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Abstract

We identify issues and solutions in the key area of Massive Multiple Input Multiple Output (MIMO). We 
illustrate the role this technology will play in 5G communications through two study cases. In the first study 
case, we propose a Massive Multiuser (MU)-MIMO setup to tackle the mixed-service communication problem. 
Our results suggest that, as the array size at the base station progressively increases, the performance of 
sub-optimal linear filtering a pproaches t he p erfect i nterference-cancellation b ound. O ur s econd s tudy case 
looks at the intersection of Massive MIMO and waveform design. We introduce the self-equalization property 
of Filter Bank Multicarrier (FBMC)-based Massive MIMO networks, and show it can reduce the number of 
subcarriers required by the system. It is also shown that the blind channel tracking property of FBMC can 
decontaminate pilots. These findings s hed l ight i nto a nd m otivate f or t wo e xciting r esearch l ines t owards a 
better understanding of Massive MIMO systems.
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1. Motivation

Ongoing societal developments have been changing the
way we use communication systems. These changes
are, in part, due to the big rise in on-demand data
consumption over mobile and wireless networks. One
issue associated with the task of accommodating such
changes consists of finding solutions that can meet
the diverse needs of the use cases regarded as market
drivers for Fifth Generation (5G) networks. A non-
exhaustive list of 5G drivers includes broadband
telephony with gigabit wireless connectivity for public
safety and immersive multimedia applications, such as
high-resolution video, virtual reality, and gaming [1];
Tactile Internet for real-time applications posing ultra-
low latency requirements [2]; and the Internet of Things
(IoT) for machine-centered communications in dense
networks of bursty traffic generating devices [3].
∗Corresponding author. Email: jmiranda@cpqd.com.br

Applications within the IoT driver’s scope, which we
shall hereafter refer to as Machine Type Communi-
cations (MTC), range from infrastructure monitoring
to smart cities [4, 5], and mobile health − including
telemedicine, sports and fitness − to Advanced Driver
Assistance Systems (ADAS) [6, 7]. Reliability in smart
grid and critical infrastructure monitoring, for instance,
is often achievable only via dedicated landlines [8, 9].
Telemedicine involves the diagnostic through medical
records stored in the cloud, thus calling for both real-
time, low-latency access and high-capacity infrastruc-
ture capable of handling data of voluminous nature, e.g.
magnetic resonance imaging and computerized axial
tomography [10, 11]. Infotainment, pre-crash sensing
and mitigation, and vehicular cooperation in ADAS also
need support for high-speed, low-latency car-to-car and
car-to-infrastructure communications [12–14].

As the discussion above attests, 5G requirements can
be quite diverse even within a single market driver.
Another issue raised by the IoT is scalability, as the
current premise is that hundreds to hundred thousands
of low-cost MTC devices will be served by a sole Base
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Station (BS) [15]. While scalability issues have been
addressed using different (sometimes complementary)
approaches, such as lessons learned from duty-cycled
Wireless Sensor Networks [16], waveform design for
asynchronous signaling in the uplink [17], and sparse
signal processing strategies [18], less is understood to
date about Multiple Input Multiple Output (MIMO)
techniques in the context of MTC networks.

A popular view is that the required increase in
data rate will be achieved through combined gains
[19] in extreme network densification (to improve area
spectral efficiency), increased bandwidth (by exploiting
mmWaves and by making better use of unlicensed
spectrum), and increased spectral efficiency (through
advances in MIMO techniques). A consequence of the
powerful signal processing enabled by a large array
sizes is that most of the scheduling and physical layer
control issues in general are automatically resolved in
Massive MIMO systems – which of course is not the case
for systems with just a moderate number of antennas.
In recent past, Massive MIMO has gained significant
momentum as potential candidate to increase capacity
in multi-user networks. In the limit, as the number
M of antennas at the BS tends to infinity, the system
processing gain tends to infinity. As a result, the effects
of noise and multi-user interference are removed [20].

In this quest for bandwidth, other challenges that
need be addressed in the context of 5G are fragmented
spectrum and spectrum agility. It is unlikely that all
these challenges can be satisfied using Orthogonal
Frequency Division Multiplexing (OFDM), and new
waveforms are required. Some researchers have also
started to question the working assumption of strict
synchronism and orthogonality in cellular networks, as
a way to relax strict time-domain requirements in case
of sporadic traffic generating devices (e.g.MTC devices)
or applications requiring ultra-low latency, such as the
Tactile Internet.

Waveform design is quite a hot topic at the moment,
as it sheds light into how candidate waveforms perform
in cellular environments, and discusses how they fare
regarding specific aspects of 5G systems. In [21], for
instance, OFDM is compared to Filter Bank Multi-
Carrier (FBMC), Time Frequency-packed Signaling
(TFS), and Single-Carrier Modulation (SCM): OFDM is
preferred in terms of ease of hardware implementation;
SCM is the best candidate to reduce latency and peak-
to-average power ratio (PAPR); FBMC is most robust
against synchronisation errors; all waveforms but TFS
can be used in mm-Wave bands, and all can be adopted
in a Massive MIMO setup, i.e. systems using arrays
with at least an order of magnitude more antennas than
conventional systems [22].

In general, it appears that any modulation technique,
either single- or multi-carrier, can be used in combi-
nation with large antenna arrays. According to [21], it

is reasonable to foresee that a similar behavior with
respect to the vanishing of inter-user and Inter-symbol
Interference (ISI) can be observed for any modulation
format when the number of receiving antennas M is
sufficiently high. However, since not all waveforms have
equal advantages, the benefits of large antenna arrays
can make a certain Massive MIMO-specific waveform
combination more attractive than others. FBMC offers
lower out-of-band (OOB) emissions, and allows less
expensive and more flexible carrier aggregation than
OFDM, but traditionally had the problem of non easy
applicability of MIMO to it [23]. By scaling up the
number of antennas, the combination of Massive MIMO
and FBMC can benefit from the former’s gains while
still retaining the good properties of the latter [24].

In [25] it is pointed out that, because of the law of
large numbers, the channel hardens so each subcarrier
in a Massive MIMO system will substantially have
the same channel gain. Such property is also reported
in the context of FBMC in [24], where the authors
name it self-equalization, and can lead to a reduction
in the number of subcarriers required by the system.
Another advantage of Massive MIMO systems is that,
thanks to their many spatial degrees of freedom, the
same frequency band can be reused for many users.
This plus the channel hardening render frequency-
domain scheduling no longer needed, making most of
the physical layer control signaling redundant.

The remainder of the paper is as follows. Section
II provides a brief yet comprehensive overview of
Massive MIMO, its challenges, and solutions available
at the time of this writing. Section III surveys the
subject waveform design with focus on determining the
suitability of candidate modulation formats from the
perspective of several 5G-specific aspects including, of
course, support for large antenna arrays. Section IV
presents a study case, where the feasibility of Massive
MIMO for MTC networks is investigated as means
to address the uplink mixed-service communication
problem. The insights gathered thus far are then
exploited in a second study case in Section V, where
some recent results of the authors on the combination
of Massive MIMO and FBMC are discussed. Section VI
wraps up the paper with concluding remarks.

2. Large-scale Multiple Antenna Systems
This section discusses issues regarded as most chal-
lenging in the Massive MIMO literature. Table 1 lists
such issues and their available solutions, each presented
alongside with its side effects, i.e. new issues brought
about by their adoption.

2.1. Impairments due to Low-cost Hardware
Large-scale multiple antenna arrays will likely be built
using low-cost components to ease the introduction
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Table 1. Summary of Challenges & Solutions in Large-scale Multiple Antenna Systems for 5G.

Research Area Issue Candidate Solutions Shortcomings and “Side Effects” Refs

Hardware
Phase noise Smart PHY transceiver algorithms Efficacy yet to be demonstrated [25]Power consumption Parallel, dedicated baseband processing Open research question
Proof-of-Concept Experiments, testbeds & prototypes Only basic capabilities demonstrated [26]

• Diminishes bandwidth
Antenna coupling Multiport impedance matching RF circuits • Introduces ohmic losses [27–31]

Antenna • Not fully understood for large M
Aspects • Increases coupling effects

Front-back ambiguity Dense multidimensional implementations • Limited to indoor environments [27, 32]
• 3D arrays have restricted usefulness

Channel modeling • Realistic empirical models Currently under development [33, 34]Propagation • Sophisticated analytical models
Cluster resolution No solution known to date Open research question [22]

BS sends pilots to terminals via FDD Limited by the channel coherence time [20, 35]
CSI acquisition Terminals send pilots to BS via TDD Channel reciprocity calibration [36–39]

Pilot contamination problem [40–43]

Linear precoding methods

• ZF • Computationally heavy for large M [22, 44]

Precoding

• MMSE • Higher average transmit power

• MF • Has an error floor as M increases [22]• Higher M required for a given SINR
• BD Cost-effective strategies are needed [45]

Nonlinear precoding methods
• DPC Extremely costly for practical deployment [46]

Transceiver • THP Increased complexity is hard to justify [47]
Design • VP [48]

Detection

Linear filtering
• MRC • Does not treat interference suppression [20]
• ZF • Does not treat noise enhancement [49]
• MMSE • More complex than MRC [22, 72]

Iterative linear filtering • MMSE-SIC Computationally heavy for large M [50]• BI-GDFE

Random step search methods • TS More complex than MMSE-SIC [51]
• LAS [52]

Tree-based algorithms
• SD Complexity grows exponentially in M [53]

• FCSD • 1, 000x more complex than TS [54]• Best suitable for the M ≈ K case

and leverage the penetration of the Massive MIMO
technology into the market. This calls for solutions
capable of circumventing hardware imperfections that
manifest themselves as I/Q imbalance or phase noise.
The latter issue is of particular concern because low-
cost power amplifiers often have relaxed linearity
requirements, which in turn translate into the need for
reduced PAPR on a per antenna element basis [25].

Savings in radiated power result from using excess
antennas to simultaneously send independent data
to different users, but the total power consumption
should also be taken into account. In this context,
an interesting research path is hardware architectures
for baseband signal processing [25]. Another path
of interest is experimentation, as testbeds currently
available only demonstrate basic capabilities, and do
not take constrained BS real estates into consideration
[26]. Experimentation can also be rewarding in that
experimental findings can be fed back into theory, thus

rendering the development of testbeds, prototypes, and
proof-of-concept experiments of utmost importance to
a better understanding about the technology.

2.2. Mutual Coupling and Front-back Ambiguity
One assumption often made when modeling antenna
arrays is that the separation among antenna elements
is large enough to keep mutual coupling at negligible
levels. This is not entirely realistic, especially in the
case of a large number of antenna elements deployed
as an array of constrained size and aperture. Under
such practical conditions, mutual coupling is known
to substantially impact the achievable system capacity
[27]. Multiport impedance matching RF circuits can
cancel out such coupling effects [28], but they diminish
output port bandwidth [29] and increase ohmic losses
[30, Chapter 10].

Two- or three-dimensional arrays have been reported
able to avoid front-back ambiguity. A side effect of
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dense implementations is that the larger the number of
adjacent elements, the larger the increase of coupling
effects [22]. Another fundamental shortcoming specific
to 3-D settings is the incapability of extracting
additional information from the elements inside the
array, i.e. only elements on the array surface contribute
to the information capacity [32]. The optimal densities
above which performance deteriorates no matter how
large is the number of elements are studied in [31] for
indoor Massive MIMO BSs.

2.3. RF Propagation and Channel Modeling
Realistic performance assessments call for appropri-
ate channel characterization and modeling. The Mas-
sive MIMO channel behavior, including its correla-
tion properties and the influence of different antenna
arrangements, cannot be captured otherwise. The inter-
est raised by this issue has been (and still is) expe-
riencing a fast-paced growth, and the community has
already managed to contribute towards a better under-
standing on the matter. In [33], channel measurements
are carried out to identify and statistically model the
propagation characteristics of interest. These are then
fed back into an existing channel model, extending its
applicability to large-scale antenna arrays.

Performance assessments should ideally be con-
ducted using a standardized or widely accepted channel
model. At the time of writing, no such a model seems to
exist for Massive MIMO. See, e.g. [34], for a discussion
on modeling methods, channel categories, and their
underlying properties.

2.4. Acquisition of Channel State Information
In conventional systems, the BS cannot harness beam-
forming gains until it has established a communica-
tion link with the terminals. Firstly, the BS broad-
casts pilots based on which the terminals estimate
their corresponding channel responses. These termi-
nal estimates are then quantized and fed back to the
BS. Such Frequency-division Duplexing (FDD) finds
limited application in Massive MIMO systems in that
the amount of time-frequency resources needed for
pilot transmission in the downlink (DL) scales as the
number of antennas, and so does the number of channel
responses that must be estimated on the part of each
terminal. In large arrays, pilot transmission time may
well exceed the coherence time of the channel [20, 35].

An alternative for Massive MIMO systems is to
let the terminals send pilots to the BS via Time-
division Duplexing (TDD). The TDD approach relies
on channel reciprocity, where uplink (UL) channels
serve as estimate of DL channels. This leads to training
requirements independent of M [36], and eliminates
the need for Channel State Information (CSI) feedback.
TDD’s drawbacks are reciprocity calibration and pilot

contamination: the former is a need raised by different
transfer characteristics of DL/UL; the latter arises in
multi-user scenarios where the use of non-orthogonal
pilot sequences causes the intended user’s channel
estimate to get contaminated by a linear combination
of other users’ channels sharing that same pilot.
Reciprocity calibration and pilot decontamination are
studied in [37–39] and [40–43], but optimal solutions
are unknown to date.

2.5. Precoding
Multi-user interference can be mitigated at the transmit
side by modifying standard single-stream beamforming
techniques to support multiple streams. Precoding
based on Zero-Forcing (ZF) or Minimum Mean Square
Error (MMSE) is simple for a antenna numbers up
to moderate. However, reliance on channel inversions
may take its complexity and power burdens to a point
hard to accommodate within very large arrays [22, 44].
Matched Filtering (MF), which comprises Maximum
Ratio Transmission (MRT) in the DL and Maximum
Ratio Combining (MRC) in the UL, is known to be the
simplest method [20].

Nonlinear precoding methods, such as Dirty Paper
Coding (DPC) [46], Tomlinson-Harashima Precoding
(THP) [47], and Vector Perturbation (VP) [48], also
have appealing features (DPC is theoretically optimal)
but are either too costly for practical deployment or
offer gains hard to justify in view of their increased
computational complexity. Recalling that the array size
required to achieve a given Signal-to-Interference and
Noise Ratio (SINR) with MF is at least two orders of
magnitude larger than with ZF [22], further work on
cost-effective solutions is needed, e.g. as illustrated in
[45] for Block Diagonalization (BD) algorithms.

2.6. Detection
When it comes to data streams separation in conven-
tional systems, Maximum Likelihood (ML) detection is
optimum solution but its complexity grows exponen-
tially with the number of streams (this makes it hard to
implement in MTC networks where hundreds to thou-
sands of devices are envisioned). This is the reason why
parameter estimation and detection are key problems
in Massive MIMO systems. Suboptimal linear filtering
detectors with reduced computational complexity, such
as MRC, ZF, and MMSE [49], offer lower costs (that
do not depend on the modulation), but are not capa-
ble of achieving the full receive-diversity order of ML
detection [44]. This performance-complexity tradeoff
led to the development of several alternative detection
methods, some of them are discussed in the sequel.

The first class of interest is iterative linear filtering,
which encompasses MMSE with Successive Interference
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Table 2. Waveforms Regarded as Most Promising for 5G with CP-OFDM used as Benchmark (TBI = remains to be investigated).

Figure of Merit CP-OFDM NC-OFDM DFT-s-OFDM BFDM FBMC GFDM UFMC

Pe
rfo

rm
an

ce

PAPR High High Reduced High High Reduced High
Spectral Efficiency Low Low Low High High High High
Overhead High High Variable Low Low Variable Low
Frequency Localization Good Good Very good Controllable Excellent Excellent Excellent
OOB Emissions High Reduced Reduced Variable Negligible Reduced Reduced
Sidelobe Attenuation 13 dB 20-50 dB 40-60 dB 13-60 dB 60 dB 35 dB 40-60 dB
BER Good Good Good Good Good Average Very good
Throughput Low Low Low High High High High
Time Offsets Poor Good Good Good Good Good Good
Frequency Offsets Poor Good Good Good Good Good Good

Fe
as

ib
ili

ty

Complexity Low Low Low High High High High
Implementation Efficient Efficient Efficient TBI Efficient Efficient Efficient
Equalization Simple Simple Simple TBI Involved Simple Involved

Resource Allocation Dynamic and Dynamic and Dynamic and Possible Configurable Configurable Configurablefine grained fine grained fine grained and adaptable

Su
pp

or
tf

or Conventional MIMO Yes Yes Yes TBI No Yes Yes
High-order Modulation Yes Yes Yes TBI TBI Yes TBI
Short-burst Traffic No Yes Yes Yes No Yes Yes
Fragmented Spectrum No Yes Yes Yes Yes Yes Yes
Low Latency No No No No No Yes No
References [19–21, 23] [55] [56, 57] [59] [3, 19, 23, 58] [60, 61] [3, 19, 64]

Cancellation (MMSE-SIC) and Block-iterative General-
ized Decision Feedback Equalization (BI-GDFE) [50].
A shortcoming common to such iterative detectors is
that their reliance on repeated matrix inversions may
be render them computationally heavy for large array
sizes. Tabu Search (TS) [51] and Likelihood Ascent
Search (LAS) [52] belong to a class of matrix-inversion
free detectors known as random step search detec-
tion methods. Regrettably, the performance-complexity
tradeoff comes into play also here, as both TS and LAS
are known to be outperformed by MMSE-SIC [22]. The
last relevant class, referred to as tree-based detection
algorithms, has in Fixed Complexity Sphere Decoding
(FCSD) one of its most prominent methods [53, 54].
Notwithstanding the improvements of FCSD over stan-
dard sphere decoding, the method is still 1, 000 times
more complex than TS.

3. Waveform Design for 5G
Another topic of interest is waveform design, whereby
candidate modulation formats are assessed w.r.t.
specific aspects of 5G systems. In general, it appears
that any modulation technique, either single- or multi-
carrier, can be used in combination with large antenna
arrays. However, since not all waveforms have equal
advantages, the benefits of large antenna arrays can
make a certain Massive MIMO-specific waveform
combination more attractive than others.

Seeking to provide a better understanding about
this interesting subject, we review in this section the

state of the art about candidate waveforms for 5G.
The discussion that follows will help us put together
a second study case on the application of Massive
MIMO for 5G wireless communication systems. Unless
mentioned otherwise, the comparisons in Table 2
are based on the best possible performance of each
waveform with OFDM with cyclic prefix (CP-OFDM)
used as benchmark.

3.1. The Baseline OFDM and its Enhancements
Despite of the advantages that led to its near-universal
adoption, CP-OFDM is not without its limitations [23].
High PAPR in Massive MIMO is a concern, as it sets
up a tradeoff between the amplifier’s linearity and cost.
MmWave deployment may also prove hard due to the
difficulty to develop efficient amplifiers [19]. Spectral
efficiency [3] can be improved using shorter CP lengths,
and Frequency and Quadrature Amplitude Modulation
(FQAM) to boost DL throughput for cell-edge users. TFS
and faster-than-Nyquist signaling have been claimed
able to offer efficiency gains on the order of 25%
over conventional OFDM (see, e.g. [19, 21] and the
references therein). Other drawbacks of CP-OFDM are
sensitivity to phase noise and asynchronous signaling,
poor spectrum localization, large OOB emissions, and
long round-trip time.

The amount of implementation experience and
knowledge about the tricky aspects of OFDM available
today make it possible to modify its baseline form to
create new schemes capable of circumventing most of
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its inherent limitations. Improved sidelobe suppression
for dynamic spectrum access and fragmented spec-
trum use is claimed achievable using noncontiguous
waveforms, such as Cancellation Carriers (CC) or Edge
Windowing (EW). In [55], CC-OFDM with a single
cancellation carrier is shown better than both its variant
with multiple (weighted) cancellation carriers and EW-
OFDM, but suppression performance degrades as the
subcarrier index runs away from the gap edge.

Another option consists of manipulating OFDM to
mimic SCM [19, 21] to reduce PAPR and provide robust-
ness against frequency offsets. Discrete Fourier Trans-
form spread OFDM (DFT-s-OFDM) enhances noise in
faded channels, offers poor spectral containment, and
allows neither frequency-selective scheduling nor link
adaptation. These limitations are overcome by employ-
ing zero-tail DFT-s-OFDM, exploiting receiver diversity,
and appying the DFT spread at the physical resource
blocks level [56, 57]. Improved flexibility (dynamic
overhead adaptation instead of hardcoded CP) and
OOB emissions (smoother transitions between adjacent
symbols) are additional advantages of zero-tail DFT-s-
OFDM over CP-OFDM.

3.2. Filter Bank Multicarrier
FBMC introduced multicarrier techniques over two
decades before the introduction of OFDM in wireless
communications systems [23]. While OFDM relies on
CP to prevent ISI and convert the channel into a flat-
gain subcarriers set, FBMC exploits the fact that narrow
and numerous subcarriers can be characterized by a flat
gain. The length and superior frequency localization of
FBMC prototype filters allow the terminal to deal with
high delay spreads and compensate frequency offsets
without feedback to the BS [3, 19] (at the expense
of increased computational complexity, latency, and
equalization requirements).

Fast-convolution based highly tunable multirate filter
banks are investigated in [58]. Capable of implementing
waveform processing for multiple single-carrier and/or
multicarrier transmission channels with nonuniform
bandwidths and subchannel spacings simultaneously,
this method is a competitive option in terms of spectral
containment and complexity.

3.3. “Born-to-be-5G” Waveforms
In contrast to FBMC or OFDM, which apart from
enhancements like CC-OFDM and DFT-s-OFDM were
not originally designed bearing 5G requirements in
mind, we have recently witnessed the outbreak of
waveforms crafted for MTC and the Tactile Internet.
Biorthogonal Frequency Division Multiplexing (BFDM)
waveforms, for instance, have been regarded suitable
to support sporadic traffic and asynchronous signaling.
One appealing feature of BFDM is time and spectral

localization balancing through iterative interference
cancellation, which in turn allows to control degrada-
tions due to time and frequency offsets [59].

Rendered attractive for nonsynchronous burst trans-
missions by its block-based structure, Generalized Fre-
quency Division Multiplexing (GFDM) was originally
proposed as a nonorthogonal alternative to FBMC.
GFDM can be set to mimic OFDM, although its benefits
are better experienced with SCM setups, e.g. to transmit
multiple symbols per subcarrier. To the best of our
knowledge, GFDM is the only 5G candidate waveform
for which support for High-order Modulation (HOM)
and Tactile Internet has been explicitly investigated.

The reader is referred to [60, 61] for a comprehen-
sive analysis of characteristics, relevant features, perfor-
mance, and implementation aspects of GFDM. Recently,
performance under timing and carrier frequency off-
sets, and the design of low complexity transceivers for
GFDM were considered in [62] and [63], respectively.

3.4. Universal Filtered Multicarrier
Another distinguishing aspect of OFDM and FBMC is
that the former filters the whole signal band, while
the latter works on a per subcarrier basis. Universal
Filtered Multicarrier (UFMC) has been advanced as a
more general solution because its filtering is applied on
the level of multiple subcarriers, e.g. on a per resource
block basis. As compared with OFDM, UFMC offers
better spectral efficiency and robustness against time
and frequency offsets [3, 19]. Some advantages of UFMC
over FBMC are lower latency (due to its shorter filter
lengths), reduced overhead, and improved support for
MTC [3, 64] – although both may require more involved
multi-tap equalizers.

4. Study Case I: The Uplink Mixed-service
Communication Problem
In this study case, we investigate the feasibility of
Massive Multiuser (MU)-MIMO as a means to address
the so-called uplink mixed-service communication
problem, where a single BS simultaneously delivers
narrowband services to both MTC devices and Fourth
Generation (4G) wideband services to User Equipment
(UEs). Treating MTC devices as regular UEs turns out
to be an issue, as scheduling Physical Resource Blocks
(PRBs) in extremely dense networks is a nontrivial task
made harder in the presence of retransmissions and
intrinsic uplink synchronization procedures [65–68].

Assuming an available Physical Narrowband Shared
Channel (PNSCH), devised to consume traffic generated
by MTC devices, the capacity of the MTC network –
and, in turn, that of the mixed-service system – can
be increased by clustering MTC devices and letting
clusters share the same time-frequency PRBs. The idea
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Figure 1. Block diagram of a Massive MU-MIMO uplink for mixed networks, where the BS simultaneously serves narrowband MTC
devices and wideband UEs. The cluster of MTC devices seen at the transmit side share the same time-frequency PRBs, while the sole
BS at the receive side is equipped with an antenna array at least one order of magnitude larger than the number of MTC devices.

behind the PNSCH is to allow the exploitation of the
channel’s geometric scattering characteristics to spread
MTC signals in the spatial domain. The individual data
streams conveyed by spatially spread MTC signals can
be separated thanks to the powerful processing gain of
our Massive MU-MIMO setup [20], where the antenna
array size at the BS is at least one order of magnitude
larger than the number of served MTC devices.

4.1. System Model
Here we describe the system depicted in Figure 1 in
terms of its underlying functional blocks. We assume
the transmitted signals of a cluster with K single-
antenna MTC devices are detected by a Massive MU-
MIMO BS equipped with M receive antennas, M � K .
All theK MTC sources map data into a set of continuous
PRBs in the frequency domain, with the subcarrier
indexes providing the spectral position of the PNSCH
at the physical layer level. The PNSCH is configured at
the BS via broadcasting system information blocks, just
like the physical random access channel used in current
4G systems (see, e.g. [69] and the references therein).
This allows the number of PNSCH transmission
opportunities in the uplink to be scheduled while
taking into consideration discrepancies between the
(likely different) capacities of MTC devices and UEs.

Each MTC device transmits a signal by taking the
Inverse Fast Fourier Transform (IFFT) of the mapped
data, and subsequently adding a CP. The different signal
bandwidths occupied by MTC devices and UEs cause
the former and the latter to respectively experience
flat and frequency selective fading. The CP is thus
required to ascertain compatibility in the uplink for
narrowband services (MTC devices) and wideband
services (regular UEs). We assume OFDM block-
based transmissions, where the frequency-domain data

symbols are randomly and independently drawn from
a Phase Shift Keying (PSK) alphabet with normalized
average energy.

Let xk[n] denote the transmitted time-domain
samples of the kth MTC device, k = 1, . . . , K . Assume
OFDM symbols are normalized to unit variance, so
E[|xk[n]|2] = 1. The power level of subcarriers not
mapped with data is set to zero. In the uplink, the
signals due to all K MTC devices can be collected into
the vector [70]

x = [x1, . . . , xK ]T , (1)

where (·)T denotes transposition and x ∈ CK×1. Here-
after, for ease of notation, we shall write simply x and
assume that the functional dependence on the time
index n is implicit.

Let hm,k denote the channel coefficient from the k-th
MTC device to the m-th antenna of the BS

hm,k = gm,k
√
dk , (2)

where gm,k is a complex small-scale fading coefficient,
and dk is an amplitude coefficient that accounts for
geometric attenuation and shadowing, i.e. large-scale
fading [20]. The transmitted signals in (1) are narrow
in comparison to the total channel bandwidth, so it
is natural to assume they will undergo flat Rayleigh
fading. This means that the elements hm,k of the M × K
channel matrix

H =


g1,1 · · · g1,K
...

. . .
...

gM,1 · · · gM,K

︸                     ︷︷                     ︸
G

.


d1

. . .
dK

︸               ︷︷               ︸
D

1/2

(3)
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correspond to the complex channel gains from the
transmit antennas to the receive antennas. The large-
scale fading coefficients are assumed the same for m =
1, . . . ,M BS antennas but dependent of the individual
positions of MTC devices.

Under the assumption of largeM and that small-scale
fading coefficients experienced by each MTC device
are i.i.d. random variables with zero mean and unit
variance, the column channel vector from different
MTC devices becomes asymptotically orthogonal as the
number of receive antennas at the BS grows without
bound [20]

H†H = D1/2 G†G D1/2 ≈MD1/2IKD
1/2 = MD, (4)

where (·)† denotes transpose-conjugate (Hermitian)
operation. Please note that the favorable propagation
condition shown in (4) is only valid in the context of
Massive MIMO [70]. We refer the reader to [71] for a
discussion on this condition, and to [22] for some fresh
experimental evidence supporting the assumption of
i.i.d. small-scale fading coefficients in Massive MIMO.

The vector received at the BS can be written as
[25, 70]

y =
√
ρ H x + n, (5)

where ρ is the uplink transmit power, y ∈ CM×1, and
n ∈ CM×1 is a zero-mean noise vector with complex
Gaussian distribution and identity covariance matrix.
There exist M PNSCH signal versions in (5) for each of
the K MTC devices. Hence, the task of the BS consists
of detecting K simultaneous MTC transmissions on the
basis of estimates of the channel coefficients in (3).
Detection techniques need to be employed in order to
separate each of the data streams transmitted by the
various devices in a Massive MU-MIMO system.

We consider the case of perfect CSI, i.e. H is perfectly
known at the BS. Let A be an M × K linear detector
matrix that depends on the channel H. By using a
linear detector, the received signal can be separated into
different data streams using A† as follows

r = A†y, (6)

where the vector r collects the data streams received at
the BS, i.e. the OFDM symbols of all K single-antenna
MTC devices, and A is a receive matrix that depends
on the specific linear detector used at the BS. After
linear detection, as seen in Figure 1, each data stream
undergoes FFT processing and subcarrier extraction in
order to retrieve data symbols.

Inspection of (3) reveals that D is a diagonal matrix,
so we can use MRC in the uplink to separate the signals
from different MTC devices into different streams with
asymptotic no inter-user interference [20]. Thereby each
MTC device’s transmission can be seen as signals of
a single device passing through a single input single

output channel. In the limit, this implies that MRC is
optimal when the number of receive antennas is much
larger than the number of transmit antennas, i.e. M �
K , M →∞ – as can be seen from (4). In MRC the linear
detection matrix A is chosen using

AMRC = H (7)

where the dominant computation is due to matrix
transposition. The associated complexity is of only
O(MK) multiplications.

ZF is an alternative linear filtering method that
chooses A with the aim of completely eliminating inter-
ference, regardless of noise enhancement. Specifically,
the ZF detector chooses A constrained to AH = I

AZF = H(H†H)−1, (8)

which is of complexity O(MK +MK2 + K3) [22]. One
drawback of ZF is that it insists in forcing interference
to zero independent of the interference strength, i.e.
any energy of the signal of interest that lies in the
interference subspace is discarded. A better strategy is
to choose A so as to balance the signal energy lost with
the increased interference. From this point of view, it
is better to accept some residual interference provided
that this allows the detector to capture more of the
desired signal’s energy [49].

One last linear detector that, together with MRC
and ZF, poses complexity costs that do not depend on
the modulation order is MMSE. As the name suggests,
the MMSE detector chooses the A that minimizes e =
E[‖A†y − x‖2] without any additional constraints

AMMSE = H
(
H†H +

σ2
n

σ2
x
I
)−1

, (9)

where σ2
x and σ2

n denote the variances of transmitted
signal vector and noise vector, respectively. In contrast
to ZF, which minimizes interference but fails to
treat noise, and to MRC, which minimizes noise but
fails to treat interference, MMSE achieves an optimal
balance between interference suppression and noise
enhancement at the same cost of ZF [22, 72].

The shortcomings listed in Table 1 under iterative
filtering, random step search, and tree-based methods
suggest that these detection classes perform well but
are still too complex to be practical. Linear filtering
methods, such as MRC, ZF, and MMSE, seem more
feasible candidates for Massive MU-MIMO systems. For
1� K �M, it is known that linear detection performs
fairly well, and asymptotically achieves capacity when
M →∞. [20]. We therefore consider only such linear
methods in the simulation work that follows.

4.2. Simulation Results
In this section, we assess the performances of MRC, ZF,
and MMSE in terms of their Bit Error Rate (BER) over
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a range of SINRs. As benchmark in the comparisons
we use the Matched Filter Bound (MFB), also known
in the literature as the perfect interference-cancellation
bound. As the name suggests, MFB performs as the i-th
user of a matched-filter receiver in the absence of other
sources of interference [49]. Our motivation for this
choice is that for M � K both multi-user interference
and small-scale fading effects tend to disappear (thanks
to the large processing gains of Massive MIMO), so
the performance of the MU-MIMO K ×M channel
(assumed to be flat Rayleigh fading in Section IV.A)
becomes very close to the MFB.

In our simulation work, we consider uncoded
QPSK/OFDM uplink block transmission with the
number of FFT bins and the number of samples used
to create the CP set up to N = 2048 and NCP = 128,
respectively. The Massive MU-MIMO K ×M channel
is a flat Rayleigh fading channel. Each single path
linking an MTC device to a receive antenna at the
BS is modeled as a one-tap finite impulse response
filter with a complex coefficient drawn from a zero-
mean and unit variance Gaussian random process. Each
path is assumed uncorrelated with the other paths.

The simulation results discussed in the sequel
were averaged over 107 OFDM symbol realizations,
with one channel realization (fading plus additive
Gaussian white noise) per generated OFDM symbol.
The simulation type is Monte-Carlo with a bit error
counting procedure that compares the transmit bit
vector (mapped into a transmitted OFDM symbol) to
the receive bit vector (demapped from the received
OFDM symbol).

Figure 2 shows the BER of linear filtering detectors
for a fixed number of K = 10 MTC devices and BS
array sizes in the range of 50 ≤M ≤ 500 antennas.
The performance gap inherent to MRC becomes
evident in this figure, although it can be dramatically
reduced at the expense of larger array sizes at the
BS, e.g. only 2 dB @BER = 106 for M = 500. This
suggests that even low-complex MRC has potential to
approximate MFB in caseM can be made large enough.

As expected, and due to its better balance between
interference suppression and noise enhancement,
MMSE outperforms MRC and ZF in all cases studied.
The performance gap between ZF and MMSE, which is
small enough to be considered negligible for M ≤ 50,
entirely vanishes as the BS array size is grown to M =
100 or above. In fact, the main conclusion drawn from
the plots is that MRC, ZF, and MMSE all approach the
performance of MFB as M grows without bound, but
the gap between the perfect interference-cancellation
bound and ZF/MMSE decreases at a faster pace than
in case of MRC.

5. Study Case II: FBMC-based Massive MIMO
Networks
Networks resulting from the combination of Massive
MIMO and FBMC are of the utmost importance as in
these systems spectrum not only can be reused by all
the users (advantage of Massive MIMO), but can also
be used in an efficient manner (due to the FBMC’s low
OOB emissions). The application of FBMC to Massive
MIMO was first considered in [24], with an interesting
finding of this work being the self-equalization property
of FBMC in Massive MIMO channels (in contrast with
the limited applicability of FBMC to conventional
MIMO channels). As a result, FBMC can leverage
various benefits that place it in a strong position as a
candidate for 5G systems.

Linear combining of the signals received in different
receive antennas at BS averages channel distortions
between the users and BS antennas. As M increases, the
channel distortions over each subcarrier are smoothed
through linear combining, so a nearly equalized gain
across each subcarrier can be achieved. Assuming a
flat channel over each subcarrier, we derived analytical
SINR relationships for MF and MMSE combiners in
[24]. We repeat such expressions in Section 5.1 for self-
containment, and since they are used as benchmark to
evaluate channel flatness in Section 5.2.

As recently highlighted in [74], Cosine Modulated
Multitone (CMT), viz. a particular FBMC form,
possesses a blind equalization capability [75] that can
be used to decontaminate erroneous channel estimates
caused by pilot contamination in multicellular Massive
MIMO networks. This approach, which is somewhat
similar to the Godard blind equalization algorithm [76],
can be easily extended from single antenna to Massive
MIMO systems. We will discuss this further in sections
5.1 and 5.2.

5.1. System Model
CMT-based Massive MIMO Networks. Consider a multi-
cellular network consisting of C > 1 cells and K UEs in
each cell. Each UE is equipped with a single transmit
and receive antenna, communicating with the BS in
a TDD manner. Each BS is equipped with M � K
transmit/receive antennas used to communicate with
the K UEs in the cell simultaneously. We also assume,
similar to [20], multicarrier modulation is used for data
transmission. However, we replace OFDM modulation
by CMT modulation. Each UE is distinguished by the
BS using the respective subcarrier gains between its
antenna and the BS antennas.

Ignoring time and subcarrier indices in our formula-
tion, for ease of notation, a transmit symbol sc(`) from
the `th UE located in the cth cell, arrives at the jth BS as
a vector

9
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(a) (b)

(c) (d)

Figure 2. Results for Study Case I: BER performance of different linear filtering methods for K = 10 single-antenna MTC devices
and different array sizes at the BS. MTB is provided as benchmark for comparisons. (a) M = 50 antennas. (b) M = 100 antennas.
(c) M = 250 antennas. (d) M = 500 antennas.

where tc(`) = sc(`) + jqc(`) and qc(`) is the contribution
of ISI and ICI. hcj` = [hcj`(0), . . . , hcj`(M − 1)]T indicates
the channel gain vector whose elements are the gains
between the `th UE located in the cth cell and different
antennas at the jth BS. The received signal vector at the
jth BS, xj , contains contributions from its own UEs and
the ones located in its neighboring cells apart from the
channel noise vector v

xj =
C−1∑
c=0

K−1∑
`=0

αcj`xc` + v, (11)

where αcj`’s are the cross-gain factors between the `th

user of the cth cell and the BS antennas of the jth

cell which can be thought as path loss coefficients. In
general, αcj` ∈ [0, 1]. Considering perfect power control
for the users of each cell implies that αcj` = 1 for c = j.
The vector xj is fed into a set of linear estimators at the
jth BS to estimate the users’ data symbols sj (0), sj (1), · · · ,
sj (K − 1). (11) can then be rearranged as
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xj = Hjjtj +
C−1∑
c=0
c,j

Hcjαcjtc + v, (12)

where tc = [tc(0), . . . , tc(K − 1)]T and αcj =
diag{αcj0, . . . , αcj(K−1)}. The Hcj ’s are M × K fast fading
channel matrices with columns hcj` , ` = 0, 1, . . . , K − 1.

To cast the above process in a mathematical formula-
tion for the single cell case, and allow the introduction
of various choices of estimators, we proceed as follows.
First, define x̃ = [xT

R xT
I ]T, ṽ = [vT

R vT
I ]T, h̃` = [hT

`,R hT
`,I]

T,

h̆` = [−hT
`,I hT

`,R]T, s = [s(0) s(1) · · · s(K − 1)]T and q =

[q(0) q(1) · · · q(K − 1)]T, where the subscripts ‘R’ and ‘I’
denote the real and imaginary parts, respectively. Using
these definitions, (11) may then be rearranged as

x̃ = A
[
s
q

]
+ ṽ, (13)

where A = [H̃ H̆], and H̃ and H̆ are 2M × K matrices
with columns of {h̃` , ` = 0, 1, · · · , K − 1} and {h̆` , ` =
0, 1, · · · , K − 1}, respectively. The form of (13) is familiar
in the Code Division Multiple Access (CDMA) literature
(see, e.g. [77, 78]), hence, a variety of solutions that
have been given for CDMA systems can be immediately
applied to the present problem as well.

For instance, the MF detector obtains an estimate of
the vector s using

ŝMF = D−1ΓATx̃, (14)

where D = diag{‖h̃0‖2, . . . , ‖h̃K−1‖2}, the matrix Γ con-
sists of the first K rows of the identity matrix I2K
and ŝMF = [ŝMF(0), . . . , ŝMF(K − 1)]T whose `th element,
ŝMF(`), is the estimated data symbol of user `. Each
element of ŝMF can be expanded as

ŝMF(`) = s(`) +
K−1∑
i=0
i,`

h̃T
`

‖h̃`‖2
(h̃is(i) + h̆iq(i)) +

h̃T
`

‖h̃`‖2
ṽ.

(15)
This leads to a receiver structure similar to that of [20],
where it is shown that when the number of antennas,
M, increases to infinity, the multiuser interference and
noise effects vanish to zero. Hence, ŝ = s, where the
vector ŝ is an estimate of s, and the receiver will
be optimum. In the context of CDMA, this has the
explanation that as M tends to infinity, the processing
gain also goes to infinity and accordingly multiuser
interference and noise effects vanish.

In realistic situations when M is finite, the MF
estimator is not optimal. A superior estimator is MMSE

ŝ = WTx̃, (16)

where the coefficient matrix W is chosen to minimize
the cost function

ζ = E[‖s −WTx̃‖2]. (17)

This solution is optimal in that it maximizes the SINR
[77]. Following standard derivations, the optimal choice
of W is

Wo = A
(
ATA + σ2

v I2K

)−1
Γ T (18)

where it is assumed that the elements of the noise vector
ṽ are i.i.d. Gaussian random variables with variances
of σ2

v , so E
[
ṽṽT

]
= σ2

v I. The columns of Wo contain the
optimal filter tap weights for different users. Plugging
(18) into (16) leads to the MMSE solution

ŝMMSE(`) = wT
o,`h̃`s(`) +

K−1∑
i=0
i,`

wT
o,`h̃is(i)

+
K−1∑
i=0

wT
o,`h̆iq(i) + wT

o,`ṽ, (19)

where wo,` is the `th column of Wo. Ignoring the off-
diagonal elements of

(
ATA + σ2

v I2K

)
and removing the

term σ2
v I2K from (18), one will realize that (19) boils

down to the MF tap weights (15).
The first terms on the right hand side of (15)

and (19) are the desired signal and the rest are the
interference plus noise terms. We consider s(`) and q(`)
as independent variables with variance of unity. Under
the assumption of a flat channel impulse response in
each subcarrier band, the SINR at the output of MF and
MMSE detectors for user ` in a certain subcarrier can
respectively be derived as

SINRMF(`) =
‖h̃`‖4

K−1∑
i=0
i,`

(
|h̃T
` h̃i |

2
+ |h̃T

` h̆i |
2)

+ σ2
v ‖h̃`‖2

, (20)

and

SINRMMSE(`) =
|wT

o,`h̃` |
2

K−1∑
i=0
i,`

|wT
o,`h̃i |

2 +
K−1∑
i=0
|wT

o,`h̆i |
2 + σ2

v ‖wo,`‖2
.

(21)

Pilot Decontamination. Consider now the multi-cellular
scenario whose general system model has already been
introduced in Section 5.1. Under the assumption of
perfect CSI, the MF tap-weight vector for user ` located
in the jth cell can be represented as

wj` =
hjj`

hH
jj`hjj`

. (22)
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The estimated users’ data symbols at the output of
the matched filters of the cell j can be mathematically
written as

ŝj =<{D−1HH
jjxj }, (23)

where D = diag{‖hjj0‖2, . . . , ‖hjj(K−1)‖2} and ŝj is the
estimation of the vector sj = [sj (0), . . . , sj (K − 1)]T which
contains the users’ transmitted data symbols. In
practical situations where M is finite, the MF combiner
is not optimal and as it is pointed out in [24], MMSE
combining has a superior performance which is due to
the fact that it maximizes the SINR.

The channel gains between the UEs and the BS
antennas in each cell are estimated through training
pilots transmitted during the uplink phase. The UEs
in each cell transmit pilots from a set of mutually
orthogonal pilot sequences which allows the BS to
distinguish between the channel impulse responses of
different users in the channel estimation stage. As
argued in [73], the channel coherence time does not
allow the users of neighboring cells to use orthogonal
pilot sequences in the multi-cellular scenario.

In TDD multi-cellular Massive MIMO networks, C
BSs use the same set of pilot sequences as well as
frequencies. In addition, synchronous transmissions are
assumed. Therefore, the same set of pilot sequences
being used in neighboring cells will adversely affect the
channel estimates at the BS. This effect is called pilot
contamination. After correlating the received training
symbols with the set of pilot sequences at the BS j, the
estimates of the channel gains between the UEs and
large antenna array of the BS can be given as

Ĥjj = Hjj +
C−1∑
c=0
c,j

Hcjαcj + ṽ. (24)

As one can realize from (24), the channel estimates
at the jth cell are corrupted by the channel impulse
responses of its adjacent cells. Therefore, even with
infinite number of receive antennas at the BS, there will
always exist some multiuser interference from the users
of other cells. Pilot contamination can have detrimental
effects on the performance of multi-cellular networks
and greatly impair their sum rate capacity [20]. Here
we extend the blind equalization property of CMT to
Massive MIMO systems in order to purify the channel
estimates and tackle the pilot contamination problem
without any need for cooperation among the cells or
additional training information.

As it is noted in [75], the imaginary part of the CMT
symbol at each subcarrier, i.e. qc(`), is formed from
a linear combination of a large number of symbols
from the corresponding and also adjacent subcarriers.
Following the central limit theorem, one can come up
with three observations here:

1. The favorable real-part of the equalized CMT
symbol at each subcarrier is free of ISI and ICI
and, as such, its distribution follows that of the
respective Pulse Amplitude Modulation (PAM)
alphabet.

2. The respective imaginary part suffers from ISI and
ICI and is distributed in a Gaussian manner.

3. Both the real and imaginary parts of an
unequalized symbol at a subcarrier comprise
of ISI and ICI terms and are distributed in a
Gaussian manner.

Based on the aforementioned properties, a blind
equalization algorithm similar to the Godard blind
equalization algorithm [76] was developed in [75] such
that the cost function

ξ = E[(|yk(n)|p − R)2], (25)

is minimized. yk(n) is the equalizer output (in the
case here, the equalizer output of the kth subcarrier
channel), p is integer (usually set equal to 1 or 2), R =
E[|s|2p]/E[|s|p], and s is a random selection from the PAM
symbols alphabet.

We shall now devise a strategy to exploit this
algorithm in order to adaptively correct the imperfect
channel estimates and hence greatly alleviate the
performance degradation due to the contaminated
pilots. A Least Mean Squares (LMS)-like blind-tracking
algorithm, which is computationally inexpensive, based
on the cost function (25) can be adopted. Extension
of the proposed blind equalization technique of [75]
to Massive MIMO application can be straightforwardly
derived as

wj`(n + 1) = wj`(n) − 2µ sign(ŝ(n)
j (`))(|ŝ(n)

j (`)| − R) · xj (n),
(26)

where ŝ(n)
j (`) = wH

j`(n)xj (n), xj (n) is the nth symbol of the
received data packet and µ is an step-size parameter.
We initialize the algorithm through the MF tap-weight
vector

w(0)
j` =

ĥjj`
ĥH
jj`ĥjj`

, (27)

where ĥjj` is the estimated channel vector between the
user ` located in the cell j and the jth BS antenna arrays,
i.e. the `th column of Ĥjj in (24).

In Section 5.2 we will show through numerical results
that our channel tracking algorithm is able to effectively
converge towards the MMSE linear combining with
perfect knowledge of channel responses of all users in
all considered cells, while starting from MF tap-weights
with imperfect CSI. Although originally presented in
[24] and [74], these results are reproduced here for the
sake of self-containment.
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5.2. Simulation Results

CMT-based Massive MIMO Networks. Figure 3(a) shows
theoretical and simulation results of a multi-user
scenario (K = 6 users, L = 64 subcarriers, and M = 128
BS antennas). The target output SINR of 20 dB may
be calculated as SNRin + 10 log10M, where SNRin is the
signal-to-noise ratio at each BS antenna, and 10 log10M
is the spreading gain due to M BS antennas. SINRs are
evaluated over all subcarrier channels, and the number
of points along the normalized frequency is equal to
the number of subcarrier bands, L. MMSE is superior to
MF, and its SINR is about the same for all subcarriers,
i.e. has smaller variance across the subcarriers. Our
simulation results match very well to the theoretical
ones, confirming the self-equalization property of linear
combining in FBMC-based Massive MIMO systems.

This self-equalization property of FBMC relaxes the
large L requirement to obtain an approximately flat gain
over each subcarrier band, so wider subcarriers can be
used. The use of a smaller L in a given bandwidth:
(1) reduces the latency caused by synthesis/analysis
filter banks; (2) improves bandwidth efficiency due to
the absence of the CP and to shorter preambles; (3)
decreases computational complexity due to the smaller
FFT and IFFT blocks needed for implementation;
(4) provides robustness to frequency offsets; and (5)
reduces PAPR.

Pilot Decontamination. To alleviate the performance loss
caused by corrupted channel estimates, the blind
equalization technique adaptively corrects the linear
combiner tap weights. Starting with MF using noisy
channel estimates, the SINR performance reaches that
of MF with noise-free channel matrix within a small
number of iterations, and keeps improving to get to that
of MMSE with noise-free channel matrix.

This is shown in Figure 3(b) for a Massive MIMO
network in TDD mode with seven cells and one user
per cell. We assume that all users use the same pilot
sequences, and that L = 256 and M = 128. It can be
seen that there is an abrupt SINR improvement during
the first 50 iterations where the output SINR of the
blind combiner reaches that of the MF combiner with
the perfect CSI knowledge. Running larger numbers
of iterations has shown that the output SINR of
our blind channel tracking technique can suppress
the pilot contamination effect and converge towards
that of the MMSE combiner. Apart from its high
computational complexity, the MMSE detector needs
perfect knowledge of the channel impulse responses
between the interfering users of the other cells and
its antenna arrays – a rather unrealistic condition.
The methods proposed here, on the other hand, can
approach MMSE performance with a simple LMS-like
algorithm.

In some situations where the length of the UL data
packets is close to the channel coherence time, the
estimated CSI in the beginning of the packet may get
outdated, resulting in a performance loss (as the same
CSI is used for precoding in the DL). This problem
can be alleviated by the utilization of blind channel
tracking techniques as the one mentioned above, since
these provide up-to-date CSI. In other words, the blind
channel tracking techniques sweep through all the
symbols in the data packet and update the CSI. The
latest CSI taken from the last transmitted symbols can
thus be obtained.

6. Concluding Remarks
This article has reviewed existing related work and
identified main issues and candidate solutions in the
key area of Massive MIMO systems. We have illustrated
the crucial role this technology is envisioned to play in
the context of 5G wireless communication systems by
means of the following study cases.

In the first study case, we propose the use of
a Massive MU-MIMO setup as means to tackle the
uplink mixed-service communication problem. Our
simulation results suggest that, as the size of the
antenna array at the BS is made progressively larger, the
performances of sub-optimal linear filtering methods
approach the perfect interference-cancellation bound.
ZF and MMSE approach the MFB at faster pace than
simple MRC, although the performance gap of the
latter is of only 2 dB for M = 500 antennas. Due to
its better balance between interference suppression and
noise enhancement, MMSE outperforms MRC and ZF
in all cases studied. The gap in the performance of
ZF, however, is negligible for array sizes around 50
antennas, and entirely vanishes for M ≥ 100 antennas.

Our second study case looks at the intersection of
Massive MIMO and waveform design. Here we have
introduced the property of self-equalization FBMC-
based Massive MIMO networks, and show that it has
potential to reduce the number of subcarriers required
by the system. It is also shown that the blind channel
tracking property of FBMC can be used to address pilot
contamination – one of the main performance limiting
factors of Massive MIMO systems.

The findings presented in this paper shed light
into and motivate for two entirely new research lines
towards a better understanding of Massive MU-MIMO
for MTC networks and FBMC-based Massive MIMO
networks. In our future work, we will consider more
realistic channel models and relax the assumption of
perfect channel knowledge on the part of the BS.
We also intend to extend our analysis with robust
design linear filters, being thus able to compare their
performance to that obtained in this paper for standard
MRC, ZF, and MMSE.
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Figure 3. Results for Study Case II: SINR performance of different linear combiners for the case of M = 128 antennas at the BS.
(a) MMSE vs. MF (L = 64 subcarriers, K = 6 users). (b) Blind tracking technique vs. MMSE vs. MF (L = 256 subcarriers, C = 7
cells, K = 1 user per cell). These results were first presented in [24] and [74], and are reproduced here for self-containment.
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