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Abstract

The understanding of human mobility patterns is key for the development and evaluation of ubiquitous 
applications. To overcome the scarcity and difficulties in capturing mobility data, models have been devised. 
In general, each model replicates some of the observed metrics, while neglecting others. However, all tend to 
ignore diversity, in the roles and goals of the users but also in the devices that are used to access the WiFi 
network.

This paper presents the mobility traces from the access records of 49000 devices to the eduroam WiFi network 
of IPL for 7 years. Traces are made publicly available in the expectation that its large scale permits to support 
evaluations base on real mobility data, thus removing the uncertainty that emerges from the use of synthetic 
mobility models. Traces emphasise differences between device types, with impact on aspects like observed 
trace duration, speed, pause times, ICTs and availability, which can hardly be replicated on synthetic mobility 
models.
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1. Introduction
Simulations play a fundamental role in the performance
evaluation of mobile applications and protocols as
they permit to circumvent the difficulties in deploying
large scale and long term real experiments. Network
simulators put to test an implementation of the
application against abstractions of the environment,
traffic and device movement. Therefore, the reliability
of the experiments performed by network simulators
is strongly influenced by their capability to reproduce
observed settings in each of these abstractions.

The device mobility is dictated by the movement
of their owners, which makes of human mobility
a key factor influencing simulations. Research on
human mobility has been pursuing two approaches:
pure synthetic and trace-based synthetic mobility
models. In pure synthetic mobility models nodes move
according to some predefined statistical function. The
∗Corresponding author. Email: ncruz@deetc.isel.ipl.pt

commitment of the rules defined for synthetic models
to the replication of observed user movement patterns
vary but this model has been criticised for its inability to
reproduce human movement patterns, when evaluated
by metrics like inhomogeneity [1]. As an example,
consider random way-point [2], one of the most popular
synthetic mobility models, where nodes unrealistically
cycle between moving in straight lines to a random
location and pause, both for random amounts of time.

Trace-based synthetic mobility models derive statis-
tical distributions from observations of user movement,
thus trying to mirror properties observed in real traces
of human mobility (e.g. [3–5]). Traces are provided ei-
ther by volunteers, which make their location available,
or by a third party performing passive observation. Un-
fortunately, the number of trace-based samples made
publicly available is scarce, present a small time span
and/or number of users.

To circumvent the limitations of the pure and
trace based synthetic mobility model classes, this
paper proposes a new class, named trace-set mobility
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models. The novelty of this class is that it creates
mobility scenarios exclusively from data observed in
real traces, disregarding any statistical approximation.
As a contribution for the creation of this class, the paper
presents a data-set composed of the observation of the
49000 wireless devices that connected to the eduroam
network of the Polytechnic Institute of Lisbon, Portugal
(IPL) between 2005 and 2012. This data-set is made
publicly available using a web interface that exports
data in bonnmotion [6] format, thus facilitating its use
on a broad range of network simulators.

The contributions of this paper are two fold.
First, it presents MobIPLity, a trace-set mobility
model and scenario generator. MobIPLity combines the
moments of association and disassociation of mobile
devices to access points (APs) with the knowledge on
APs geographic location to create realistic mobility
scenarios. The scenarios can be filtered by many
distinct parameters, including the number of devices,
number of access points visited by each device,
duration and device type. These parameters facilitate
the generation of mobility scenarios that better purport
the characteristics of the group of devices for which an
application is developed.

Secondly, it characterises and compares the traces of
MobIPLity with some trace-based models found in the
literature. MobIPLity is characterised using temporal,
spatial and social metrics frequently cited in the
literature such as inhomogeneity, inter-contact times,
jump-size and pause-times. Results show that trace-
based models fail to emulate multiple device types and
that they require a careful and difficult configuration
to accurately model the behaviour that was observed
in MobIPLity. The paper also shows that the different
device types exhibit distinct mobility patterns, with
impact on the metrics typically modelled by trace-based
synthetic models.

The paper is organised as follows. The next section
makes a brief overview of different mobility models,
efforts to collect mobility data and metrics that have
been used to characterise human mobility. Section 3
makes an overview of the data-set used by MobIPLity.
Sections 4 and 5 respectively present the methodology
used to convert the raw data-set on trace-based mobility
scenarios and the different metrics associated with it.
A discussion of the results and their comparison with
other mobility models is presented on Sec. 6. Section 7
concludes the paper and outlines the plans for the
continuation of this work.

2. Related work
2.1. Characterisation of Human Mobility
The human mobility has been characterised along
spatial, temporal and social axis [7]. Spatial axis
considers aspects like node density and distance,

portrayed by metrics like jump size (sometimes referred
as flight) and inhomogeneity. Jump size characterises
the average distance travelled by users and is affected
by the characteristics of the area, for example, by
the distance between buildings. Trace-based mobility
models have been modelling jump sizes with either
log-normal [8] or truncated power law distributions [4,
5]. The inhomogeneity metric aims at evaluating the
dispersion of the devices on the physical space, in order
to highlight hot-spots, something the proposers [9]
consider to be a natural characteristic of human
mobility. The variation of the Random Way-Point
presented in [3] and the Disaster Area [10] are good
examples of mobility models enforcing a heterogeneous
node distribution. A lower inhomogeneity value is
expected from random distributions, while a higher
value shows that users are creating groups, formed by
nodes placed in popular locations.

Time-varying properties of human mobility charac-
terise patterns such as workday/weekend variations
and pause times, i.e. the time spent on a specific place.
Spatial properties are usually tied with temporal ones,
associating the time to the distance travelled between
two points, populating metrics such as speed.

The social axis characterises the meetings between
participants. In combination with the temporal axis,
they contribute to determine how long or how
frequently two or more persons meet. Multiple models
with a strong focus on the social relationships
established between participants have been proposed.
Metrics considered include attraction (found for
example in [5]) but also repulsion. Both properties
are explored in [11] by combining the modelling of
relationships with individual walks and group trips.
The inter-contact time (ICT), defined by the time interval
between two consecutive contacts of two persons, is a
frequently used metric to relate the temporal and social
axis. Trace-based synthetic mobility models frequently
model ICT using a truncated power law distribution [4,
12, 13].

2.2. Mobility Models

Research on human mobility has been pursuing two
approaches: pure synthetic and trace-based synthetic
mobility models. Pure synthetic mobility models use
random distributions to simulate device movement.
Classical examples are the Random Way-point Mobility
Model [2] (RWP), the Disaster Area [10] and the Man-
hattan Grid. An advantage of pure synthetic mobility
models is their simplicity in the generation of mobility
scenarios, which facilitated cross comparison of mobile
applications and protocols. Intuition suggests that ran-
dom movement would be the most challenging for eval-
uating mobile applications’ performance. However, it
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has been shown that, in addition to their disparate mod-
elling of human behaviour, synthetic mobility models
typically bias node distribution and speed in a non-
natural way [1, 14]. Limitations of the RWP have been
addressed, for example in [3, 15–18].

Trace-based synthetic mobility models, on the
other hand, attempt to mirror patterns observed
in human movement by modelling nodes behaviour
according to some probabilistic distribution functions.
The mechanisms used for collecting data inspiring
trace-based mobility models can be arranged in two
categories. Intrusive approaches (for example [19, 20])
are those that obtain their data directly from the device
carried by the user. These approaches benefit from the
precision of the data, captured by dedicated software or
hardware. Unfortunately, these studies are constrained
by the considerable amount of resources involved,
which limit their time scale and number of participants
and may bias conclusions concerning the identification
of patterns.

Non intrusive approaches, of which [21–23] are good
examples, use logs collected by external devices (like
access points or indoor-localisation devices) to produce
traces with the user location at each instant. In spite
of the privacy issues raised with the collection of the
data, non intrusive approaches are those that present
the capability to scale better in both number of users
and time span. Unfortunately, surveys on mobility
models [7, 24] indicate a scarcity of traces from mid-
2008 onward, thus excluding the generalisation of
mobile devices observed with the emergence of the last
generation of smart phones and tablets. If available,
more recent traces could evidence the emergence of new
mobility and contact patterns among users resulting
from the wave of mobile devices, such as the iPhone and
Android OS based smart-phones, debuted respectively
in 20071 and 20082.

The WiFi network of the Dartmouth College has been
serving for collecting a considerable number of traces,
for example during the 17 weeks of the 1999/2000 [25]
and 2003/2004 winter semesters [22]. The method for
collecting the traces is very similar to the one used in
this paper and which is further described in Sec. 4.
Authors used the logs to model real user tracks and
defined a threshold walking speed, below which users
were assumed to have stopped before moving to the
destination. In comparison with the work presented in
this paper, the study of 2003/2004 evaluates a larger
number of access points, but a lower number of users
and a shorter time frame. An interesting result of this
study was the definition of a trace-based synthetic
mobility model [8] inspired on the mobility patterns of

1http://en.wikipedia.org/wiki/IPhone
2http://en.wikipedia.org/wiki/Android_(operating_system)

a limited (198) number of VoIP handsets. The model
addressed social, spatial and temporal features and
considered hot-spots, workday/weekend distinction,
and mobile and stationary sets although it is affected
by the particularities of the users hosting the devices.

Results on a two month study on the eduroam
infrastructure of the universities of Minho and Vigo in
2010 can be found in [23]. The methodology followed
is very close to the one used in our study. The access
point association to physical spaces allowed to separate
network traffic originating in residential from academic
areas. Authors found that the APs with more users
are not necessarily the ones with more network traffic.
In addition, the paper confirms the expectations of a
weekly usage pattern for this network, with the vast
majority of users connecting only on weekdays. In
terms of mobility, authors conclude that 90% of the
users connect to more than one AP monthly, with
about 35% visiting at least 5 APs. Unfortunately, the
small analysis period of this study makes the notion of
mobility disperse in time and of little relevance in the
characterisation of real mobility.

Both SLAW [4] and HCMM [5] are trace-based
synthetic mobility model which aggregate conclusions
reported on other studies on human mobility with
well-known characteristics like social and location
attraction to popular places and the patterns of
movement within confined areas. Metrics such as
inter-contact time (ICTs), pause-times and jump-
sizes are also inspired on previous research and
modelled as truncated power-law distributions [12, 13].
SLAW and HCMM were validated by comparing its
output with other models, either through statistical
fitting of the generated results or by evaluating the
performance of routing protocols for Delay-Tolerant
Networks (DTN) using different mobility traces. In
GeSoMo [11], the authors additionally extended social
features by noticing the existence of a repulsion force
in social relationships. GeSoMo models movement as
a combination of individual walks and group trips,
the latter representing users that walk in group to a
predetermined popular destination. The authors also
included the knowledge about statistical distributions
from previous studies. GeSoMo and HCMM use as
input a social network model, defined as a set of
relations between users.

3. MobIPLity Data-Set

The MobIPLity data-set presented in this paper is
composed by the log records produced, between
January 1st, 2005 and December 31st, 2012, by all
Access Points (APs) of the eduroam WiFi network of
the Lisbon Polytechnic Institute (IPL). A total of 48699
devices and 30629 distinct users accessed the network
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Figure 1. Location of IPL sites

during this time frame, producing about 31 million
records.

IPL is the 7th largest teaching institution in
Portugal with approximately 1300 teachers and 15000
students, distributed by 10 distinct sites on the Lisbon
metropolitan area (see Fig. 1). The IPL’s eduroam
network is supported by approximately 200 Cisco
Systems APs, covering a total of 26 buildings and inter-
building areas. Records are originated from all the users
accessing the network, thus also including visitors from
other institutions.

The study partitioned the devices in two classes:
Small Mobile Devices (SMD) are small, can be used on
the move and are usually turned on uninterruptedly.
Examples of SMDs are smart-phones, PDAs and tablets.
The second class, Laptops, group the larger devices,
usually executing a classical operating system (Linux,
Windows or MacOS).

Devices were distributed by these classes using the
information voluntarily provided in the DHCP [26]
vendor, parameter request list and hostname message
fields to learn their operating systems. It should be
noted that information in these fields can be biased by:
i) intentional changes to the information sent in these
records by the owners of the devices; and ii) failure
to comply with the DHCP protocol specifications from
some OSs. No attempt to circumvent these limitations
has been made. Furthermore, because DHCP logs were
being discarded until the end of 2008, results for years
between 2005 and 2008 include only the devices that
connected at least once since 2009.

Overall, it was possible to identify the operating
system running on 81.6% of the devices that connected
to the network between 2005 and 2012. Of these,
7592 were associated to the SMDs class and 33054
are assumed to be Laptops. Analysis of the data-set
show results for a third class, All, which aggregates
SMDs, Laptops and the 8260 devices for which no
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Figure 2. Operating systems observed (by ascending order)
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Figure 4. Laptops vs SMDs

classification was possible. The distribution of devices
per operating system is depicted in Fig. 2. Devices
that have presented themselves with several operating
systems are represented once per operating system
detected.

Figure 3 shows a continuous growth of the number of
users and devices, although at distinct rates, specially
since 2010. This is coincidental with an increase in the
sales of smart-phones observed at the national level
and suggests that the number of users accessing the
network with more than one device has been increasing.
Figure 4, which compares the proportion of SMDs and
Laptops in each year, supports this claim.

The collection of mobility data is centred on the
logs produced by the RADIUS [27] protocol. Log
entries reproduce the RADIUS session concept thus
considering the association of each device to a single AP.
Records contain the device MAC address, AP id, user
name, session start and stop times.

In ideal conditions, each RADIUS session should
represent the association of a device to an access point.
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Figure 5. Evolution of number of sessions with time

However, the number of sessions observed is slightly
amplified due to: i) automatic handover between
APs, triggered by variations in signal strength; ii)
incompatibilities between client drivers and protocol
versions running in the AP and; iii) operating system
energy saving mechanisms that may turn off the radio
interface when it is not in use. Interpretations of
the results which rely on the number of sessions
should therefore be made with some caution and take
into account these factors. To mitigate some obvious
anomalies, logs have been edited by:

• merging in a single record consecutive sessions
between the same device and AP with an
interval of less than 5 seconds. These sessions are
attributed to network card or driver problems;

• removing concurrent sessions of the same device
to distinct APs. This is an impossibility that can
only be explained if the device did not disassoci-
ate correctly from one AP before associating to the
next and the former artificially defined the session
stop time upon a timeout. In this case, the session
stop time of the earliest session was corrected to
happen immediately before the start time of the
latest;

• removing sessions with the stop time equal to
the start time. Sessions with these characteristics
are created when a user has some problem when
connecting to the network, although the network
considers the user authenticated (thus creating
the RADIUS record).

The evolution of the total number of RADIUS
sessions with time is presented in Fig. 5. The temporal
evolution on the absolute number of sessions must
consider the gradual capacity growth of the eduroam
network (cf. Fig. 3), which in case of user mobility can
increase the number of sessions established on the same
path but taken in different years.

The increasing penetration of SMDs on the Eduroam
network and its impact on the user mobility is further
supported by Fig. 6. The figure depicts the yearly
evolution of 2 interdependent metrics: the number of
APs visited daily and the session duration, from both

0

200

400

600

800

1000

1200

1400

1600

1800

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

2005 2006 2007 2008 2009 2010 2011 2012

A
ve

ra
ge

 s
es

si
o

n
 d

u
ra

ti
o

n
 (

s)

V
is

it
ed

 A
P

s

Years

APs visited daily per user (AVG) APs visited daily per Mobile Device (AVG)

Session duration (AVG) Session duration for Mobile Devices (AVG)

Figure 6. Evolution of the average number of sessions and their
duration with time

the users and SMDs perspective, and suggests that
user mobility patterns between 2005 and 2012 can be
partitioned in 3 distinct periods:

The period between 2005 and 2007 is characterised
by the stability of both the average number of access
points visited and the session length. Their small value
indicates that devices tend to be fixed. These results
are consistent with the ratio of 1 to 1 between users
and devices (cf. Fig. 3) and with the small proportion
(approximately 5%) of SMDs, observed in Fig. 4.
SMDs visited on average a number of APs comparable
with those of the remaining devices, a result that is
attributed to the limitations of the first generation
of SMDs (namely Personal Digital Assistants), where
power efficiency of the wireless network interface was
still a concern and motivated users to make a judicious
use of their devices battery.

The period between 2007 and 2009 is characterised
by an increase of nearly 100% of the average duration
of sessions but with no change in the number of visited
access points per user. This period is coincident with
the increase of traffic, in contrast with the number of
users, which continues to grow at an almost linear pace.
The short distance between the number of devices and
the number of users (cf. Fig. 3), and the stability of
the number of visited APs, suggests that this period is
uniquely characterised by an increase in the volume of
IPL eduroam network use, attributed to the emergence
of a considerable number of Internet based services, of
which Peer-to-Peer networks are a remarkable example.
To support our claim, it should be noted that this period
precedes the flat rate business model, that became latter
generalised for residential Internet access.

The year of 2010 marks the beginning of a new
pattern where users connect to the network at a
larger number of locations, although by shorter
amounts of time. In this period, the average session
duration falls progressively to values that, in 2012,
become comparable to 2005. Simultaneously, the
average number of visited APs increases by more
than 50%. This result confirms our expectations that
a significant change is taking place in the wireless
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Figure 8. MobIPLity Work-flow

network usage pattern. This change is attributed to
the wider deployment of SMDs, a claim supported by:
i) an increase in the ratio between devices and users,
depicted in Fig. 3; and ii) an increase of the ratio
of SMDs over the total number of devices, evident
in Fig. 4. It should also be noted that SMDs exhibit
a pattern that differentiates from the average results,
both when considering the number of visited APs
(considerably more than the average) and the session
duration (considerably shorter), thus permitting to
confirm the increased mobility of SMDs.

Figure 7 depicts the number of distinct devices
recorded by RADIUS logs per day. As expected, the
plot exhibits an irregular pattern consistent with the
different activity levels that can be found on workdays,
weekends and summer and winter breaks in the
campus.

4. MobIPLity
As depicted on Fig. 8, MobIPLity combines records
produced by the DHCP and RADIUS services to create
mobility scenarios that closely reflect observed user
behaviour. In MobIPLity, DHCP records contribute
with the identification of the device type and
RADIUS identifies the participants and the moment of
each association/dissociation event. The geographical
coordinates of the access points contribute with
the estimate of the location of each participant
at each association/disassociation moment. Scenarios
are produced in bonnmotion format, a popular
mobility scenario generator capable of interacting with
numerous network simulators.

This section begins with the presentation of the
algorithm being used for extracting the traces from
the information above, after what it briefly addresses
the web interface used to make publicly available this
information. The mechanisms that have been putted in
place to guarantee user privacy are the focus of Sec. 4.3.

4.1. Trace Generation
The MobIPLity trace-set mobility model is created from
a set E ⊆ D × A × {IN ,OUT } × T where D is the set
of wireless devices, A the set of access points of the

network annotated with their geographical coordinates
and T are time stamps. The set is populated with 2
events (d, a, IN , t1), (d, a,OUT , t2), for each RADIUS log
record made available by the eduroam network of IPL.
In these events t1 and t2 are time-stamps reflecting
respectively d’s association/disassociation to AP a.

Let Ed ⊆ E be the subset of E containing all the events
recorded for device d. The set Ed is expected to respect
two invariants: i) devices are always associated with
an access point before being disassociated from it, i.e.,
∀(d, a,OUT , t′) ∈ Ed ,∃(d, a, IN , t) ∈ Ed : t ≤ t′ ; and ii) in
any point in time, a device is associated at most to one
access point, i.e., ∀(d, a, IN , t), (d, a′ , IN , t′) ∈ Ed ∧ t ≤
t′ ,∃(d, a,OUT , t′′) ∈ Ed ∧ t ≤ t′′ ≤ t′ . It should be noted
that invariant i) is trivially assured by the access points
software and invariant ii) by the corrections applied to
the RADIUS logs that have been outlined in Sec. 3.

We define E′d = ed,0, ed,1, . . . , ed,n, d ∈ D, ed,i ∈ Ed , i > 0
as the temporally ordered set of events for device d.
It should be noted that according to invariants i) and
ii), ed,2j , j ≥ 0 are events of type IN and, conversely,
ed,2j+1, j ≥ 0 are all events of type OUT.

A trace Wd = w0, w1, . . . , w2n−1, n ≥ 1 for some
device d, is defined as a sequence of way-points
wi = F(ed,2j+i), 0 ≤ i ≤ 2n − 1, j ≥ 0, ed,2j+i ∈ E′d . The
way-points are defined by a geographical coordinate
and a time stamp, returned by a function F applied
to consecutive events (not necessarily ed,0) in E′d . The
output of function F depends of:

• the position of the way-point on the trace;

• the type (IN ,OUT ) of the event;

• the transmission radius estimated for the access
point;

• the coordinates of the access point;

The general case is depicted in Fig. 9a. w0 is set
with the time stamp of ed,2j and the coordinates of the
access point in this event. Subsequent transformations
of pairs of events on pairs of way-pointsw2i+1, w2i+2, i ≥
0 will return coordinates overlapping a vector

−−−−−−−−→
APAAPB ,

with APA, APB being the coordinates of the access
points in the corresponding events ed,2j+2i+1, ed,2j+2i+2.
The coordinates of the way-points are dictated by the
transmission radius of the access points, as w2i+1 (resp.
w2i+2) will be placed at the intersection of the vector
with the transmission radius of APA (resp. APB). Time
stamps of w1 and w2 are copied from the corresponding
events. Notice that, according to the definition of E′d
above, events ed,2j+2i+1, ed,2j+2i+2 are respectively an
OUT and an IN record, thus signalling the moment at
which d abandoned the area covered by APA and the
moment at which d associated with APB. The algorithm
is successively repeated for each pair of events and way-
points.
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Figure 7. WiFi Devices Connected Per Day

(a) With disconnections

(b) Overlapping coverage

Figure 9. Trace extraction examples

The handling of the particular case occurring when
the coverage area of two consecutive access points
visited by the device intersects is depicted in Fig. 9b.
The algorithm reflects the conservative approach of
wireless interface drivers. The two way-points receive
the time stamp of the IN record and are set at 2/3 of the
distance between the access points. This model reflects
the expected conservative behaviour of the driver of
performing one hand-off only when its benefits become
evident.

Trace Termination Conditions The conditions for
terminating a trace are motivated by the need to signal

the cases where the device abandoned the network,
with the users moving to locations MobIPLity is unable
to track and which would be otherwise represented
by very slow movements that were not effectively
observed. Traces are terminated at an OUT event
by creating a way-point with the coordinates of the
access point. MobIPLity identifies two conditions for
interrupting a trace:

• when the speed for traversing the distance
between two consecutive access points falls below
some threshold;

• when two consecutive connections to the same AP
exceed a time threshold;

Both conditions are triggered by thresholds that by
default are set to 0.5ms−1 and 120s respectively, but
can be configured according to the user preferences.
Expectations are that these thresholds are sufficient for
identifying the cases where the user abandoned the
campus (for example to go home) in one location and re-
entered it at a different (first condition) or at the same
gate (second condition). In these cases, a new trace will
be started from the next IN event for the same device.

4.2. Web Interface
To facilitate the dissemination of the traces, a web in-
terface has been prepared and made publicly available
at http://edata.e.ipl.pt. Traces are extracted on-
demand from an E set stored at a local database and
running the MobIPLity algorithm described in Sec. 4.1.
The algorithm outputs traces in the format used by the
bonnmotion mobility scenario generator and analysis
tool [6]. The algorithm uniforms the output, shifting
the time stamps and creating an initial way-point for
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Table 1. Trace extraction options

Parameter Description

Start/End Date Not before/after dates of the records
# Devices Number of devices

Device’ Type Laptops/SMD/Any
Points Minimum number of APs in a trace

Duration Trace duration
Location School for extraction

Axes 2D/3D representation
Warm Up Duration of the warm up period
Cool Off Duration of the cool off period

Enhanced trace Include terminated traces
AP Range Radius of the AP coverage

Speed Min. speed for consecutive APs
Time Max. time between connections

each trace with the location predicted for each device
at scenario starting time. Finally, all access points are
consistently positioned using a random factor.

Table 1 lists the parameters that can be configured
for the generation of each trace. These parameters have
been defined in order to facilitate the generation of
a large number of instances, possibly, with distinct
characteristics. Parameters can be arranged in four
categories:

The number of devices, device type, points, duration and
location parameters have a direct impact on the metrics
that are more frequently referred in the characterisation
of the mobility scenarios. Section 5 further addresses
this aspect, by focusing on the role of the location and
device type parameters in the generation of distinct
mobility scenarios. The web interface permits to choose
from 12 distinct locations, creating mobility scenarios
whose areas range from small to medium campus sizes
(0.001km2 − −0.063km2) and to a metropolitan area
(40km2) by considering the aggregation of the locations
depicted in Fig. 1.

The AP Range, Speed and Time parameters influence
the MobIPLity algorithm. As described in Sec. 4.1, AP
Range has impact on the determination of the device
location in traces while Speed and Time dictate the
conditions for individual trace termination.

The Warm Up, Cool Off, Axis and Enhanced trace
parameters address the more technical aspects related
with the generation of the scenarios. The Warm up
and Cool off parameters ensure that the devices remain
active for the entire duration of the scenario. Therefore,
MobIPLity exclusively selects for the scenario devices
that have visited at least one access point in the Warm
Up and Cool Off periods that respectively precede and
succeed the time interval selected for the scenario.
Alternatively, the Enhanced trace option permits the
inclusion of devices that connect/disconnect to the
eduroam network during the scenario. Unfortunately,

Enhanced trace conflicts with a number of network
simulators which do not consider device disconnection
in their mobility parameters.

Finally, the start/end date parameter permits to
create multiple instances of scenarios with the same
characteristics, knowing that MobIPLity will select the
first moment after start date where all the remaining
conditions can be satisfied for creating the scenario.

4.3. Enforcement of User Privacy
To protect the confidential nature of the data, original
records are kept at a secure location and cannot be dis-
closed. In compliance with the bonnmotion file format,
the algorithm exclusively outputs (time,coordinates)
pairs for the distinct devices. Therefore, no identifica-
tion that could be associated directly with a user or de-
vice is released. In addition, original data is obfuscated
by: i) Positioning way-point coordinates in each new
scenario generation while maintaining coherence; and
ii) starting all scenarios at time 0, without disclosing the
offset between the requested start date and the effective
beginning of the scenario.

To somewhat limit any judicious analysis of the data
that could be crossed with information made available
from other sources, all requests of scenarios will be
moderated. Boundaries on the duration of the scenarios
may also be applied.

5. Mobility Analysis
This section presents and discusses the characteristics
of the mobility patterns found on the 2012 subset of
the MobIPLity trace-set. This year was chosen for being
the most recent for which the data has been completely
processed. Recency is a fundamental aspect as it better
reflects the most up-to-date use of the technology, with
an higher number and variety of device types.

Analysis proceeds in side-by-side comparison of the
2 alternative types of devices, permitting to confirm
the existence of distinct mobility patterns for users
carrying large (“Laptops”) and small (“SMD”) devices.
To further increase diversity, the ISEL and IPL locations
are considered. These are the contrasting extremes
concerning node density. ISEL is the engineering school
of IPL, located in a single site with an area of 0.063km2

and provides the largest number of devices from a
single location. The IPL location considers records
collected from access points at all schools (including
ISEL) and presents a very small node density as campus
are distributed over 40km2 of the Lisbon metropolitan
area (Cf. Fig. 1).

Table 2 makes an overview of the dimension of
the 2012 MobIPLity’s trace-set. It should be noted
that columns for IPL consider all the institution, thus
including ISEL. Still, ISEL accounts with approximately
40% of the devices and of the number of traces.
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Table 2. Overview of the 2012 trace set

All Laptops SMDs
IPL ISEL IPL ISEL IPL ISEL

Devices 24141 10080 14947 7066 5403 2056
Traces 2075731 985816 1061686 602620 641394 250209

The first part of the evaluation provides an overview
of the metrics observed in the traces produced from the
complete data-set. Section 5.2 refines these results by
performing an in-depth evaluation of 2 specific traces.

5.1. General Data-set Analysis
In the analysis of the complete data-set of 2012, discus-
sion proceeds in two complementary perspectives. The
“Per trace” perspective makes no association between
the traces. I.e., traces are considered and averaged in-
dividually. In contrast, the “Per device” approach first
aggregates the traces produced by each device and then
proceeds by making an evaluation of the results on a
device-by-device basis.

Trace duration. Figure 10 shows the complementary cu-
mulative distribution function (CCDF) of the duration
of the traces. As expected, the figure shows a small
number of extremely long traces, exceeding 10 days,
which are attributed to laptops connected on student
dorms.

However, the figure also shows that less than 18%
of the traces for Laptops exceed 2 hours and that for
SMDs this value further decreases to about 10% of
the traces in IPL and 7% in ISEL. These results are
confirmed when observing the average session duration
of each device on Figs. 10c and 10d. Such small
proportion of “long traces” is surprising. One would
expect that the usage pattern reflected the increasing
use of mobile devices on the campus and, therefore, that
trace durations were consistently higher.

The small duration of the traces, and the consistently
lower average duration of SMDs when compared with
Laptops, is attributed to the energy-saving mechanisms
that can be found on mobile devices. These mechanisms
automatically disable the wireless interface when not
in use or when the screen is turned off. This is an
aspect that has been consistently ignored in trace-based
mobility models and is even hard to reproduce in
network simulators. However, this feature has a non-
negligible impact on the design and evaluation of many
protocols and applications for ad hoc and delay-tolerant
networks which assume "always on" connectivity of the
devices. As a simple example, consider the impact of
intermittent connectivity on the route discovery phase
(that uses flooding) of many reactive routing protocols
for MANETs, such as DSR [28] and AODV [29]. A more
in depth investigation of the impact of the power saving

mechanisms is out of the scope of this paper and left as
future work.

Speed. Speed plots (Fig. 11) exhibit some abnormal
patterns of devices moving up to 1000ms−1. However,
these are found on less than 0.01% of the traces and
are attributed to the ping-pong effect that results from a
combination of the fast roaming of the devices between
overlapping APs and the trace generation algorithm
used. This is a problem that has been observed in other
models (e.g. [8]) and has a negligible impact as these
fast speeds occur for very small amounts of time and
distances. It should be noted that a portion of the 15%
of the traces with an average speed above the average
human movement speed on the IPL trace set can be
attributed to users moving between sites, and that 18%
of the IPL traces and 30% of the ISEL traces have a
speed under 1m/s, which simply suggests users walking
at low speed.

A comparison by device type shows that SMDs
consistently present an average trace speed higher than
Laptops. This result confirms the distinct utilisation
pattern which can be easily observed in real life, with
users operating their SMDs while walking. The “Per
Device” perspective for IPL is still affected by the ping-
pong effect. However, it is possible to observe a non-
negligible number of devices (around 1%) roaming
across distinct campus by exhibiting average speeds on
the range of 30Km/h.

Distances Travelled. The distance travelled is evaluated
using two metrics. Trace length is depicted on Fig. 12
and measures the length of each trace in meters. The
geographical disposition of IPL sites and the roles of
some of its members results in some traces obtaining
surprising values of 100 Km. However, the “Per Device”
averages are more predictable and only reach 11Km for
IPL and 800 meters for ISEL.

As expected, the higher mobility of SMDs is
confirmed by longer average traces in conjunction with
shorter durations. However, looking at the complete
trace-set of IPL we cannot differentiate between
different device type distributions. This is expected,
as users that carry a laptop are expected to equally
carry a SMD and as such when they travel between IPL
locations they carry both devices with them. Table 3
shows that about 27% of all devices on IPL and 16% on
ISEL are static, contributing for the 70% of the traces
without movement. However, the size of the MobIPLity
trace set is sufficient to attenuate this large proportion
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Figure 10. Trace duration (seconds)
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Figure 11. Trace speed (m/s)
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Figure 12. Trace length (meters)

as more than 600000 traces for IPL can be found
exhibiting movement. Authors believe that such a large
number should be considered sufficient to support a
trace-set mobility model.

The distribution of jump sizes (i.e. the distance
travelled between way-points) is depicted in Fig. 13.
The irregular pattern observed at Fig. 13a, with knees
at 100m, 7000m, 8000m and 10000m shows how the
roaming of users among the multiple IPL campus
impact the model. The smaller campus area of ISEL
justifies the smaller travelled distances, which never
exceed the 200m.

Pause times. Figure 14 shows consistently briefer pause
times for SMDs on both IPL and ISEL trace sets.
This supports common knowledge of SMDs showing a
higher mobility, what contrasts with the expected large
pause times for laptops, typically operated by steady
users. The longer tail on the plot for Laptops can be
caused by laptops that are kept at teachers offices, or

at students dorms. The logarithmic scale of the graph
hides the large difference between the maximum pause
time for laptops (almost 8 days) and a maximum of 2
days for SMDs. The difference between these values is
consistent on IPL and ISEL.

Disconnection time. Figure 15 presents the CCDF
for the time for which devices were disconnected,
creating distinct traces. This metric was only obtained
for devices that returned to the network after a
disconnection. The figure clearly shows the impact
of the academic environment where the data was
collected. The plot knees evidence a considerable
number of disconnections of 12 hours, 2 days, 12 days,
2 months and 6 months. These periods represent either
weekend/weekday periods, vacations and semesters.
We also found that laptops have a higher probability
of being disconnected frequently for periods of 90
minutes, which is the duration of classes. In contrast,
the figure indicates that SMDs have traditionally

10 EAI Endorsed Transactions on 
Ubiquitous Environments 

05 -07 2015 | Volume 2| Issue 5 | e2



MobIPLity: A trace-based mobility scenario generator for mobile applications

Table 3. Number of samples with no distance travelled

Location All Laptops SMDs

Per Trace IPL 2075731/1449669 (70%) 1061686/767041 (72%) 641394/426939 (66%)
ISEL 985816/682205 (69%) 602620/435860 (72%) 250209/159873 (63%)

Per Device IPL 24141/6395 (27%) 14947/3486 (23%) 5403/1417 (26%)
ISEL 10079/1637 (16%) 7066/1092 (16%) 2056/337 (16%)

Samples with zero distance/Total number of samples (% of samples with zero distance)
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Figure 13. Jump size (meters)
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Figure 15. Disconnection time (s)

smaller disconnection times, what is attributed to the
power saving mechanisms available on these devices.

5.2. Scenario Analysis
This section uses some metrics discussed in the related
work to evaluate the following 2 scenarios created using
MobIPLity.

3 days This scenario puts together three traces of
2h each, extracted respectively from the 22nd
of May, 18th of October and 6th of December
2012. The days and periods were individually
selected to create a single 3600s scenario with the
highest possible number of devices. This scenario
was motivated by the objective of defining an
environment as similar as possible to the one that
can be more frequently found in the literature.
Therefore, this scenario does not include devices
whose trace terminated during the 2h period of
the collection.

Disconnected The “disconnected” scenario further
reflects the full potential of MobIPLity by
eliminating any constraints aimed to reproduce
the conditions usually found in the literature. It
was extracted from the 18th of October 2012,
a date chosen because it presents the largest
number of devices in a single 3600s trace.

The disconnected scenario includes interrupted
traces. Recall from Sec. 4.2 that interrupted traces
include devices that turn off their radio during the
period of the study.

Table 4 details the configuration parameters used in
MobIPLity to produce both scenarios, according to the
designation introduced in Table 1. The “disconnected”
and the “3 day” scenarios share all the configuration
parameters except for the option to include traces
interrupted during the period. Expectations are that the
differences observed between the two scenarios can give
some hints on the impact of node disconnection.

Overall, this section considers 8 distinct data-sets,
resulting from the combination of the two scenarios
(resp. “3 days” and “disconnected”), two locations (ISEL
and IPL) and two device types (Laptops and SMD). In
the general case, all the data-sets consider 100 devices.
The exception is for SMDs in the “3 days” scenarios
where only respectively 15, 20 and 18 devices for ISEL
and 28, 43 and 45 devices for IPL could be found.

ICT. Figure 16 depicts the CCDF for the Inter-contact
times (ICT) of the scenarios. It should be noted that
the ICT metric only considers pairs of devices that
become in touch a second time, ignoring all the cases
where devices are in contact at most once. This supports
the irregularity of the plots for the “3 day” scenarios,
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Table 4. Trace extraction options for the 3 days and disconnected
scenarios

Parameter 3 days Disconnected
Device’ Type Laptops/SMD

Start/End Date May 22, Oct 18, Dec 6, 2012 Oct 18, 2012
Points 2

Duration 7200s
Location ISEL/IPL

Axes 2D
Warm Up 7200s n.a.
Cool Off 7200s n.a.

Enhanced trace No Yes
AP Range 50m

Speed 0.5ms−1

Time 120s

attributed to the small number of devices that remained
connected during the 2h period.

Results show longer inter-contact times for devices
that are geographically bounded to ISEL, what should
be expected, considering the highest density of the
network (in comparison with IPL) which increases
the probability of the nodes to become in proximity
more frequently. In general, plots suggest frequent re-
connections among pairs of devices, with only 1% of
them interrupted by more than 1000s.

Jump size. The distinctive dimensions of the IPL
and ISEL campus become evident in the CCDF of
the jump sizes, depicted in Fig. 17. Results for IPL
(Figs. 17a and 17b) exhibit a step pattern attributed
to the distances between the different schools of the
institution and to the need of some students and
professors to commute between them.

A comparison between SMDs and Laptops shows
that, in general, jump sizes of the former have a higher
probability of being shorter than the latter. This can be
attributed to the mobility of SMDs, which may connect
to APs while being carried in the pocket of their users
and which can be operated while the user is moving.

Figure 17a presents an interesting exception to the
relation of the curves presented by laptops and SMDs
given that laptops have a lower probabilities of moving
throughout all the IPL. However, Fig. 17b contradicts
the “3 day” results. Since the difference between both
traces is restricted to the minimal speed of travel (which
in Fig. 17a) must be above 0.5ms−1), it is safe to assume
that the abnormal behaviour is due to the speed at
which the devices travelled such long distances. In
general, jump size results tend to support the claim that
SMDs have a higher mobility, which produces larger
traces passing through multiple APs, while laptops are
disconnected and reconnected at a new location.

Jump sizes are tightly associated with the physical
dispersion of IPL, which creates groups of users that

Table 5. Inhomogeneity values

All (σ ) Laptops (σ ) SMD (σ )
IPL-Oct 18th 0.79 (0.01) 0.9 (0.01) 0.77 (0)
ISEL-Oct 18th 0.59 (0.01) 0.62 (0.02) 0.68 (0.05)

IPL Disc. 0.76 (0) 0.87 (0.01) 0.75 (0)
ISEL Disc. 0.66 (0.03) 0.71 (0.01) 0.56 (0.03)
IPL RWP 0.4 (0.05)
ISEL RWP 0.35 (0.06)
IPL SLAW 0.63 (0.02)
ISEL SLAW 0.52 (0.05)

either remain close on one school or travel between
several. This issue has been previously identified, for
example, in HCMM [5] where scenario generation
considers the possibility to set-up a number of groups
and create bell shaped normal distributions.

Pause times. The CCDF of pause times is presented
on Fig. 18. It should be noted that in MobIPLity,
pause times are particularly small as the methodology
followed for trace definition tend to maintain a node in
movement even if at a very small speed (Cf. Sec. 4.1).
Therefore, a change in the methodology was applied.
The results presented on the figure consider a device
to be stopped if the distance between way-points is
less than 1m. Still, it is interesting to observe that
SMDs have different pause time distributions with
lower probabilities of having higher values, something
that supports the mobility characteristics expected for
SMDs.

Our results are in contrast with those presented in [8]
where pause times were defined by detecting users
walking at a low speed. Authors of [8] observed that
pause times exhibited a log-normal distribution. In
contrast, the application of the Akaike test to our data-
sets indicates that the results are closer to a power law
distribution.

Inhomogeneity. Table 5 shows results for the inhomo-
geneity metric. Samples for this metric were obtained
at 4 different times on the scenarios (at the beginning,
1/3, 2/3 and at the end of the scenario) of Oct 18th,
the day with the most SMDs present on the network.
Laptops show a higher inhomogeneity, indicating a
larger concentration and irregular distribution for these
devices. This is consistent with our expectations as
it suggests that laptop users tend to be grouped, for
example in classrooms or libraries. The lower value
of inhomogeneity for SMDs confirms their pseudo-
random deployment over the area.

6. Discussion
The evaluation above permitted to identify a number
of metrics that are “scenario agnostic”. Trace duration,
trace length, pause times, disconnection time and ICT
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Figure 16. Inter-Contact Times (s)
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Figure 17. Jump Size (meters)
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Figure 18. Pause times (s)

are examples of metrics where differences observed
between ISEL and IPL are minimal. On the opposite
side, the evaluation also permitted to identify “scenario
dependent metrics” of which trace speed, jump size
and inhomogeneity are good examples. To facilitate
the comparison with trace-based mobility models, we
compare MobIPLity with SLAW [4] and RWP using
ICT (a scenario agnostic metric) and Inhomogeneity (a
scenario dependent metric).

To compare ICTs, the setup and data presented
in Sec. 5.2 was used. Scenarios that geographically
emulate ISEL and IPL and with a similar number of
devices were arranged for SLAW and the Random Way-
point (RWP). To better replicate the real conditions, the
location of Access Points was passed to SLAW as hot-
spots, permitting the creation of a model as accurate
as possible. Figure 19 depicts and compares the CCDF
results of ICTs for MobIPLity, RWP and SLAW. The
figure shows that for IPL, RWP distributes the nodes so

homogeneously that prevents generation of long ICTs,
thus limiting the visibility of the data on the figure.
Despite setting SLAW to emulate IPL on the number
of access points, SLAW has limitations on representing
the same ICTs as MobIPLity, which by itself presents
similar ICTs for IPL and ISEL. Unfortunately, neither
SLAW or RWP distinguish different device types
although our results show that the device type plays a
significant role on ICT.

The inhomogeneity metric, depicted in Table 5,
was calculated for scenarios synthetically generated by
SLAW and RWP that replicate the conditions found
in IPL and ISEL (dimension, duration, devices and
number of hot-spots/access points). Results of our
mobility records are similar to the ones obtained by
SLAW, and as expected, diverge from the randomness
found in RWP where the metric value is low.

To better understand the differences between metrics,
mobility models and device types, the Akaike test was
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Figure 19. Comparison with ICT for SLAW and RWP

Table 6. Akaike test results

SLAW Dartmouth MobIPLity
All All All Laptops SMDs

Duration - - LN W LN
Dur./dev - - G G P
Length - - P P P

Len./dev - - P P P
Speed - - W W P

Speed/dev - E P P P
Disconnection - - GEV LN GEV

Pause P LN P P P
Jump P - P P P

(P: Pareto, LN: Log-Normal, G: Gamma, E: Exponential, W: Weibull,
GEV: Extreme value)

used to compare the fitness of ISEL traces for the
complete year of 2012 to well-known distributions.
ISEL traces were chosen due to their containment
in a single campus, approximating the configurations
found in the literature. Results presented in Table 6
were obtained using Matlab automatic fitting using all
supported distributions and sorted by Akaike criteria.
It is interesting to notice the difference between fitting
results for different device types, where for the vast
majority of SMD metrics Pareto is chosen as the best
fit. This is in contrast with Laptops, with metrics being
approximated by a bigger variety of distributions.

Results confirm our suspicions on the existence
of different mobility models for these devices. The
table shows the distributions used by SLAW and
Dartmouth [8]. The difference in chosen statistical
models for pause times are evident. Pause time
calculation methodology has impact on the fitting
process. In [8], pause times were defined by detecting
users walking at a low speed. The paper claims that
pause times have a log-normal distribution, something
that is not supported by our observations which show a
power law distribution.

7. Conclusions and Future Work
The availability of real world mobility traces con-
tributes to improve the predictability of new protocols,

applications and algorithms. This paper presented Mo-
bIPLity, a data set aggregating the access records to
the eduroam network of the Polytechnic Institute of
Lisbon between 2005 and 2012 and a methodology and
website to extract mobility scenarios from this data-set.
Expectations are that the effort to provide a public web
interface and a set of indicative metrics will allow devel-
opers to rapidly create a scenario in a common, widely
adopted format, that could be used in application or
framework evaluations using simulations.

Having a source of real mobility data facilitates
the modelling. In spite of the limitations dictated
by the specific academic environment where the data
was collected, MobIPLity permits to create distinct
scenarios by considering the several schools of IPL and
the distinct movement patterns that can be observed
when considering Laptops, Small Mobile Devices and a
combination of both. This paper claims that MobIPLity
can be considered as a good starting point for the
evaluation of a multitude of applications.

The recency of the data set permitted to observe the
most recent pattern changes on mobility, that result
from the increasing popularity of small dimension de-
vices, effectively increasing user mobility. Interestingly,
evaluation showed that power saving mechanisms that
are standard on these devices reduce the possibility
of spontaneous communication between devices and
with the environment. This is an aspect that cannot
be neglected by both mobility models and network
simulators neither left for applications developers to
address.

Analysis of the data continues. As future work,
authors plan to analyse the data-sets of 2013 and 2014,
in particular, to investigate if some changes in mobility
patterns continue to evolve. In addition, authors plan to
use this data-set to investigate users contact patterns, in
particular, on the capability to predict future contacts.
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