The Twin Measure for Queueing System Predictability

David Raz
School of Computer Science
Tel-Aviv University, Tel-Aviv,
_ Israel]
davidraz@post.tau.ac.il

ABSTRACT

Two identical jobs with deterministically identical process-
ing times arrive at a Web server simultaneously (Twins),
but leave the system thirty seconds apart. Is the service
predictable? Is their sojourn time predictable? This issue
arises in modern day networking systems such as call cen-
ters and Web servers as well as in other queueing systems.
We propose a novel measure based on the principle that
in a predictable system, “twin” jobs should not depart the
system very far apart. We analyze this measure for a num-
ber of common scheduling policies and compare the results.
We compare the results to those of other predictability ap-
proaches proposed recently and discuss its usefulness.

Categories and Subject Descriptors

C.4 [Performance of Systems]|: Performance Attributes—
Predictability; F.2.2 [Nonnumerical Algorithms and
Problems]: Sequencing and Scheduling; G.3 [Probability
and Statistics]: Queuing Theory

General Terms

Performance, Measurement

Keywords

predictability, FCFS, LCFS, SJF, LJF, LAS, SRPT, LRPT,
round robin, job scheduling, processor sharing, PS, queue
disciplines, twin measure

1. INTRODUCTION

How does one measure the predictability of a queueing
system?

The importance of the issues of predictability is widely
recognized in many works and applications. For example
the issue of predictability was recently discussed in [13],
which provides references to related work discussing its im-
portance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Valuetools *07, October 23-25, 2007, Nantes, France

Copyright 2007 ICST 978-963-9799-00-4.

Hanoch Levy
School of Computer Science
Tel-Aviv University, Tel-Aviv,

Israel

Benjamin Avi-ltzhak
RUTCOR, Rutgers University

New Brunswick, NJ, USA
aviitzha@rutcor.rutgers.edu

hanoch@cs.tau.ac.il

The issue of predictability is also strongly related to the
issue of Fairness. If the system isn’t predictable, it is most
likely since some jobs are treated unfairly. See for exam-
ple [1] that surveys several studies discussing the subject of
fairness, and some recent works quantifying job fairness.

In modern day systems such as call centers and computer
systems, where the actual workings of the system are hid-
den from the customer, one practical way to measure and
check for system predictability is to launch a pair of identical
jobs with deterministically identical service times (Twins).
For example, it is very natural that a Web user who sub-
mits two concurrent identical, or close to identical, requests
to the same Web site, will appreciate the site predictability
based on their relative response times. We propose a mea-
sure that is based on this notion. Obviously, a low “twin
measure” is not a sufficient requirement for customer satis-
faction. In fact, we do not even claim that it is sufficient
for guaranteeing system predictability, as this issue is too
complicated to be captured by this simple notion. However,
we do claim that it is a required feature, and a simple one
to measure and analyze, as we will show.

Specifically, we propose a measure based on the expected
value, and possibly higher moments, of the difference be-
tween the waiting times ,or sojourn times, of identical, si-
multaneously arriving jobs, conditioned on the jobs’ service
requirement. By conditioning on the service requirement
this measure also captures the notion of a policy which is
not equally predictable to all job sizes.

The model and the measure we propose are described in
Section 2. Analysis of the twin measure in single server sys-
tems, for common scheduling policies, is given in Section 3.
We then (Section 4) discuss the measures obtained: in Sec-
tion 4.1 we classify the scheduling policies into four classes;
in Section 4.2 we compare the classification results to those
obtained by another recently proposed predictability crite-
rion; in Section 4.3 we discuss what optimality under the
twin measure means, and we propose a policy which is opti-
mal with respect to both the twin measure and the sojourn
times.

In Section 5 we analyze the twin measure for some com-
mon multiple server systems.

Finally, in Section 6 we discuss several ways to extend
the twin measure and we conclude with some concluding
remarks (Section 7).

2. MODEL AND NOTATION

We use an M/GI/s model, namely, a queueing system
with s servers, each with one unit of service rate. Arrivals

are Poisson at rate A\, and the service requirements are sam-
pled independently with probability density function (pdf)
b(z) and cumulative distribution function (cdf) B(z). By is
the probability of a service requirement of exactly x, and of
course for continuous b(x),Vx, B, = 0. However, for many
practical distributions there is at least one value for which
there is an accumulation of probability and B, # 0. e.g. the
maximum value.

The service requirement has expected value T, and a sec-
ond moment x2.The load (utilization) of the server is defined

as
pled AT _ 5/ tb(t)dt,
s s Jo

and for stability we require p < 1.
One useful quantity is the load made up by the jobs of
size less than or equal to z, denoted p(z), which is

p(z) < 2 /O " ().

S

We also define he load made up by the jobs of size strictly
less than x, denoted p(z~), which is

p(z™) def 2/;7 tb(t)dt.

Note that for a continuous pdf b(¢), p(z) = p(z™).

We use the notation X ~ BP(z) to denote that X is
distributed as a busy period starting with a job of size x.
X ~ BPy(z) and X ~ BP,—(z) denote the same, except
the busy period is only composed of jobs of size not larger
than y and smaller than y, respectively.

We use the notation X =< F(t) to denote that a random
variable X stochastically dominates F(t), i.e. P{X < ¢} <
F(t) Vt>0. We use the notation < in a similar way.

We assume that the server is work conserving, i.e. a pre-
empted job retains the service it was already given.

We use Typruriter-Style to denote scheduling policies.

2.1 The Twin Measure

Let Cy and C5 be identical jobs, with service requirements
x and x + § respectively. We call such jobs twins. Let the
arrival, departure, and first service epochs of twin i, i = 1,2
be a;, di, and s; respectively. Assume that C'; arrives when
(a1) the system is in steady state. Assume that the twins
arrive € time units apart, that is, as — a1 = ¢€,€ > 0.

DEFINITION 2.1 (TwWIN MEASURE).

Define the random variable Z(x,¢€,8) = |d2 — d1|, given x, €,
and §. Let 2™ (x,¢€,0) be the n-th moment of Z(x,¢,9), i.e.
2" (z,€,0) = E{Z(x,€,6)"}.

For scheduling policy ¢ and job size x, the n-th twin mea-
sure T,2(x) is defined as the limit, when ¢ and & tend to
zero, of z"(x,¢€,0), assuming a single limit exists. Namely
T2 (x) = lime_0,6—0 2™ (, €, 0).

The shortened term twin measure, denoted 7% (x), is used to
describe the first twin measure, namely 7¢(z) = 7,%(z) =
lime 0,50 E{Z(x,¢,0)}. While we will focus in this paper
on the first twin measure, we find it useful to define it in the
scope of higher moments, for future research.

REMARK 2.1. The n-th twin measure is only defined when
a single limit exists for both § \, 0 and § / 0, while ¢ — 0.

One can devise a policy for which there is no such single
limit. For example, consider a policy ¢ that serves jobs in a
First-Come-First-Served (FCFS) manner, unless the second
job in the queue has a smaller size than the first one, in
which case it servers the first two jobs in a Processor Sharing
(PS) manner. In this case for § \, 0 the twins are served
in a PS manner and T®(x) = 0, while for § /' 0 the twins
are served in a FCFS manner, and T®(z) = x. The twin
measure in such a case can be chosen to be the maximum of
all the limits, the mean value, or it can remain undefined,
as appropriate for the application.

Definition 2.1 has the benefit that it applies to service
distributions for which same size arrivals are impossible. It
also avoids a pitfall that a policy ¢ can artificially serve equal
sized jobs in a different manner than non-equal sized ones.
As in some size distributions equal sized jobs are extremely
rare, this will not hinder the expected performance of ¢, yet
allow it to have an artificially low twin measure. However,
this definition makes the analysis tedious so for the sake of
analysis we use a simpler definition:

DEFINITION 2.2 (SIMPLIFIED TWIN MEASURE).
Let § =0, i.e. both jobs have the same size. Define the ran-
dom variable Z(z,€) = |d2 — d1]|, given © and e. Let 2" (x, €)
be the n-th moment of Z(x,¢), i.e. 2" (z,e) = E{Z(z,€)"}.

For scheduling policy ¢ and job size x, the n-th twin mea-
sure T,2(x) is defined as the limit, when e tend to zero, of
2" (x,€), assuming a limit exists. Namely T,?(z) = lim. o
2" (z,€).

The shortened term twin measure, is again used to describe
the first twin measure, namely 7% (z) = lim._o E{Z(z,¢)}.
Whether we use the original or the simplified definition
will be clear from the context.
One can also choose to normalize the twin measure, the
obvious normalization factor being x. This does not change
the results in any significant manner.

3. ANALYSING COMMON SCHEDULING
POLICIES FOR SINGLE SERVER SYS-
TEMS

3.1 Processor Sharing (ps)

When Ci departs, C> can have at most € + ¢ remaining
service time. Therefore z(x,€,0) < (e 4+ 0)N where N is the
mean number of jobs in the system. Thus

TP (@)= i &< i §)N) =0.

(@)= _lim 2@ed) < lm (+oN)=0

Intuitively, both jobs are identical and arrive simultane-
ously, so they will receive exactly the same service, and leave
the system simultaneously.

3.2 First Come First Served (rcFs)

Let W(x,¢,0) be a random variable denoting the time
elapsing between d; and s2. For any non-preemptive sche-
duling policy we have Z(x,¢,0) = W(x,¢€,d)+x+3. For FCFS
W(x,¢€,0) is the amount of work arriving in the interval be-
tween the arrival epochs of the twins and it has an expected
value of pe, i.e. z(z,€,0) = E{Z(z,€,0)} = pe+ 2z + J and

TEOFS (1) = 131? . (pe+x+49) ==

3.3 Last Come First Served (rcrs)

We start with the non-preemptive case. There are two
possible orders of service, either (i) Ci is served before Co,
i.e. either the server was idle on ai, or the server finished
serving the job that was served on a; at some epoch in the
interval [a1,a2), and no other job arrived between a; and
that epoch, or (ii) Cb is served first.

(i) We can ignore all jobs served before Ci. The service
order from then onward is as follows. First C; is served for
x units of time. Cy then waits for a busy period created by
all jobs arriving while C; was served, and is served at the
completion of this busy period, for x + § units of time. Let
V(x,€,0) be a random variable denoting the time elapsing
between s1 and s2. Thus Z(x,¢,0) = V(x,¢,0) + §. Clearly
V(z,€,6) ~ BP(x), thus

T
1-p
For example, this can be derived from the transform of the
distribution of a busy period starting with a job of size z,
G*(s,z) = e *FAAGTE] where G*(s) is the transform of
the distribution of the busy period length (see e.g. [5, p.
212)).

Taking the limit we have

TLCFS — 1 x s) = x .

z(x,€,0) = + 0.

(if) We can ignore all jobs served before C2. The service
order from then onward is as follows. First Cs is served
for z + units of time. Then a busy period created by all
jobs arriving while C2 was served is being served. Then a
busy period created by all jobs arriving between a1 and az is
served, followed by C; being served for x units of time. Thus
Z(z,€,0) =V (x,€,8) — 8, where V(z,€,0) ~ BP(x +d +¢).
Therefore

z(x,€,8) = x—li—f:e -6
LOFS . N _ 1 r+d+e [\ _ T
T (x)_e_}é,r?ﬁo(=) 6) =1,

For the preemptive case, all jobs arriving in the inter-
val [a1,a2), including C1, are served in total for a period
of length € until they are preempted by C3. C2 and any
preempting jobs are then served until dz, and can be ig-
nored. The period (d2,d1) is composed of Cy and jobs ar-
riving in the interval (a1, a2), and jobs preempting them,
minus a service of € units of time already done. Therefore
Z(x,€,8) ~ BP(x+¢€) —¢, so

LOFS, y _ 13 r+te _ <%
T (x)—eﬁlé’rglﬁ()(lip 6>_17p'

To summarize, for both the non-preemptive and the pre-
emptive case

x
1-— p'
3.4 Shortest Job First (sJr)

The analysis for SJF is quite tedious if one uses Definition
2.1. Therefore, the analysis provided here uses Definition
2.2, i.e. we assume the twin jobs are of equal size. One
can verify that this simplification does not alter the result
as well. We will use this definition from this point onwards.

TLCFS(,I,‘) —

We start with the non-preemptive case.

Note that in general, SJF does not determine the order
of service between equally sized jobs. Obvious choices are
either FCFS or LCFS. We call these policies SJF-FCFS and
SJF-LCFS respectively.

Starting with SJF-FCFS, C is always served first. We can
ignore all jobs served before Ci. The service order from
then onwards is as follows. First C; is served for x units of
time. This is followed by a busy period composed of jobs of
sizes smaller than x arriving while Cy was served. Following
this, jobs of size x arriving in the interval (a1, az) are served,
followed by a busy period composed of jobs of size smaller
than x arriving while they were served. Lastly, Cs is served
for x units of time. If we let V(z,€) be a random variable
denoting the time elapsing between s1 and sz it is easy to
see that Z(z,e) = V(x,¢). Considering the service order we
have V(x,¢) ~ BP,— (z) + BP,- (eAxB,), and therefore

SJF—FCFS — lim T e By
T @ =t (1= 1o90)
S O

For SJF-LCFS, note that C; can still be served first, e.g.
if the server is idle on ai. Therefore, let Cy and Cs be
the first and second twins to be served, respectively. The
order of service starts with Cy, followed by a busy period
composed of jobs of sizes not larger than z arriving while
Cy was served. Following this, jobs of size z arriving in
the interval (a1,a2) are served, followed by a busy period
composed of jobs of size not larger than z arriving while
they were served. Lastly, Cs is served for x units of time.
Using the same notation Z(z,e¢) = V(x,€) and V(z,e) ~
BP,(z) + BP(e Az B;), leading to

SIF—LCFS .\ _ {i T eAx By
’ @ = (= 1)
T @

Note that for continuous service distributions SJF-FCFS and
SJF-LCFS have the same twin measure.

We now move on to the preemptive case. Again we con-
sider SJF-FCFS and SJF-LCFS.

For SJF-FCFS (] is served first. When C finishes service
there are no jobs of size smaller than x in the queue. The
next to be served are jobs of size x arriving in (a1, az2), fol-
lowed by C2. Each of those can be interrupted, but only by
jobs of size smaller than z. Therefore Z(xz,e) ~
BP,— (eAxB;) + BP,—(x) and (1) holds.

For SJF-LCFS (4, and other jobs of size x arriving in
(a1,a2), can be served for a total service no loner than
€ before being preempted by Cs. Let ((€) be a random
variable denoting this amount of service. When C2 fin-
ishes service the next to be served are jobs of size x ar-
riving in (a1, a2), followed by Ci. Each of those can be
interrupted by jobs of size not larger than x. Therefore
Z(x,€) ~ BPy(e\xB;) + BP,(z) — B(e). As 0 < ((e) < ¢
we have limc._.o 3(¢) = 0 and (2) holds.

3.5 Longest Job First (LJF)

We define LIF-FCFS and LJF-LCFS in a similar manner to
the ones defined for SJF.
Using the same arguments as in Section 3.4, and the fact

that
[ttt =p- o)
=t
[todt=p—pta)
we have
LJF—FCFS o x
4 N S)
TLJF—LCFS() z

C1-(p—pla7))’
This applies to both the non-preemptive and the preemptive
case.

3.6 Least Attained Service (Las)

In the LAS scheduling policy, also called FB, service is given
to the jobs which received the least service so far. See [§]
for a survey of results regarding this policy.

Note that in the LAS scheduling policy jobs with equal
attained service share the processor. Upon arrival, C; will
be served for at most €, then Cy will be served for an equal
amount, and from then on they will have equal attained
service, and keep sharing the processor, until they leave the
system together. Therfore

TH48 (2) = 0.

3.7 Shortest Remaining Processing Time
(SRPT)

Note that since both jobs start with equal jobs sizes, from
the first epoch in which one of them is served, the other will
not be served until the first one leaves the system. It can
easy to observe that the twin measure is the same no matter
which of the jobs is first served. We will therefore assume
w.l.g. that C is served first. Following [11], Z(z,€) can be
decomposed into the sum

Z(£,6) _ W(I)SRPT + R(.IJ)SRPT

where W (z)%%F7T is a random variable denoting the wait-
ing time for Cy of size z, i.e. the time from d; to sz, and
R(z)*®FT is a random variable denoting the residence time
for Cs of size x, i.e. the time from s2 to d2. Both W(m)SRPT
and R(z)°FPT do not depend on e and therefore

TSRPT(:C) — lim <W(m)SRPT n R(:r)SRPT>

e—0

= E{W(2)}*""" + E{R(2)}*""", (3)

Starting with E{W (x)}*F"7 note that once Ci enters
service, we can divide the arriving jobs into three categories:
1) jobs with service requirement over or equal to z. These
jobs are served after dz and therefore can be ignored. 2)
jobs with service requirement below the remaining service
requirement of C7 on the epoch of their arrival. These jobs
will preempt C1 and be served before d;. 3) jobs with service
requirement lower than x, but above the remaining service
requirement of C7 on the epoch of their arrival. These jobs
are served in the interval (dy, s2).

To carry out this analysis, observe jobs arriving in an in-
finitesimal interval of size dt when C; has remaining service
requirement ¢t. Category 2) jobs preempt C; and create a
sub busy period of size dt/(1 — p(¢t™)) (including the initial

dt interval). Category 3) jobs arriving in this sub busy pe-
riod are to be served after di, and the work load created by
these jobs is

and zero for t = x.

Note that any job arriving while these jobs are served,
with service requirement below z, will also be served before
s2. Therefore we are facing a busy period of size

(pla”) —p()at 1
L—p(t7) 1—p(z7)

Integrating this yields the mean size of the waiting interval,
namely

sepr _ [* p(x”) — p(t)
E{W(x)} —/0 A= o) —p@)™

As for B{R(x)}*FT this is simply the residence time of
a job with service requirement x under SRPT. This is true
since like a regular job, jobs already in the system once Cs
begins service are guaranteed to have remaining processing
time over x, and therefore will not affect the residence time.
Thus,

S = =y
Using (3) we get

TSRPT(;(;):
T pa) = plt) Tt
/o <1—p<r>><1—p<x*>>dt+/o 1= ()

_[" 1—p(t)
= / T) I o)

which for a continuous pdf b(t) is simply

SRPT . €
=y

3.8 Longest Remaining Processing Time (LrrPT)

Under LRPT all jobs leave the system at the end of the
busy period in which they arrive. Specifically, C1 and Cs
leave the system simultaneously, leading to

TLRPT (.’L‘) —0.

3.9 Round Robin (&r)

We analyze the RR policy with service quantum A where
A < z, and for simplicity we assume that service times
are multiples of A. We use a model quite similar to the one
described in [6, Sec 4.4], except that newly arriving jobs join
the queue after the last arriving job.

As A < x we can be certain that even if C; begins service
before as, it cannot finish a single quantum before as. There-
fore the only jobs between C7 and C3 in the queue are jobs
arriving in the interval (a1,a2) and Cy will never be more
than one service cycle ahead of C5. Let N(¢) be a random
variable denoting the number of jobs arriving or in the inter-
val (a1,a2). Some of these jobs will have shorter service re-
quirement than x, and therefore A < Z(x,¢) < (N(e)+1)A.

However, note that N(¢) has an expected value is Ae, and
therefore A < y(z,€) < A + e leading to

TR (z) = lim y(z,¢) = A, (4)

Note that (4) holds also for other models of RR, e.g. when
arriving jobs join the queue in other positions, though the
analysis in some cases is somewhat more complicated.

4. DISCUSSION ON THE TWIN MEASURE
OF SCHEDULING POLICIES

In this section we discuss the twin measures obtained in
the previous sections. We start with proposing a classifica-
tion and comparing the policies in each class. We then com-
pare this classification to the classification provided by [13,
12] which we call the Conditional Response Time Criterion.
We finalize with a discussion of the meaning of optimality
under the twin measure.

For simplicity, we use the measures obtained for continu-
ous service distributions. This is also convenient since [13,
12] deals mainly with continuous service distributions (al-
though the results can probably be extended to the non-
continuous case).

4.1 Classifying the Scheduling Policies

DEFINITION 4.1 (TwWIN MEASURE CLASSIFICATION).
A scheduling policy ¢ will be called Absolutely Twin Pre-
dictable if T?(x) = 0 for every .

A scheduling policy ¢ will be called Strongly Twin Pre-
dictable if T?(x) < x for every x.

A scheduling policy ¢ will be called Weakly Twin Pre-
dictable if T®(z) < /(1 — p) for every z.

A scheduling policy ¢ will be called Not Twin Predictable
if T%(x) > /(1 — p) for at least one value of x.

The reason we use this classification will be made clear once
we discuss the scheduling policies within each class.

4.1.1 Absolutely Twin Predictable

This class includes all policies for which twin jobs will
leave the system simultaneously, namely PS, LAS and LRPT.

This clearly demonstrates that the twin measure has very
little to do with the efficiency aspects of performance, as LAS
is obviously much more efficient than PS.

It also demonstrates that the twin measure is not sufficient
to guarantee sojourn time predictability. For example LRPT
has notoriously unpredictable sojourn times.

4.1.2 Strongly Twin Predictable

This class includes policies for which the twin measure for
a job of size = isn’t larger than x. Observe that the mini-
mum twin measure one can expect from any non-preemptive
scheduling policy is . One can see that FCFS achieves this
optimal value for non-preemptive scheduling policies.

The other policy in this class is RR which in the limit
A — 0 becomes PS.

4.1.3 Not Twin Predictable

LCFS has the largest measure analyzed, /(1 —p). We con-
jecture that LCFS had the largest twin measures amongst
non-preemptive scheduling policies. Note that the differ-
ence between the conjectured best and worst non-preemptive

scheduling policies, FCFS and LCFS, can be extreme in cases
where p — 1.

4.1.4 Weakly Twin Predictable

Policies in this class include SJF, LJF and SRPT.

For small jobs, such that p(z) < p — p(z), SJF has the
lower measure, and the opposite for long jobs.

Interestingly, SJF and SRPT have the same measure. This
can be explained in the following way. We call a job in-
tervening if the job gets served in the interval (di,d2), or
(d2,d1) if Cs is served first, and is not C1 or C2. Observe
that under SJF a job of size x is only intervened by jobs
of size y < z arriving in a period of size z. In the non-
preemptive case this period is the period in which the first
job is served, while in the preemptive case this period is the
period in which the second job is served.

Now consider SRPT. Observe a period of time of length dt
in which the first job to be served was already served for ¢
units of time. Jobs intervening in this period are jobs with
size t < y < x. Observe a period of time of length dt in which
the second job to be served was already served for ¢ units
of time. Jobs intervening in this period are jobs with size
y < t. So in total, intervening jobs for every such interval
dt are of size y < t. Now consider that the total length of
such intervals of length dt is z, so the jobs intervening a job
of size = under SRPT are also jobs of size y < x arriving in a
period of size x.

This is an interesting observation as it shows a similarity
un-observed before between SRPT and SJF.

4.2 Comparing Predictability Criteria

In this section we compare the results of the twin measure
classification with that of the Conditional Response Time
Criterion. The Conditional Response Time Criterion was
proposed in [13]. Further results are provided in [12], specif-
ically for the case E{X?} = co.

/ Always

) Remaining ,""““.
Predictable size based 01
___________________ 3 FOOLISH' -/
ofS o Y] [g 1 Y
1 1
| Preemptive . PI & H E
i size based -

PLCFS
L]

LIF,

Figure 1: Classification According to the Condi-
tional Response Time Criterion

We start by summarizing the Conditional Response Time
Criterion in the settings and notation of this work.

DEFINITION 4.2. A job of size x is treated predictably un-
der policy ¢, service with pdf b(x), and load p if the condi-
tional variance in response time seen by a job of size x under

policy ¢, Var{T(x)}?, follows

Var{T(x)}* _ Xa?
x - (d=p®
A scheduling policy ¢ is predictable if every job size is treated
predictably.

A scheduling policy ¢ is: (i) Always Predictable if ¢ is pre-
dictable under all loads and service distributions; (i1) Some-
times Predictable if ¢ is predictable under some loads and
service distributions; and unpredictable under other loads
and service distributions or (ii) Always Unpredictable if ¢
is unpredictable under all loads and service distributions.

Figure 1 summarizes the results of classifying common
scheduling policies according to the Conditional Response
Time Criterion.

Policy Twin Response Time
PS Absolutely Always
LAS Absolutely Sometimes
LRPT Absolutely Never
FCFS Strongly Sometimes
NP-LCFS Not Never
P-LCFS Not Always
NP-SJF Weakly Sometimes
P-SJF Weakly Sometimes
NP-LJF Weakly Never
P-LJF Weakly Never
SRPT Weakly Sometimes

Table 1: Comparing Predictability Criteria. The
column ”Twin” lists the class according to the Twin
Measure Classification. The column ”Response
Time” lists the class according to the Conditional
Response Time Criterion.

Table 1 compares the classification of policies according to
the two criteria. A scheduling policy name starting with NP
denotes the non-preemptive variant of the scheduling policy,
while a name starting with P denoted the preemptive variant.
Note that for continuous service distributions, our analysis
has shown same results for preemptive and non-preemptive
policies, which is not the case with the Conditional Response
Time Criterion.

Only policies for which analysis was provided in both
works are listed.

For some policies the two criteria agree. For example
PS is both Absolutely Twin Predictable and Always Pre-
dictable. NP-LCFS is both Not Twin Predictable and Never
Predictable. However, for some policies the criteria totally
disagree. LRPT is Absolutely Twin Predictable, yet Never
Predictable. P — LCF'S is Not Twin Predictable, yet Al-
ways Predictable. LAS is Absolutely Twin Predictable and
Sometimes Predictable, but this predictability is only in the
case E{X?3} = oo (see [12]), so for most service distributions
the criteria disagree.

This dissimilarity suggests that for guaranteeing predicta-
bility one might want to combine the two criteria, or require
both.

4.3 Optimality under the Twin Measure

As several policies have zero twin measure, these policies
can all be considered twin measure wise optimal. One might
therefore want to find a policy that is both optimal in the
twin measure sense, and has low sojourn time. Consider
the following variant of SRPT, called SRPT,. Assume the job
with the shortest remaining processing time has remaining
processing time x. Service is given in a processor sharing
manner, to all jobs with remaining processing time not larger
than x+«. It is easy to see that if « can be arbitrarily small,
this policy’s sojourn times are arbitrarily close to SRPT. On
the other hand, if o > € + § (which since € — 0,6 — 0 can
be done for arbitrarily small «), twin jobs will be served
in processor sharing manner from ag until min(di,dz), at
which point one of them will leave the system and the other
one will have at most € + ¢ service left. Ase — 0,0 — 0,
this job will receive full service from that epoch onwards,
and thus Z(z, 0, ¢) < e+6 and 757 T () = 0. Thus SRPT,
has both optimal twin measure, and optimal sojourn time.

S. THE TWIN MEASURE IN MULTI-SER-
VER SYSTEMS

In this section we analyze the twin measure in some com-
mon multi-server settings. The scheduling policy between
members of the same queue is FCFS.

5.1 Single Queue

We start our analysis with the simple single queue system,
denoted SingleQueue, where the first job in the queue is
served by the first server to become idle.

For simplicity we ignore effects caused by jobs arriving
in the interval (a1,a2) in this analysis. As the scheduling
policy is FCFS, it is easy to see that these effects would be
negligible as € — 0.

A simple observation is that the twin measure is smaller
than = +¢€, or x when € — 0. This is so because at the worse
case (i) C2 will be served right after Cy. However, there is
a probability that either (ii) both twins arrive when two or
more servers are idle, in which case both twins are served
immediately, and leave the system simultaneously, or (iii)
some other server than the one serving C will become idle
while C; is being served, in which case C2 will be served
partially in parallel to C'1, and leave system before ds + x.
Letting € — 0 and taking expectations we have

TSmateQuene () — (1 _ q) (| Bt + ’v(m)x) B

where « is the probability of arriving when two or more
servers are idle. Given that no more than one server was
idle on arrival, 3(y) is the probability that C2 will be delayed
for y units of time until another server is idle, and ~(z) is
the probability that no other server will be idle until C; is
served, in which case C3 is delayed for exactly = units of
time.
For o we have
s—2

a=> p

k=0

where pj, is the probability of finding k jobs in the system.
For example, in the case of Exponential service times ([5,

Sec. 3.5]),

k
Pk :po(slf!) k<m
m—1
_ (sp)" . (sp)°
po= kZ:O k! +s!(1—p)

In the general distribution case one can map the distribution
to a PH distribution (for example using [10]) and use matrix
analytic methods ([7]) to obtain a good approximations of
Pk

For evaluating 3(y) and v(x) note that due to the Poisson
arrivals the remaining service time on each of the servers
at the epoch s is the residual life of the service time, and
has a pdf b(z) = (1 — B(x))/Z and a cdf B(z) = Iy f(t)de.
For C3 to be delayed exactly y units of time due to one
specific server, the other servers need to have a residual ser-
vice time larger than y, so the probability of that event is
b(y)(1-B(y))*2, and finally B(y) = (s—1)b(y)(1-B(y))*>.
Using the same argument ~(z) = (1 — B(y))* L.

To summarize

s—2
TSingleQueue(x) _ (1 _ Zpk> %

k=0
(/OZ(S — D)b(y)(1 = B(y))* 2ydy + (1 — B(y))s_la:) -

One can observe that the twin measure is decreasing with
s, as both « and ((y) increase with s.

5.2 Multiple Queues

In this section we make some observation about the mul-
tiple queue system, where each queue is assigned one server,
and that server serves the jobs in that queue in FCFS man-
ner. If a job joins the system and finds an empty queue it
joins that queue and is served immediately. Other wise, the
job is assigned a queue using some queue assignment policy.
Once a job is assigned a queue, it cannot jockey to another
queue, even if the other queue’s server is idle. We denote
this setting MultipleQueue.

Note that analysis is dependent on the queue assignment
policy. However, for all queue assignment policies there are
three possible cases: (i) Two or more queues are empty upon
arrival of the twins. In this case both twins are served in
parallel and leave the system simultaneously. (ii) Both twins
join the same queue. In this case Cy departs x units after
C1, and (iii) the twins join different queues. In this case
the twins will depart |y| units of time apart, where y is the
difference in the remaining work in the two queues, which
can be negative.

Using very similar notation to (5)

JMultiveleQueue 1) _ (1 _ o) (/Oz B(y) |y|dy + ’y(m)l’) ,

where « is the probability of arriving when two or more
queues are empty. Given that no more than one queue was
empty, B(y) is the probability that the difference in the re-
maining work in the two queues C1 and C joined is y. v(z)
is the probability that the twins will join the same queue.
Evaluating «, B(y) and «(z) is much more complicated
in this case than it was for SingleQueue. We state some
methods for this evaluation below. One can also resort to
simulation methods, which are in fact not very complicated.

Evaluating «, after the general distribution is mapped to a
PH distribution, involves a Markovian-chain which is infinite
in more than one dimension. In these cases matrix analytic
methods do not work and one needs to use other methods,
such as the Dimensionality Reduction method proposed in
[9], and see discussion there of other methods. This provides
us with full state probabilities.

Analyzing ((y) requires knowledge of the distribution of
remaining work in a queue. This is in general much more
complicated than the residual life of a single job, although
it is possible, using the queue length distribution, which is
obtainable from the state probabilities.

~(x) might be simple or complicated, depending on the
job assignment policy. For example if the jobs are assigned
to queues in random, y(z) = 1/s. If jobs are assigned to the
shortest queue, the queue length distribution can be used.

One queue assignment policy of interest is to assign jobs
to the queue with the least remaining work. Although this
joining policy might not always be practical, it is possible
in some computing systems where the length of each job is
predetermined. Note that in this case C always departs
first, and C> always departs x or less units of time after
Ci. One can therefore easily observe that the twin measure
is smaller than x. In general, this is not possible in other
queue assignment policies.

6. EXTENDING THE TWIN MEASURE

In this section we discuss two ways to extend the twin
measure: using more than two jobs, which we call trains,
and not sending the jobs simultaneously.

6.1 Job Trains

One way to extend the results of the twin measure is to
consider Job Trains, i.e. situations where more than two
identical jobs are sent.

Packet Trains were proposed as means for measuring link
bandwidth and available bandwidth (e.g. [2, 3, 4]). In these,
packet trains are injected into the network. The dispersion
of the probe packets at the receiver side is then used in dif-
ferent bandwidth estimation algorithms, using, for example,
dispersion mean values or dispersion variance. However, this
entire body of work assumes that packets are served using
the FCFS policy, as indeed is the case with packet routers, at
least for packets of the same flow. However, job schedulers
may choose different policies, with quite different results.

We provide here only the simplified definition (parallel
to Definition 2.2), as the non-simplified one is much more
difficult to define rigorously and provides little benefit.

DEFINITION 6.1 (JOB TRAIN MEASURE).

Let C1,Ca,...,C, be m identical jobs, with equal service
requirements x, arriving at epochs ai,az = a1 + €,a3 =
a1 + 2¢,...,am = a1 + (m — 1)e where ¢ > 0, and de-

parting at epochs di,da,...,dm. Assume that Ci arrives
when (a1) the system is in steady state. Define the ran-
dom wvariable Z(x,e,m) = max; d; — min; d;, given T, m
and €. Let 2" (x,e,m) be the n-th moment of Z(xz,e,m), i.e.
2" (z,e,m) = E{Z(xz,e,m)"}.

For scheduling policy ¢ and job size x, the n-th job train
measure T,¢ (x,m) is defined as the limit, when € tends to
zero, of z"(x,e,m), assuming a limit ewists. Namely
T2 (xz,m) = lim_o 2" (z, ¢, m).

The shortened term job train measure, denoted T¢(a:, m), is

used to describe the first job train measure, namely
T?(x,m) = T (z) = lime—o E{Z(z,¢e,m)}.

Analysis of the job train measure for the policies analyzed
in Section 3 is quite straightforward. In fact, for all the poli-
cies T?(x,m) = (m — 1)T?(z). However, this isn’t always
the case.

Consider for example a synchronous server setting. All
jobs are of size x and the server works in service cycles of
length 2z which serve either one or two customers, depend-
ing on availability of jobs. Each job receives a service rate
of 1/2. If poaq is the probability of finding an odd number
of customers in the system upon arrival, then the job train
measure is podq2z [(m—1)/2]+(1—poda)2z[(m—2) /2] which
is definitely not linear with m. For example, for m = 2 we
get poadx, for m = 3 we get 2x.

A second example is a round robin policy, where jobs join
the queue at a random location. One can observe that all the
jobs in the job train will be served in the same service cycle,
so the job train measure is at most as large as the service
cycle length. This will grow with m, but not linearity.

6.2 Non-Simultaneous Twins

A second way to extend the results of the twin measure
is to consider twins which do not arrive at the system con-
currently. For example, the twins can arrive exactly x units
apart, i.e. a2 — a1 = x. This might provide more insight
on the predictability of the system. For example, note that
only for LRPT the measure is still zero.

Another case of specific interest is the case where the sec-
ond twin enters the system when the first one departs, i.e.
az = di. For example this setting can represent a customer
refreshing a Web page just as it finished loading, expecting
a similar load time. It might be more interesting to measure
the difference or ratio between the sojourn times, i.e. |(di —
a1)—(d2—a2)| or max(di —a1,d2—az2)/ min(di —a1, d2 —a2).

7. CONCLUDING REMARKS

We proposed a novel way of measuring the predictabil-
ity of a queueing system, utilizing pairs of identical cus-
tomers. This measure was analyzed for several common
scheduling policies. The results show that the measure in
itself is unrelated to the utilization or waiting time perfor-
mance of the system. The results also suggest that the mea-
sure in itself cannot guarantee service time predictability.
Comparing these results with the results of the Conditional
Response Time Criterion show that in several cases they
contradict, leading to the proposal that to guarantee pre-
dictability maybe both of the measures should be used as
criteria.

Analysis of the measure for multiple servers shows that
for single queue the measure improves when the number of
server increases. For multiple queues this is dependent on
the queue assignment policy.

We proposed several ways in which the measure can be
extended, namely by using more than two customers, or by
considering jobs that do not arrive concurrently. Analysis
of these is left for future research.

8. ACKNOWLEDGEMENTS

This work was supported in part by the Israeli Ministry
of Science and Technology, grant number 380-801, and by
EURO-NGI network of excellence

9. REFERENCES

[1] B. Avi-Itzhak, H. Levy, and D. Raz. Quantifying
fairness in queueing systems: Principles, approaches
and applicability. Probability in the Engineering and
Informational Sciences (PEIS), 2006. To appear.

[2] R. L. Carter and M. E. Crovella. Measuring bottleneck
link speed in packet-switched networks. Performance
Evaluation, 27-28:297-318, October 1996.

[3] N. Hu and P. Steenkiste. Evaluation and
characterization of available bandwidth probing
techniques. IEEE Journal on Selected Areas in
Communications, 21(6):879-894, August 2003.

[4] M. Jain and C. Dovrolis. End-to-end available
bandwidth: Measurement methodology, dynamics,
and relation with TCP throughput. IEEE/ACM
Transactions on Networking, 11(4):537-549, August
2003.

[5] L. Kleinrock. Queueing Systems, Volume 1: Theory.
Wiley, 1975.

[6] L. Kleinrock. Queueing Systems, Volume 2: Computer
Applications. Wiley, 1976.

[7] G. Latouche and V. Ramaswami. Introduction to
Matrix Analytic Methods in Stochastic Modeling.
ASA-STAM, Philadelphia, 1999.

[8] M. Nuyens and A. Wierman. The
foreground-background queue: a survey. Under
submission, 2007.

[9] T. Osogami. Analysis of Multiserver Systems via
Dimensionality Reduction of Markov Chains. PhD
thesis, School of Computer Science, Carnegie Mellon
University, 2005.

[10] T. Osogami and M. Harchol-Balter. Closed-form
solutions for mapping general distributions to
quasi-minimal PH distributions. Performance
Evaluation, 63(6):524-552, June 2006.

[11] L. E. Schrage and L. W. Miller. The queue M/G/1
with the shortest processing remaining time discipline.
Operations Research, 14:670-684, 1966.

[12] A. Wierman. Scheduling for Today’s Computer
Systems. PhD thesis, School of Computer Science,
Carnegie Mellon University, 2007.

[13] A. Wierman and M. Harchol-Balter. Classifying
scheduling policies with respect to higher moments of
conditional response time. In Proceedings of ACM
Sigmetrics 2005 Conference on Measurement and
Modeling of Computer Systems, pages 229239, Banff,
Alberta, Canada, June 2005.

