
Open Source Development Tools for IMS Research (Invited
Paper)

David Waiting
david@crg.ee.uct.ac.za

Richard Good
rgood@crg.ee.uct.ac.za

Richard Spiers
rspiers@crg.ee.uct.ac.za

Neco Ventura
neco@crg.ee.uct.ac.za

Department of Electrical Engineering
University of Cape Town

Rondebosch, South Africa

ABSTRACT
The 3GPP IMS is a next generation network architecture
aimed at bringing the features and rich services of the Inter-
net to the telephony world. Traditionally telephony prod-
ucts are developed by large companies with access to the
proprietary solutions required for PSTN products. However,
the shift to a packet-switched architecture and open Inter-
net protocols has increased the developer base to include the
huge community of web-developers.

Consequently there are currently several open source soft-
ware projects that aim to provide proof-of-concept imple-
mentations and research tools for promoting the develop-
ment and adoption of IMS technologies. This work inves-
tigates the tools created by four open source IMS projects
and incorporates these tools into a practical IMS test-bed
framework. Evaluations are performed that demonstrate
the capabilities and limitations of these tools in providing
rich services to IMS users.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Packet-switching networks

Keywords
IMS, open source, testbed

1. INTRODUCTION
Since the invention of the telephone in the late 1800s there
have been few changes in the voice telephony world. Net-
work operators have thus far shown little inclination to evolve
from the status quo because they have invested huge amounts
in their current PSTN infrastructure and up until now have
reaped huge profits. Consumers, however, are becoming in-
creasingly frustrated by the limited services and exorbitant

costs of traditional telephony and have embraced technolo-
gies such as Voice over IP (VoIP), Instant Messaging (IM)
and video chat, which are all freely available on the Internet.
Web-based companies such as Skype and Google are eroding
voice revenues and turning network providers into dumb bit
pipes.

The 3GPP, having recognised the benefits of an Internet-like
architecture, are in the process of developing a new packet
switched communications framework known as the IP Multi-
media Subsystem (IMS) that is accessible from several differ-
ent connectivity access networks, including UMTS, WLAN
and DSL. In developing the IMS specifications the 3GPP
have looked to the Internet Engineering Task Force (IETF)
to provide the protocols that will enable a new service-
oriented network based on the principles of the widely pop-
ular Internet. Other standards bodies, such as TISPAN and
3GPP2, have recognised the benefits of this Internet-like ar-
chitecture and have adopted the 3GPP IMS into their own
specifications.

Protocols designed for the Internet, including SIP, Diameter
and HTTP, are used extensively in the IMS. An interesting
side-effect of this switch to Internet protocols is that the
telephony development realm, once limited to experts in SS7
and other PSTN protocols, is now open to a multitude of web
developers. The benefits of a large development base have
been proven in the Internet. The phenomenon commonly
known as Web 2.0 has resulted in a new age of community-
based websites with millions of users, often not developed
by large corporations, but rather a few college students with
an interest in web technologies. This trend has propagated
to the world of IMS where developers worldwide have be-
gun experimenting with new open source applications and
releasing them free of charge to the Internet community.

The aim of this work is to identify, investigate and evaluate
four open source tools currently available for IMS research.
These tools span various elements of the IMS architecture
including the user equipment, core network and application
server. In order to make accurate qualitative evaluations
of the tools they are incorporated into a practical test-bed
framework where they can be subjected to realistic use case
scenarios. This paper focuses primarily on the open-source
projects created as part of the University of Cape Town’s

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tridentcom 2008 March 18–20, 2008, Innsbruck, Austria
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

peri
Callout

peri
Typewriter
TRIDENTCOM 2008, 17th–20th Mar 2008, Innsbruck, Austria.
Copyright © 2011–2012 ICST ISBN 978-963-9799-24-0
DOI 10.4108/tridentcom.2008.3251

peri
Typewriter

peri
Typewriter

IMS research initiative. The projects include a client emu-
lation tool, a QoS policy control framework, an IPtv video
streaming server and a distributed video conferencing appli-
cation.

2. RELATED WORK
The IMS Communicator [9] is an open source IMS Client em-
ulator built on the JAIN SIP Reference Implementation (RI)
and the Java Media Framework API by the researchers at
PT Inovação Portugal. The IMS communicator extends the
SIP communicator project with new IMS-specific features,
such as the implementation of the AKAv1 authentication al-
gorithm, use of the IMS Public User Identity (IMPI) during
registration, subscription to the reg event package, support
for the precondition mechanism and early media capabilities.
In order to implement these features the project contributed
to the extension of the JAIN SIP RI that previously did not
support the 3GPP extensions to SIP.

The Open Source IMS Core project [8] by the Fraunhofer
Institute FOKUS is an implementation of the three IMS
core network Call Session Control Functions (CSCFs) and
the Home Subscriber Server (HSS). The CSCFs are built
on top of the well-known SIP Express Router (SER) [10]
maintained by Iptel.org, which is renowned for its reliability
and performance under high-load conditions. The HSS on
the other hand is implemented in JAVA and provides a web
user interface for the rapid provisioning of users, application
servers and initial filter criteria. The Open Source IMS Core
is a remarkably stable and reliable standards compliant IMS
reference implementation and hence is chosen to provide the
core network of the testbed framework described in this pa-
per.

3. UCT IMS CLIENT
The first IMS tool evaluated in this paper is a well-known
client emulation tool, the UCT IMS Client [11]. Made pub-
lic in November of 2006, it was the first IMS client released
to the open source community. The aim of the project is to
provide true IMS signalling, proof-of-concept implementa-
tion of several rich services, and a mechanism with which to
test other IMS network components. The aim of the project
is not to create a stable consumer grade product but rather a
platform from which new IMS enablers can be implemented,
evaluated and refined.

The implementation of the client is achieved by the use of
several free open source libraries: the oSIP and eXosip li-
braries for SIP signalling; the gstreamer framework for me-
dia coding, decoding and transport; the libcurl library for
HTTP support; the libxml library for XML parsing; and the
GTK library for the graphical user interface. The client itself
is released under the GNU Public License version 3 (GPLv3)
that allows users the freedom to modify and redistribute the
software for their own purposes. This is particularly useful
for research projects that aim to produce innovative ser-
vices that require modifications to the client software, some
of which are discussed in this paper. We now evaluate the
features of the UCT IMS Client that have allowed for the
evaluation of several interesting performance metrics.

3.1 IMS-Level Registration

Figure 1: IMS-level registration flow.

The first evaluation measures the time required for IMS-level
registration with the core network over several different ac-
cess network technologies. The IMS-level registration flow
is illustrated in Fig. 1. The User Equipment (UE) sends
an initial Register request to the P-CSCF address that is
manually configured into the client. This requires that the
UE perform a DNS look-up on the P-CSCF address before
sending the request. The P-CSCF then forward the request
to the I-CSCF that, with the help of the HSS, relays the
request to a suitable S-CSCF. In order to authenticate the
user the S-CSCF challenges the UE with a 401 Unauthorised
response, which contains a nonce value. The client inputs
the nonce value and the user credentials into the AKA al-
gorithm and generates a reply that is inserted into a second
Register request. On receiving the request with a correct
authorisation header the S-CSCF registers the user’s Public
User Identity (IMPU) and associates it to the client’s IP ad-
dress. The S-CSCF replies with a 200 OK message in order
to inform the UE that it is successfully registered on the
network. This message also serves to inform the UE of any
other IMPUs that are available to be registered by the user
and the Service-Route informing the UE which route should
be followed by all subsequent requests.

The client and the P-CSCF then both subscribe themselves
to the user’s reg event, so that they will be notified if the
user’s registration state changes for some reason. The sub-
scriptions to the reg event do not form part of the regis-
tration delay, nor does the PDP context activation for the
wireless networks. These are therefore omitted from the
measurements, however, the DNS look-ups do form part of
the registration delay. Consequently, the complete registra-
tion delay is measured from the first DNS look-up on the
P-CSCF to the time that the 200 OK response for the Reg-

ister request is received. The UCT IMS Client features a
registration delay timer that is used to conduct these exper-
iments.

The testbed framework includes terminals connected to three
different access network technologies: Fast Ethernet LAN,

Table 1: IMS Registration delay results.
LAN HSDPA EDGE

Minimum 0.21 1.13 7.05
Mean 0.31 1.57 9.39

95th Percentile 0.35 1.91 16.91
Std Dev 0.04 0.30 3.05

HSDPA and EDGE. The LAN connection is 100 Mbps du-
plex and the UE is connected directly to the P-CSCF. The
HSDPA connection offers a theoretical maximum down-link
access speed of 1.8 Mbps. The EDGE connection on the
other hand can only support a maximum down-link speed
of 236 kbps. In the case of the wireless access technolo-
gies the IMS core network is located within the UMTS core
network. This is to prevent IP routing delays through the
public Internet and therefore offers a realistic emulation of
a carrier-grade IMS implementation.

For the purposes of the experiment the UCT IMS Client
registers 100 times over each different access network with
the Open IMS Core. Table 1 shows the results of the exper-
iments measured in seconds.

3.2 IMS Call Setup Delay
The second evaluation measures IMS call setup delay. Typ-
ically, Internet SIP calls require relatively little signalling as
there are no QoS requirements and reliability is not a crucial
issue. The IMS, however, strives to offer a quality of experi-
ence equal to if not better than traditional circuit-switched
telephony [6]. Therefore, the 3GPP have stipulated a strict
call setup procedure [4] that ensures both the originating
and terminating access networks have provisioned adequate
channels in order to ensure minimal delay and packet loss,
which would negatively impact the media quality.

An Internet SIP call starts with the User Agent Client (UAC)
sending an Invite request. This request receives one or more
provisional responses from the User Agent Server (UAS) fol-
lowed by a 200 OK final response. The UAC then sends an
Ack request after which the clients begin to stream the me-
dia component of the call.

The call setup procedure for an IMS call is slightly more
complex as the SIP precondition and reliable provisional re-
sponse mechanisms are used. This results in significantly
more signalling. In fact where a successful SIP call routed
through the IMS architecture would only require 23 SIP mes-
sages, an IMS call requires a minimum of 59 messages. The
difference between the call setup procedures is illustrated in
Fig. 2. For simplicity the signalling through the core net-
work elements is not shown.

The IMS call setup starts with an initial Invite request sent
from the UAC to the P-CSCF containing a media offer. The
request is relayed to the UAS through the originating IMS
core network and possibly through a terminating network if
the two clients are located on different networks. The UAS
replies with a 183 Session Progress response with a media
response. In SIP provisional responses are usually not sent
reliably, but since the provisional response is essential to
the IMS call setup procedure it requires acknowledgement

Figure 2: Comparison between SIP and IMS call
setup procedure.

Table 2: SIP call setup delay results.
LAN HSDPA EDGE

Minimum 0.42 1.12 6.06
Mean 0.49 1.71 11.34

95th Percentile 0.55 2.29 21.84
Std Dev 0.06 0.33 7.21

in the form of a Prack message. Once the originating net-
work has provisioned suitable resources for the call the UAC
sends an Update message informing the UAS that it is ready
to start a call. If the terminating network has also provi-
sioned sufficient resources for the call the UAS replies with
a 180 Ringing response and informs the callee that there is
an incoming call. Again this provisional response elicits a
Prack from the UAC. If the callee accepts the call then the
UAS sends a 200 OK message followed by the UAC sending
an Ack. The time taken for the callee to answer the call is
an uncontrollable variable and therefore does not form part
of the call setup delay.

Measurements for the experiment are performed by the UCT
IMS Client call setup delay timer. The call setup delay is
measured from the first DNS look-up until the reception of
the 180 Ringing corresponding for the initial Invite trans-
action. The calls contain both an audio and video com-
ponent. As with the registration delay the experiments are
performed over three access networks and 100 measurements
are taken for each network. Table 2 shows the call setup de-
lays measured in seconds for Internet SIP calls and Table 3
shows the delays measured for IMS calls.

3.3 Discussion
The UCT IMS Client has demonstrated the suitability of the
different connectivity access network technologies for IMS
services. The evaluations find that the both the LAN and
HSDPA access networks provide adequate mean registration

Table 3: IMS call setup delay results.
LAN HSDPA EDGE

Minimum 0.82 3.21 20.27
Mean 1.05 3.95 27.56

95th Percentile 1.27 5.25 45.87
Std Dev 0.23 0.75 12.46

delays of 0.31 and 1.57 seconds respectively. On the other
hand, the EDGE network has a mean registration delay of
almost 10 seconds. However, as an IMS client is only ex-
pected to register with the network on start-up and period-
ically refresh its registration state this delay is not critical.

The evaluations further find that the increased signalling of
an IMS call greatly prolongs the call setup delay. The mean
HSDPA delay of 3.95 seconds is not ideal but still acceptable.
However, a mean delay of 27.57 seconds and 95th percentile
delay of 45.87 seconds clearly indicates that slow access net-
works such as EDGE provide unacceptable session setup de-
lays. Much of this delay stems from the SIP retransmission
timeouts that were originally designed for the Internet envi-
ronment and are therefore easily triggered in wireless access
networks with large round-trip delays. A possible solution
is to adjust the SIP retransmission timeouts depending on
the current access network [15].

4. UCT IPTV SERVER
The UCT IPtv server is a SIP application server that streams
up to three channels to multiple destinations. The server is
built on top of the eXosip library for SIP signalling and
the gstreamer library for media delivery and it is released
free on the Internet under the GPLv3 licence. The server is
compatible with any client that is capable of receiving and
decoding the H.263-1998 video standard and MPEG1 audio
standard. The server should not be confused with a video-
on-demand server that serves a different media stream to
each client. Its primary goal is to serve a limited number of
packet-based media streams to as many clients as possible
similar to regular digital terrestrial and satellite television
broadcasts.

The server is designed to fit tightly within the IMS archi-
tecture therefore unlike other IPtv solutions it uses SIP ex-
clusively for signalling. The benefit of this design is that
the pre-existing IMS QoS, service provisioning and charging
mechanisms can all be reused for this service, hence lever-
aging the service delivery platform that IMS provides. Fur-
thermore, this reduces the complexity of client software as
the existing SIP stack can be reused.

The IPtv server is provisioned in the HSS as an application
server. This enables the network operator to add and re-
move users from using this service by adjusting their initial
filter criteria. Users that have the IPtv service enabled in
their user profile are able to join a channel by submitting an
Invite request to the application server that includes their
preferred media IP address and port numbers for both the
audio and video components of the video stream. The IPtv
server examines the request URI and adds the user to the
appropriate channel. The server then treats the call as a
normal IMS call, except that in its response it does not sup-

Figure 3: Joining and leaving an IPtv session.

ply any media ports as it does not expect to receive media
from the client. In order to end the IPtv session the UE
sends a SIP Bye request. The IPtv server then removes the
client from the channel as illustrated in Fig. 3.

The server supports both unicast and multicast IP addresses.
For smaller network environments the clients can use uni-
cast addresses but in larger networks it is expected that
the clients should use multicast addresses, thus reducing the
network load on the server.

4.1 Access Network Capabilities
The server is able to stream video at several different qual-
ities depending on the usage requirements. For example if
the server is to be used to supply small handheld terminals
then a very low media quality can be specified. On the other
hand if the server is supplying home theatre systems then a
very high video quality is used. This video quality must be
specified when the server is initialised and does not change
on a per-user basis.

In this section we evaluate reasonable video quality settings
for the two access network technologies, LAN and HSDPA.
For each access network type the server streams three qual-
ities IPtv to the client - low, medium and high, where low is
100,000 bps average bit rate, medium 500,000 bps and high
900,000 bps. On the client side the total traffic throughput
is measured as well as the packet loss. For the purposes of
the evaluation a one minute video clip was streamed from
beginning to end and the resultant video feed at the client
side was captured using the open source Wireshark Network
Protocol Analyser. The UCT IMS Client is used to setup
and receive the IPtv session.

Theses metrics are directly linked to the quality of video
received by the client. A low traffic throughput indicates a
poor quality media stream whereas high packet loss usually

Table 4: Traffic throughput (Mbit/s) / packet losses
(%) at user equipment.

LAN HSDPA

Low Quality 0.351 / 0.00 0.350 / 0.06
Medium Quality 0.554 / 0.13 0.554 / 0.41

High Quality 0.964 / 0.07 0.965 / 0.19

Table 5: Server traffic generation (Mbit/s).
No. of Clients 1 2 4 8

Low Quality 0.35 0.70 1.40 2.79
Medium Quality 0.56 1.11 2.22 4.43

High Quality 0.97 1.93 3.86 7.67

results in lost video frames and audio disruptions. There-
fore, the administrator should choose a video quality setting
that provides a good compromise between traffic throughput
and packet loss.

4.2 Server Traffic Statistics
In some implementation scenarios the clients will not be us-
ing multicast addresses or the server may offer many chan-
nels. In both these situations the server is required to stream
several simultaneous media streams requiring a great deal of
network bandwidth.

In this evaluation we examine how the bandwidth require-
ments increase according to the number of unique video
streams being served and the quality of the IPtv sessions.
The same three video quality settings used in the previous
evaluation are streamed to a varying number of clients. The
results of this evaluation are shown in Table 5.

4.3 Server Resource Usage
The UCT IPtv server is responsible for trans-coding the
video and audio streams into the H263 and MPEG1 codecs
respectively. This along with the streaming of several media
streams places strain on the resources of the machine host-
ing the server. If the server becomes overloaded then there
is the possibility that the video will not be encoded correctly
and will result in a poor viewing experience for the clients.

In this evaluation the IPtv server was run with one, two
and three channels, each at three different quality settings.
The evaluations are performed on an Intel Pentium Dual
Core 3 GHz machine equipped with 1 GB of RAM. The
pidstat utility was used to record the CPU and memory
usage of the application. A sample was taken every second
for three minutes and the results averaged. The results of
the evaluation are shown in Table 6.

Table 6: Mean IPtv server CPU / Memory usage
(%).

No. of Channels 1 2 3

Low Quality 28.6 / 2.25 52.87 / 4.33 90.38 / 5.45
Medium Quality 32.24 / 2.61 61.86 / 4.28 92.40 / 5.75

High Quality 33.27 / 2.27 62.29 / 4.06 96.76 / 6.13

Figure 4: A screen-shot of the UCT IMS Conferenc-
ing client in a four-way video call.

4.4 Discussion
The first evaluation demonstrates that the HSDPA access
network provides comparable performance to the LAN net-
work for all the video quality settings tested, with packet loss
at less than a percent for both networks at the highest video
quality. The second evaluation shows that a linear increase
in server bandwidth is required to support new clients. Fur-
thermore, the bandwidth requirements are greatly increased
depending on the quality of video being served.

The final evaluation shows that the CPU and memory re-
source requirements of the IPtv server are more influenced
by the number of channels being served rather than the qual-
ity of video. This is due to the fact that the server requires
a large amount of resources in order to trans-code the video
sources into the media codecs that can be digested by the
clients. In a commercial environment it is expected that the
trans-coding of the video should be performed ahead of time
in order to reduce the run-time resource requirements of the
IPtv server.

5. UCT VIDEO CONFERENCING FRAME-
WORK

The IMS provides a platform for the creation of several com-
plex services that reuse the core network signalling, charging
and QoS capabilities. One such service is teleconferencing
- however, at present much research is still required in or-
der to determine the optimal conferencing network architec-
ture. The IMS specifies that signalling and media traffic are
treated separately by the network elements and are routed
on different IP paths. Thus at the core of the problem is
how to manage the two traffic types between a large num-
ber of nodes. Every conference participant must send and
receive media from every other participant thus creating a
large amount of signalling and media traffic in order to setup
even a small conference.

5.1 Architecture
There are three options for the media flow. The media can
be controlled in a distributed fashion whereby every partici-
pant sets up a duplex stream with every other participant’s
unicast IP address. Alternatively the participants can utilise

Figure 5: The UCT Conference Framework imple-
ments a distributed media and hybrid signalling
scheme.

multicast IP addresses that allow a single IP stream from a
client to be forked to several different participants, hence
conserving the upload traffic. The last option is to have
a centralised media server that multiplexes the incoming
media from each conference participant and transmits the
multiplexed media stream to all participants.

Unfortunately multicast is not extensively implemented in
Internet IP routers and can therefore only be used in cer-
tain closed environments. In order to conserve bandwidth
resources the centralised media server is an attractive op-
tion. However, this requires a dedicated media server with
ample resources as even a small conference produces a great
deal of media traffic. Therefore, in order to avoid the com-
plexities and resource costs of implementing a centralised
media server the UCT conferencing architecture implements
a distributed media model.

As with the media there are several options for the signalling
traffic. The signalling can be distributed amongst the nodes
so that all participants control the signalling to each other.
A second option is to have a focused signalling point that
handles all signalling requests.

The distributed signalling approach removes the require-
ment for a dedicated conference coordination server. Un-
fortunately this introduces the requirement that all partic-
ipants have knowledge of the other participants addresses
before the conference starts, as there is no way for partic-
ipants to automatically find out this information. The fo-
cused signalling approach solves this problem as the server
can keep a record of the current conference participants and
inform current participants of any joins or leaves. It is bene-
ficial for each participant to negotiate each session with the
other participants individually so that the network can as-
sign resources, and the two clients can use the media types
and codecs that they both support. However, with focused
signalling this is very hard to achieve without a great deal
of back-and-forth messaging and consequently, a high sig-
nalling overhead. For this reason the UCT conferencing
framework implements a hybrid signalling scheme in which
a conference participation is focused to a central server but
individual session setup is performed in a distributed man-
ner.

Figure 6: Conference signalling between three par-
ticipants and the conference coordination server.

5.2 Signalling
The conference coordination server implements the SIP con-
ference event package in order to maintain a list of con-
ference members. When a user wants to join a particular
conference they must send a SIP Subscribe request to the
conference server. The conference server adds the user to
the current list of participants. It then generates SIP No-

tify messages to all existing conference members containing
the XML-formatted SIP URI of the new user in the body of
the message.

On receiving the Notify request, the existing conference
participants each send a SIP Invite message to the new
member. The new member processes each Invite request
separately, negotiating appropriate media port numbers and
codecs. This also gives the access network opportunity to
allocate appropriate resources and to bill each session sep-
arately. The new participant replies to each new Invite

request with a 200 OK response following which media can
flow between the user terminals.

This architecture ensures that clients with lesser capabilities
can still join the conference without reducing the experience
for the other participants. For example, a client that does
not support video can still join the conference with voice
only without affecting the video streams between the other
members.

5.3 Signalling Overheads
The hybrid signalling scheme utilised by the UCT confer-
encing framework is based entirely on SIP. While the IMS
network operator benefits from this as it can now easily con-

1 2 3 4
0

20

40

60

80

100

120

140

Number of Participants

S
ig

na
lli

ng
 T

ra
ffi

c
at

 S
−

C
S

C
F

 (
kB

)

Marginal
Cumulative

Figure 7: The measured SIP signalling overhead at
the S-CSCF when a new participant joins the con-
ference.

1 2 3 4
0

20

40

60

80

100

120

140

Number of Participants

M
ed

ia
 T

ra
ffi

c
T

hr
ou

gh
pu

t a
t N

od
es

 (
kB

/s
)

Figure 8: The measured media traffic at the confer-
ence client nodes.

trol and bill for the individual sessions this does also place
extra overheads on the IMS core network.

We now evaluate the signalling overheads associated with
setting up a conference. The S-CSCF routes all messages in
the IMS architecture, therefore signalling overhead is mea-
sured at this node. Wireshark Network Protocol Analyser is
used to record all measurements. Fig. 7 shows the marginal
and cumulative signalling overhead when clients join the
conference. The traffic includes both the conference event
subscriptions and subsequent notifications to and from the
conference coordination server as well as the signalling be-
tween the individual conference participants. Note that the
marginal signalling overhead increases as each new partici-
pant joins the conference as the current participants must
all individually invite the new member.

5.4 Traffic Overheads
The distributed media flows create a large amount of me-
dia at each node. In this evaluation we measure the total
duplex media throughput on each client node for varying
numbers of conference participants. The data was collected
by Wireshark measured over a 60-second period. The media
traffic at all nodes is very similar as each node has an equal
number of incoming and outgoing streams. The mean me-
dia throughput of all nodes in the evaluation is illustrated

in Fig. 8.

5.5 Discussion
The results of the evaluations show that the marginal sig-
nalling overheads increase with every new participant that
joins the conference. This causes an exponential increase in
signalling load with every new conference member. While
the media scales linearly with every new conference partici-
pant it still places a large bandwidth burden on the confer-
encing client nodes. Thus it can be concluded that although
the framework offers several advantages in terms of simplic-
ity and flexibility it is only suitable for conference sessions
with a small number of participants. A centralised media
and focused signalling architecture is required for larger con-
ference sessions.

6. UCT POLICY CONTROL FRAMEWORK
Policy frameworks allow a network operator to have strategic
control over every aspect of the network architecture rang-
ing from resource reservation to end user experience, using
pre-defined policies. While policy control already exists at
various layers in existing networks the policies are generally
static and have little interaction with applications. As net-
works converge and the number of services increase and they
become more personalised, end to end policy co-ordination
will become critical.

Standards bodies have recognised the benefits of such a man-
agement framework to control resources and admissions in
the transport layer; most notably the 3GPP have defined
the Policy Control and Charging Architecture (PCC) [1]
and ETSI TISPAN have defined the Resource and Admis-
sion Control Subsystem [7]. These architectures specify only
logical architectures and not physical implementations; fur-
thermore the systems are highly complex and will require
significant investment to deploy in a commercial environ-
ment. Operators will find it difficult to commit the neces-
sary capital unless the systems have been tried and tested.

The UCT Policy Control Framework is a 3GPP compliant,
open source and freely distributed architecture specifically
designed for QoS Policy Control in a single IMS domain [11]
- the framework works in co-ordination with the FOKUS
Open Source IMS Core. It is largely based on the 3GPP
PCC specification and defines a Policy Decision Function
(PDF), Policy Enforcement Point (PEP), Policy Repository
and Web Management Interface. The framework provides a
flexible environment for the easy creation and execution of
policies encouraging further research and innovation in the
field.

6.1 Policy Definition
With the rapid creation of multimedia services envisaged
in the IMS environment the network dynamics will be con-
stantly changing. Consequently the framework that controls
resources and admissions needs to be flexible and adaptable
- specifically network operators need to be able to rapidly
create and add policies that govern the call admission and
policy rule creation processes.

The UCT Policy Control Framework uses the eXtensible
Markup Language (XML) to represent policies; this format

has been adopted as the method for storing policy informa-
tion in numerous IMS services. The Open Mobile Alliance
(OMA) have standardised an XML Document Management
(XDM) element [12], this element allows the efficient storage
and retrieval of XML documents from a centralised server.
The XML Configuration Access Protocol (XCAP) has been
defined to transmit the documents [13]; this protocol runs
over an HTTP connection and the signalling takes place out-
side of the IMS Core.

We adapt the format specified in RFC 3644 - Policy Quality
of Service Information Model, in order to define the pol-
icy structure [14]. Essentially this states that each policy
is made up of rules that define actions and conditions - if
a condition is met an action is taken. OpenXCAP is an
open source implementation of the XDM specification that
is used for centralised policy storage [5], any policy type can
be stored as long as the defined structural rules are adhered
to. Additionally each PDF stores localised policies; these
policies are assigned a higher priority and may override the
global policies stored in the XDM Server. In this way a hier-
archical system of policy control is created whereby the cen-
tralised policies control resources and admissions throughout
the entire network, while each PDF is responsible for its own
domain.

6.2 Policy Processing
The UCT PDF is a sub-element of the Policy and Charging
Rules Function that administers policies to control resources
and admissions; the architecture does not yet include any
charging functionality.

The element is Java based and implements the Diameter Rx
interface to an Application Function in the control layer [3].
This interface is used to pass authorisation requests to the
PDF, and to pass session requests to the control layer. A
previously undefined interface is implemented between the
PDF and the XDM Policy Server that uses XCAP to retrieve
and store policies. This interface could utilise Diameter for
more secure communication, but this would compromise the
flexibility of the system because each policy format would
require a new Diameter Application.

The UCT PDF extracts session information from Authori-
sation Requests and performs admission control and creates
dynamic policy rules for each session. These processes are
carried out by a Decision Engine (DE) that is governed by
policies. The DE contains Policy Processor Blocks; these
modular classes are specific to a policy type and allow for the
easy addition of new policies. This adaptable system allows
network operators to flexibly control resources and admis-
sions by rapidly adding and removing policies like building
blocks.

Simple domain policies are included with the freely dis-
tributed UCT Policy Control Framework by default; these
policies allow a network operator to define certain network
constraints including authorised domains, QoS classes and
codecs. It is left up to the network operator to develop more
complex and integrated policies.

For each session request, policy rules are created that define
the session and how they must be treated in the transport

Figure 9: UCT PDF logical architecture.

layer. Each session has associated IP Flows that are de-
fined by a 5 tuple and a QoS class; these are the dynamic
rules that change as the IMS sessions themselves change
and are enforced in the transport layer. The PDF moni-
tors QoS provisioning through the receipt of transport layer
events. These events result in session requests being sent
to the control layer that can result in session termination
or modification depending on the kind of event that was
triggered. Fig. 9 shows the logical architecture of the UCT
PDF.

Incorporated into the UCT PDF is a Web Management in-
terface that is based on Java Server Pages. This connects to
the XDM Policy Repository and allows for easy monitoring
and editing of existing policies. Real time network mon-
itoring is possible and dynamic IMS Session and IP Flow
policy rules can be viewed as they are created or destroyed.
The interface also manages the administration of the PDFs
and PEPs, and allows an operator to define and monitor the
network topology.

6.3 Policy Enforcement
The UCT PEP is a sub-element of the Policy and Charging
Enforcement Point that enforces dynamic policy rules in the
transport layer and monitors flow usage.

The element is Java based and implements the Diameter Gx
interface to the PDF [2]. This interface is used to receive
policy rules and to send transport layer events to the PDF.
Upon receipt of the policy rules the UCT PEP translates the
policy to transport layer specific configuration information.
Linux Traffic Control is used to create a DiffServ router with
several different service classes; this router acts as a gateway
allowing only authorised IP Flows and depending on the
definition of the policy rule the packets for each IP Flow are
marked and queued accordingly. Fig. 10 shows the logical
architecture of the UCT PEP.

Additionally the UCT PEP monitors the transport layer; a
thread is created for each authorised IP Flow that monitors
the bandwidth usage of that flow. Such feedback can be in-
corporated into future charging functionality and be used to
calculate usage statistics or to detect transport layer events.
The 3GPP defines several transport layer events [2], this
architecture supports the Loss of Bearer and QoS Exceeds
Authorisation events. A Loss of Bearer event could be trig-
gered by an unexpected client crash, while a rogue client
using more bandwidth than assigned could trigger a QoS

Figure 10: UCT PEP logical architecture.

Exceeds Authorisation event. Once triggered these events
are sent to the PDF where they are processed and can re-
sult in session modification or termination.

Fig. 11 shows the signal flow for the detection of a Loss of
Bearer event. When an unexpected client crash occurs the
UCT PEP flow monitor detects this and triggers a Loss of
Bearer event that is sent to the PDF. The PDF processes
the event and sends a session request to the Application
Function in the control layer, in this case the P-CSCF; the
P-CSCF consequently deletes the session. Once receiving a
positive response from the PDF, the UCT PEP reconfigures
the transport layer device to block the relevant IP Flows.
The P-CSCF sends an Abort Session Request to the PDF
that results in policy rules being edited and resources being
freed. Eventually a SIP BYE message is sent to the remain-
ing client to indicate the Loss of Bearer to the end user.

Figure 11: Loss of bearer signal flow.

6.4 Testbed Validation
The UCT Policy Control Framework works in co-ordination
with the Open Source IMS Core; for validation tests the IMS
Core and Policy Control Elements are run on a single Intel
Pentium 4 PC with 768Mb RAM. The OpenXCAP XDM

Table 7: Average signalling overhead in the IMS
core (kB).

Simultaneous
requests

1 2 3 4 5

With QoS
Provisioning

547.1 1175.9 1848.2 2627.3 3612.8

Without QoS
Provisioning

38.2 71.6 109.9 144.3 180.8

implementation is run on a separate Intel P4 PC, while the
UCT IMS Client runs on separate standard end point ma-
chines. By incorporating an RTP Proxy into the UCT PEP
all media plane traffic is forced through this element for flow
monitoring purposes. All testbed machines are connected
via a 100 Mb/s LAN.

The increase in core signalling when setting up a session
is examined to investigate the management overhead intro-
duced by the Policy Control Framework. The increase in
IMS core signalling when incorporating QoS provisioning
depends on the session request and number of associated IP
Flows; for a typical session with two IP Flows (one for au-
dio and one for video) IMS Core signalling increases by 30
messages during session setup (These messages include ad-
ditional Diameter requests and XCAP look-ups). Our hy-
pothesis is that this traffic increase will be not be critical
because the signalling is internal to the core and does not
cause additional round trip delays - however with multiple
simultaneous session requests it could become problematic.

Table 7 shows the signalling overhead at the IMS Core and
Policy Control PC both with and without QoS provisioning
enabled, ranging from a single session request to 5 simulta-
neous session requests. Signalling traffic was measured on
all reference points between IMS Core elements and Policy
Control elements. This gives an indication of how core sig-
nalling is affected when incorporating QoS provisioning. An
overall increase in signalling overhead by roughly one order
of magnitude is observed when utilising the Policy Control
Architecture, it is interesting to note that the percentage
increase in signalling overhead increases in proportion with
the number of simultaneous session requests.

0 2 4 6 8 10 12
0

100

200

300

400

500

600

Time (s)

C
or

e
T

hr
ou

gh
pu

t (
kB

/s
)

Single request no QoS
Single request with QoS
5 simultaneous requests no QoS
5 simultaneous requests with QoS

Figure 12: IMS Core throughput with and without
QoS Provisioning.

Fig. 12 shows the throughput over 12 seconds at the IMS
Core and Policy Control PC with and without QoS provi-
sioning enabled for a single session request and for 5 simul-
taneous session requests. Signalling traffic was measured on
all reference points between IMS Core elements and Policy
Control elements. Again the order of magnitude core traffic
increase is observed when provisioning QoS; furthermore it is
clear that multiple session requests take significantly longer
to be processed. In a commercial environment one could ex-
pect several thousands of session requests per second, such
an increase in core signalling could cause an unacceptable in-
crease in session setup delay. This problem could be further
exasperated by increasing the geographical distance between
the core elements involved. Further study is needed to de-
termine the full effect of simultaneous QoS enabled session
requests on session setup delay.

7. CONCLUSIONS
Four open-source IMS projects have been discussed and anal-
ysed. The UCT IMS Client provides a comprehensive emu-
lation environment for the creation and deployment of IMS
services. The UCT IPtv server is a platform for further in-
vestigation into IMS video streaming, while the UCT Con-
ferencing Framework examines different teleconferencing so-
lutions in the IMS context. The UCT Policy Control archi-
tecture defines a flexible environment for the easy creation
and execution of policies that control network resources.
These tools have been incorporated into a practical IMS
test-bed based on the FOKUS Open Source IMS Core where
they have been subject to real world testing and validation.

It is the intention of these open source initiatives to con-
tribute to IMS development and encourage innovation in the
field through the creation of open source and freely available
practical development tools. As such the paper has shown
both the capabilities of these tools as well as the limitations
thus providing a relevant point of departure for future re-
search in these fields.

8. REFERENCES
[1] 3GPP. TS 23.203 Policy and Charging Control

Architecture. March 2007.

[2] 3GPP. TS 29.212 Policy and Charging Control over
Gx reference point. 2007.

[3] 3GPP. TS 29.214 Policy and Charging Control over
Rx reference point. 2007.

[4] 3GPP. TS 23.218 IP Multimedia (IM) session
handling; IM call model; Stage 2. 2008.

[5] Mircea Amarascu. OpenXCAP.
http://www.openxcap.org/.

[6] G. Camarillo and M.A. Garcia-Martin. The 3G IP
Multimedia Subsystem (IMS). John Wiley and Sons,
2nd edition, 2006.

[7] ETSI TiSPAN. ES 282 003 Resource and Admission
Control Subsystem (RACS) Functional Architecture.
2006.

[8] Fraunhofer Institute FOKUS. Open Source IMS Core.
http://www.openimscore.org/.

[9] PT Inovacao. IMS Communicator.
http://imscommunicator.berlios.de/.

[10] Iptel.org. SIP Express Router.
http://www.iptel.org/ser/.

[11] University of Cape Town. UCT IMS Client.
http://uctimsclient.berlios.de/.

[12] Open Mobile Alliance. PoC XDM Specification version
1.0.2. September 2007.

[13] J. Rosenberg. RFC 4825 - The Extensible Markup
Language Configuration Access Protocol. May 2007.

[14] Y. Snir, Y. Ramberg, J. Strassner, R. Cohen, and
B. Moore. RFC 3644 - Policy Quality of Service
Information Model. November 2003.

[15] D. Vingarzan and P. Weik. IMS Signaling over
Current Wireless Networks: Experiments Using the
Open IMS Core. IEEE Vehicular Technology
Magazine, 2(1):28–34, March 2007.

