be completely identical. This might result
in so-called non-faults [1], which denote characteristics of the
Petri net (e.g. a non-live net) which are not consistent with
the ProC/B-model (e.g. the original model might be live
due to boolean expressions at OR-branches). The problem
of non-faults can not be avoided when abstracting. Thus the
analysis based on Petri nets gives further results usually not
obtained with such a certainty from a simulation, but still
requires some insight from the user.
After the ProC/B-model has been translated to a Petri
net the test from Sect. 4 can be performed. In case non-
ergodicity is detected, one or more transitions are identified,
that are in PEC and for which the cardinality of the PEC-
set is greater than the rank of the matrix consisting of pro-
jected base vectors (cf. Cond. (2)). These results have to be
retranslated to the ProC/B-model to be helpful for the mod-
eller. That’s why the relation between places and transitions
of the Petri net and the elements of the ProC/B-model are
stored, while the mapping from the ProC/B-model to a Petri
net is done. Note, that in most cases a ProC/B-element is
linked to several places and transitions, but each place and
transition is linked to exactly one ProC/B-element. There-
fore the corresponding ProC/B-element for a transition hav-
ing been identified by the test, can be determined unambigu-
ously.
The mapping from ProC/B to a Petri net, the test for non-
ergodicity and the mapping of the results from the Petri
net back to the ProC/B-model have been integrated into
the ProC/B-toolset ([18]). The test can be selected for the
whole model or only parts of it. Details of the test are hid-
den, so that modellers need not be familiar with Petri nets.
The outcome of the test is presented in a result window to-

" Ergebniss : der Konsistenzchecks
[tverprung aut Michi-Stanona tat 1§ Uberprittung aul Nicht-Stationaritat
Dharprcning der Syrdtse |

J§Fehiler: Das Modell ist e-sensitiv, Folgende Prozessketten
oder Elemente solllen einer genaueren Belrachiung

Funktisnseinheit KY_Umschlag (12722)

Fehler; Das Modell ist e-sensitv, Folgende Prozessketien
oder Elemente sallten einer genaveren Betrachtung
unierzogen werden: Dderkonnekicr Oder Konnekior30
Oderkannekior Oder Konnekior3D

Sorberung
Ergeanis s sortieren nach_.

Konsistenzpriifung —

Anzeige
Anzaigan von

I~ eamungen
I Fehlem
I~ abgsbrachanen Prifungen

[fehlerfielen Prifungen

unierzogen werdgen: Cdersonnelier Oder Kennekierd
Odersgnnekior Oder Konnekiork

Fehler: Das Modell ist e-sensitv, Folgende Prozessketien
oder Elemente sclllen einer genaueren Belrachiung
unterzogen werden: Oderrannektor Oider Konnektords

Fehler: Das Modell ist e-sensitv. Folpende Prozessxetien
oder Elemente seliten einer genaueren Betrachiung
unierzogen werden: Oderkonneklor Oder Konneklor 7

Filtgr-
Fehler und Warmungen anzeigen dber
I Stuktur ges Maodells

I Eezsichnar von Elementen
I~ Diertanbindungen
I~ Afirioutz der Modelelemene

Anzeige

Ferty

(1) Selection list
(2) Options for sorting and filtering
(3) Results

Figure 16: Result window

unierzogen werden: Cder<annekior Dder Kennektord
OderKonneklor Oder Konneklors

Fehler; Das Wodell Ist e-sensitiv, Folgende Prozessketien
oder Elemente sallten einer genaveren Betrachtung

gether with the results from another consistency check that
performs a syntax check. The result window consists of three
parts as shown in Fig. 16: The selection list contains all FUs
for which errors have been found. Depending on the options
selected, some of the messages can be suppressed. The re-
maining messages will be displayed in a sorted manner in
the right part of the result window. The result messages are
composed of a description of the error and the name of the
affected element being presented in a HTML-like fashion.
Clicking on one of the element names in those error mes-
sages opens a window of the associated function unit and
highlights the element.

As already mentioned the test identifies the model of

kol Freight_Village_sketch - gvz_sketch.mod - Arbeitstenster 1 —[a]x
Funktionseinheit Bearbeiten Modus Ansicht Optionen Suchen ﬂilfel
wefil] - | CIKI= =] 3] b= TS il » SYCNIENh IRt

Freight_Vilage_sketch

1
truck
(randind02yNT) ek
° drive_to_terminal —> handle_truck —>\eave;rs\gm,vmage
5 form(45 (dataload)-<(dataload) form(d5

EVERY poisson(6) DELAY Terminal, DELAY
truck_handing

1
train
(randim(@SONT) v

° drive_to_terminal handle_train leave_freight_vilage
o form(46 (dataload)-~(dataload) fiorm(d

EVERY poisson(60) DELAY Terminal, DELAY
train_handiing

Terminal
train_handiing
A INT)->(new._loadiINTT}

truck_handiing

Toac INT)->(nev:_load: NTH

Editieren

Figure 17: Results of the test for non-ergodicity for
the freight village model of Sect. 2

the freight village from Sect. 2 as being non-ergodic, be-
cause the rank condition holds for the two source transi-
tions source_trucks and source_trains (see Fig. 13). Ac-
cordingly an error-message referring to the two sources of
the ProC/B-model will be displayed to the user, that al-
lows an easy and fast selection of the two elements. Fig. 17
shows a screenshot from the ProC/B-editor with the high-
lighted elements, that have been identified by the test for
non-ergodicity.

Of course, the model from Sect. 2 is manageable and an
experienced modeller might detect non-ergodicity without
performing the test. Fig. 18 shows the structural hierarchy
of a larger model of a freight village. Basically the model is
composed of three parts: The root of the hierarchy describes
the generation of trucks and trains, that enter the freight
village. The second part is a terminal for bimodal traffic,
where goods are exchanged between trains and trucks. In
the third part of the model mixed cargo is exchanged be-
tween trucks. A more detailed description of the model is
given in [12]. As one can see in Fig. 18 there are various
additional function units that model resources and subparts
of the system. All in all the model reaches a level of com-
plexity where non-ergodic situations are difficult to discover
just by visual inspection. The test for non-ergodicity detects
some elements (the messages are shown in Fig. 16). In this

’_—_| GYZ_Generator

—] SUH
—|_—_| SUH_Ladebereich

SUH_Lagerbereich
Ladegruppe
Gahelstapler
Semaphor_Lager_Daten
Lager_Paletten_Reservierung

Lager_Paletten

—O Warteplaetze
—O Rampen
—O Administration
—O Parkplatz

—L—_| KM _Terminal

ldentifikation

0

Gateparkplaetze
Gatepersonal

KV _Umschlag
Zug_Plaetze
LKW _Plaetze
Lager_Zug
Lager LKW
Direktumschlag_auf_Zug
Direktumschlag_auf_LKW
Kraene
Ladung_Zug_Reservierung
Ladung_LEW_Reservierung
Semaphor_Zug_Daten

Semaphor_LkW_Daten

Freiraum_HKaontralle

Gleise

T Y Y Y Y ST

b

Semaphor_Gleise

O

Umschlagplaetze

Figure 18: Hierarchy of a larger model of a freight
village

case the critical PEC sets do not consist of source transitions
like in the example of the small freight village model, but of
transitions, that have been created by mapping connectors
to Petri net elements. The situation here is similar to the
setting in Fig. 6. The critical part of the model is marked
grey in Fig. 15. This part of the model describes transship-
ping of goods between trucks and trains. The corresponding
process chains are synchronised via process chain connectors
and accesses to storages, which results in a sensitivity of ar-
rival rates for trucks and trains concerning this part of the
model.

It should be noted, that due to the above-mentioned lim-
itations of the transformation from ProC/B to Petri nets,
this might be a non-fault, but a cautious modeller can check
whether the model of the freight village will behave cor-
rectly. E.g. the modeller might ensure, that trucks or trains
have to leave unloaded when no synchronisation is possible,
which can be modelled by conditions for the branches of OR-
Connectors. Since such conditions (usually based on vari-
ables) are not strictly mapped to the Petri net, non-faults
might occur. On the other hand the test for non-ergodicity
will still result in a useful hint in these cases, since it points
out critical parts of the model, which should be inspected
with care.

6. CONCLUSIONS

We have presented typical situations in models of logistics
networks which result in non-ergodic behaviour and where
non-ergodicity is caused by the structure of the net and can-
not be avoided by adjusting parameters. We described a
method for detecting such situations that is based on a rank
condition for Petri nets and can be efficiently computed.
Finally we showed how this test can be transferred to the
application-oriented ProC/B modelling world and presented
the integration of the analysis technique into the ProC/B-
toolset.

Future work will be directed towards the application of
further Petri net based analysis techniques for ProC/B-mo-
dels aiming at additional support for the validation of sim-
ulation models. Amongst functional properties like liveness,
also properties in the context of restricted models might be
of interest. E.g., for live and bounded extended free choice
Petri nets it is known, that a marking reached after each
transition has fired is a home state (cf. [8, 11]). This might
help in finding the end of the transient phase or at least a
reasonable starting point for sampling.

7. REFERENCES

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,
G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. John Wiley & Sons, 1995.

[2] F. Bause.On Non-Ergodic Infinite-State Stochastic
Petri Nets. Proc. of PNPM 2003 (the 10th
International Workshop on Petri Nets and
Performance Tools), IEEE Society Press, Urbana
(USA), pp. 84-92, 2003.

[3] F. Bause, H. Beilner. Intrinsic Problems in Simulation
of Logistic Networks. Simulation in Industry, 11th
European Simulation Symposium and Exhibition
(ESS’99), Erlangen (Germany), October 26-28, SCS
Publishing House, pp. 193-198, 1999.

[4]

[5]

[11]

[12]

[13]

[14]

F. Bause, H. Beilner. A Short Note on
Synchronisation in Open Systems. Petri Net
Newsletter, Vol. 57, pp. 9-12, 1999.

F. Bause, H. Beilner, M. Fischer, P. Kemper,

M. Vélker. The ProC/B Toolset for the Modelling and
Analysis of Process Chains. In T. Field, P.G.
Harrison, J. Bradley, and U. Harder (Hrsg.),
Computer Performance Evaluation, Modelling
Techniques and Tools, 12th International Conference,
TOOLS 2002, London (UK), LNCS, No 2324,

S. 51-70. Springer, 2002.

F. Bause, P. Buchholz, C. Tepper. The
ProC/B-Approach: From Informal Descriptions to
Formal Models. ISoLA - 1st International Symposium
on Leveraging Applications of Formal Method, 30th
October - 2nd November 2004, Paphos, Cyprus.

F. Bause, P. Kemper, and P. Kritzinger. Abstract
Petri Net Notation. In Research Report No. 563.
Fachbereich Informatik der Universitdt Dortmund
(Germany), 1994.

F. Bause, P. Kritzinger. Stochastic Petri Nets - An
Introduction to the Theory. Vieweg, 2nd Edition,
2002.

E. Best, K. Voss. Free Choice Systems have Home
States. Acta Informatica, 21:89-100, 1984.

P. Buchholz, M. Fischer, P. Kemper, and C. Tepper.
New features in the APNN toolbox. In P. Kemper,
editor, Tools of Aachen 2001 Int. Multiconference on
Measurement, Modeling and Evaluation of
Computer-Communication Systems, pp. 62—68, 2001.
(Universitdt Dortmund, Fachbereich Informatik,
Research Report No. 760.)

J. Desel, J. Esparza. Free Choice Petri Nets.
Cambridge University Press, 1995.

C. Dilling, and M. Vélker. Beispielmodellierung eines
Giiterverkehrszentrums im ProC/B-Paradigma.
Technical Report 03016, Collaborative Research
Center 559 “Modelling of Large Logistics Networks”,
2003, ISSN 1612-1376.

W. Feller. An Introduction to Probability Theory and
Its Applications, Volume 1. Wiley, 3rd ed., 1968.

G. Florin, S. Natkin. Necessary and Sufficient
Ergodicity Condition for Open Synchronized Queueing
Networks. IEEE Trans. on Soft. Eng., 15(4):367-380,
1989.

P. Huber, K. Jensen, and R.M. Shapiro. Hierarchies in
Coloured Petri Nets. In G. Rozenberg, editor, Lecture
Notes in Computer Science Vol. 483, Advances in
Petri Nets 1990, pp. 313-341, Springer, 1991.

F. Huber, S. Molterer, A. Rausch, B. Schatz,

M. Sihling, and O. Slotosch. Tool Supported
Specification and Simulation of Distributed Systems.
In Proceedings of the International Symposium on
Software Engineering for Parallel and Distributed
Systems, 1998.

K. Jensen. Basic Concepts, Analysis Methods and
Practical Use, volume 1 of Coloured Petri Nets.
Springer-Verlag, Berlin, 1992. ISBN 0-387-55597-8.
J. Kriege. Konsistenzpriifung von ProC/B-Modellen
zur Vorbereitung einer simulativen Analyse. In Proc.
of the 18th Conference on Simulation and
Visualization, Magdeburg, pp. 69-81, 2007.

(19]

(20]

(21]

27]

(28]

A. Kuhn. Prozessketten in der Logistik -
Entwicklungstrends und Umsetzungsstrategien. Verlag
Praxiswissen, Dortmund 1995.

A. Kuhn. Prozesskettenmanagement - Erfolgsbeispiele
aus der Praxis. Verlag Praxiswissen, Dortmund 1999.
A.M. Law, W.D. Kelton. Simulation Modeling and
Analysis, McGraw-Hill, 2000.

J.L. Peterson. Petri Net Theory and the Modelling of
Systems. Prentice-Hall, 1981.

G.O. Roberts, J.S. Rosenthal, P.O. Schwartz.
Convergence Properties of perturbed Markov chains.
J. Appl. Prob., 35:1-11, 1998.

A.W. Scheer. ARIS: Business Process Modelling.
Springer, 2000.

Collaborative Research Center “Modelling of Large
Logistics Networks”(559).
http://www.sfb559.uni-dortmund.de.

E. Teruel, M. Silva. Liveness and home states in equal
conflict systems. In Proceedings of the 14th
International Conference on Application and Theory
of Petri Nets, Chicago (USA), pp. 415-432, 1993.

W. van der Aalst. Formalization and Verification of
Event-driven Process Chains. Information and
Software Technology, Vol. 41(10):639-650, 1999.

Kees van Hee, Olivia Oanea, and Natalia Sidorova.
Colored Petri Nets to Verify Extended Event-Driven
Process Chains. In Proc. of the 13th International
Conference on Cooperative Information Systems
(CooplS 2005), LNCS Vol. 3760, pp. 183-201, 2005.

