A Case Study in Testing a Network Security Algorithm

Dr. Carrie E. Gates
CA Labs, CA
Islandia, NY_11749
carrle.gates@ca.com

ABSTRACT

Several difficulties arise when testing network security algorithms.
First, using network data captured at a router does not guarantee
that any instances of the security event of interest will be captured.
Similarly, if the event of interest is not detected, this does not guar-
antee that it does not exist in the captured data. Further, such net-
work data is often not publicly available, making comparisons with
other detectors difficult. On the other extreme, purely simulated
data can be made publicly available and can provide guarantees
that the event of interest exists in the data set. However, simu-
lated data often has unintended artifacts and may also incorporate
the biases of the particular simulator. In this paper I describe an
emulation approach that takes advantage of captured data while us-
ing the DETER network to generate realistic traffic for the event of
interest. The problem domain was described in terms of seven vari-
ables, where the DETER network provided a flexible medium for
examining the complete problem domain. The results of a set of ex-
periments using this approach are provided, along with regression
equations that describe the expected true and false positive rates.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: General—Security and
protection

Keywords

Network Security, Testing

1. INTRODUCTION

Testing software properly in order to demonstrate that it performs
as expected is a very time-consuming and difficult process. How-
ever, in general the inputs, outputs, and expected behaviour are
known before the software is deployed. In the case of software
intended to perform security functions, this may not be the case.
This is especially true of security algorithms that are expected to
detect security events on a host or network, such as intrusion or
anomaly detection systems, worm detection algorithms, and be-
havioural analysis systems.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TRIDENTCOM 2008, 17th— 20th Mar 2008, Innsbruck, Austria.
Copyright © 2011- 2012 ICST ISBN 978-963-9799-24-0

DOI 10.4108/icst.tridentcom.2008.3220

Testing security detection algorithms, particularly ones that use net-
work data as input, is complicated because the input can be ex-
tremely variable. Network traffic varies considerably by time of
day, time of year, type of network (e.g., university, government,
corporation), size of network, and enforced securty policies. Fur-
ther, network traffic is continually evolving as new applications are
developed. Even assuming no malicious data is present in the net-
work and testing the algorithm purely for false positives, it is not
possible to test against every possible combination of factors given
the variability in possible deployment environments and of network
traffic itself.

This situation is further complicated once one includes the security
events of interest, as the security events themselves can also be
extremely variable. This variability is expressed in the event (for
example, is it a slow-scanning or fast-propagating worm?) and in
the resulting network traffic. For some detectors (such as intrusion
or anomaly detection systems), the number of different types of
events alone that the system should be tested against in order to
determine its detection capabilities is prohibitive.

The two approaches that are most commonly used for testing net-
work security algorithms are simulation (particularly the use of the
Lincoln Labs [8] dataset) and network traces [2]. Simulation has
the advantage that, if the variables required can be identified, the
variability can be included in the dataset and the algorithm tested
against it. However, a simulation may not necessarily be repre-
sentative of actual data and may contain unintended biases. While
network traces do not have this issue, it cannot be guaranteed that
they contain the events of interest, nor is the location of such events
known (thus making false negatives difficult or impossible to de-
termine). While this can potentially be resolved through the use of
a red team to perform security experiments against the monitored
network, this is generally not a viable option due to both resource
requirements and legal limitations.

In this paper I present a case study in the use of an emulation ap-
proach to solving the problem. Background data is obtained us-
ing network traces. The security events of interest are performed
on the DETER network, and the network traffic captured. These
two datasets are then combined to create a single set that con-
tains known (labeled) security events. I first describe the usual ap-
proaches to testing network security algorithms in Section 2, along
with the limitations of both appraoches. I then descibe the emula-
tion approach that I use for testing network security event. I present
a case study using this approach on the detection of co-ordinated
scans, which I describe in detail in Subsection 4.1. A brief descrip-
tion of the detection algorithm tested is presented in Subsection

peri
Callout

peri
Typewriter
TRIDENTCOM 2008, 17th–20th Mar 2008, Innsbruck, Austria.

Copyright © 2011–2012 ICST ISBN 978-963-9799-24-0

DOI 10.4108/icst.tridentcom.2008.3220

peri
Typewriter

peri
Typewriter

4.2. Details on how the testing was performed and the DETER
network are provided in Subsection 4.3, demonstrating the emula-
tion approach. The testing results are outlined in Subsection 4.4,
indicating that the emulation appraoch is valid. Some concluding
remarks are provided in Section 5.

2. EVALUATION METHODOLOGIES

Traditional intrusion detection research has not focused on devel-
oping appropriate evaluation methodologies. The result is that the
capability of detection algorithms has tended to be presented in
terms of either the Lincoln Labs dataset [8] or the use of propri-
etary network traces accessible only to the authors of a particular
system. As noted by Athanasiades et al. [2], the result is that the
“ad-hoc methodology that is prevalent in today’s testing and evalu-
ation of network intrusion detection algorithms and systems makes
it difficult to compare different algorithms and approaches.” The
two appraoches can be summed up as using either real data or sim-
ulation, and both of these approaches are discussed in more detail
below, along with a third option — emulation — that is less widely
used.

2.1 Real Data

The use of real data consists of the collection of network traces
from some network. Due to privacy and anonymization issues,
these traces are often not made available to the general public, but
rather remain proprietary to those authors who have negotiated trust
relationships with the custodians of the data. Many researchers are
not able to even develop these trust relationships due to legal issues
surrounding data access.

The benefits of using such a data set is that there is no bias in the
data, which can occur in other environments, as discussed below.
Thus one can have some confidence in the predictive capabilities of
their algorithm in a deployment setting.

However, there are several limitations to using real data. First, such
data is often limited due to privacy concerns, and consists at most
of network flows or header information, and rarely of full packets.
Additionally, such data sets are not labeled. That is, one does not
know what attacks are in the data, nor where those attacks occur.
There is no control over what attacks are present, and so some por-
tions of a detector may remain untested. As the presence of attacks
are not known a priori, the false negative rate cannot be established
as not detecting a particular attack might occur because the attack
was not present, or it might occur because the detector failed to find
the attack(s). Additional problems caused by the lack of labeling
can be found when one is dealing with anomaly detectors, which
often require either labeled or clean training data in order to detect
later anomalies or attacks.

Another difficulty from using actual network traces is that the re-
sults obtained are not representative of other environments. This
was observed by Maxion and Tan [10] in the context of anomaly
detection. They noted that, even when a detector has been retrained
for a new environment, the same detector will not achieve the same
performance given this different environment. They go on to state
that “This is in absolute contrast to current practice” which assumes
that results obtained on one network are transferable to other net-
works. This indicates that the results obtained for two different
detectors can not be compared unless both detectors were tested
using the same network traces. However, when real network traces
are used, this is often not possible as the traces are largely propri-
etary in nature, as discussed above.

2.2 Simulation

A second option when testing security algorithms is simulation. In
this case, network traffic, including the malicious behaviour to be
detected, is simulated and then the algorithm is tested against this
traffic.

There are three advantages to simulating network traffic. The firstis
that any simulated data can be released for public use. Thus any two
systems can be tested using the same environment and then their
performance can be compared objectively. Secondly, simulating
data provides a large amount of control over the environment. Thus
guarantees can be made, such as that the traffic contains particular
attacks. Further, as all of the attacks are known, they can be labeled,
and thus accurate true and false positive and negative rates can be
calculated. The third advantage is that there are no privacy issues
or limitations on the data, and thus payload can also be simulated
and used for those algorithms that require it.

However, simulated network traffic has distinct disadvantages. The
first is that the simulation will not necessarily be representative of
actual network traffic patterns. As noted by Paxson and Floyd [13],
network traffic is difficult to simulate due to its self-similar nature.
Simulating payload may be even more difficult. Further, biases
can unintentionally be added to the simulation. For example, if
one is simulating a particular attack and has assumptions on how
that attack will appear, then these assumptions, which may not be
correct, will be incorporated into the simulation.

One (largely) simulated data set was developed by MIT’s Lincoln
Labs in 1998 [8], and is still widely used. Ths data set was created
with the express purpose of comparing different anomaly detection
approaches. It consisted of simulated legitimate traffic that was
modeled from real network traces captured at an Air Force base.
Attacks were then performed in an isolated environment and the
traffic from these were injected into the simulated traces. This data
set was later critiqued by McHugh [11] who found that, in gen-
eral, the traffic was too well behaved. For example, there was no
Internet background radiation [12] present. Further, the data rates
used were not indicative of a network of the size being used in the
simulation, but there were much fewer traffic flows than would be
expected. Additionally, the security events injected into the simu-
lated traffic did not represent the actual frequency of attacks. For
example, there were only a few scans present in the data, yet scan-
ning is a fairly common activity. The Lincoln Labs data set was
later analyzed further by Mahoney and Chan [9] who compared
this data set with a real network trace. They found that the Lincoln
Labs data exhibited regularities that were not present in real data.
For example, TCP SYN packets in the simulated data always had
exactly four option bytes, whereas in the network traces this value
ranged from zero to 28. They concluded that such regularities could
affect the training or testing of an anomaly-based security detector.

3. EMULATION APPROACH

Simulation has a definite advantage in that it provides labeled data
and that the characteristics of the attack or network can be con-
trolled. I aim to maintain these advantages while using real network
traces. In order to achieve this I perform the attacks on a network
testbed, capturing the resulting traffic for analysis. By doing this I
can control exactly the characteristics of the attack. This step is the
same as that performed by Lincoln Labs in generating their attack
data [8], however they generated their attacks considering only a
single network. Given the flexibility of network testbeds, multiple
network configurations can be examined (based on the availability

of network traces, which is discussed further below). Further, any
characteristics that can be controlled in an attack (such as the num-
ber of attacking hosts or the attacking algorithm) can be varied so
that a detector can be tested in a systematic manner.

To maintain the “realness” of actual network traces, actual network
traces are used for background data. Ideally, traces are captured
from multiple networks that are controlled for the characteristics of
interest. For example, traffic might be collected from both /24 and
/16 networks. The attack data that was captured on the testbed is
then injected into the network traces, resulting in a labeled data set
containing actual network traffic and actual attack data, yet provid-
ing attacks that meet the desired characteristics to allow for a sys-
tematic testing of a security detector. It is important that traffic at
least be collected over a long period of time, if multiple networks
are not available, so that the network traffic used for background
noise can be varied across tests. Otherwise a detector has only been
tested in a single environment, and no statements can be made as to
its generalizability to other networks that potentially have different
noise characteristics that might affect its detection accuracy.

There are three limitations to this emulation approach. The first
is that it is very time-consuming, requiring attention to detail and
the running of multiple experiments. However, this approach is
still not as time consuming as generating a reasonable simulation,
nor as locating and labeling attacks in network traces. The second
limitation is that an assumption is made that the network traces used
for background noise do not contain any instances of the security
event of interest. If such events are present, then either the detection
rate will be incorrect (if the event was not detected when present)
or the false positive rate will be incorrect (if the event was detected
but considered as not being a true event). Finally, this approach
may not work with all detectors. For example, intrusion detection
systems aim to detect multiple types of events, which may result
in too many different security events to fully examine its detectio
capability. Rather, this approach is geared to testing detectors that
focus on a single type of event.

A potential fourth limitation si also present and is related to the
network traces used for background traffic. An assumption is made
that the available network traces contain traffic at the granularity
required for the security detector. In practice, this may not be
true. For example, it is very difficult to acquire full-packet net-
work traces due to privacy, and potentially legal, concerns. How-
ever some detectors, such as signature-based intrusion detection
systems Snort and Bro, operate at this level. Thus it might not
be possible to use this testing approach if the appropriate network
traces are not available.

In the next section I provide a case study demonstrating the useful-
ness of an emulation approach to testing a network security detec-
tor. In this case, I was able to systematically examine a detector’s
performance by controlling the relevant attack and network vari-
ables, generating a model of the detector’s performance that should
indicate its accuracy given a new attack or network.

4. CASE STUDY

A case study is presented in this section that indicates how the emu-
lation approach can be used to test a security detector. The problem
domain for which the detector was developed — that of detecting
co-ordinated scans — is presented first. This is followed by a brief
description of the detection algorithm, presented in order to demon-
strate the variables that might impact on its detection capability.

The emulation data generated, based on a combination of attacks
generated on a testbed and actual network traces, is described with
a focus on how the variables that might affect the detector were
determined and varied. The last subsection provides a brief sum-
mary of the results obtained, demonstrating that the capabilities of
a security detector can be modeled when examined in a systematic
fashion, and that this model implies how the detector will perform
in other circumstances.

4.1 Problem Domain
The hypothesis that was tested was that it was possible to detect the
presence of co-ordinated scanning activity.

Scanning consists of a series of probes against a target system or
network, where a probe is a reconnaissance activity aimed at a sin-
gle target. A target here could be a single host, or a particular ser-
vice on a particular host. Reconnaissance activity consists of the
attempt to determine if the target exists. For example, someone
could send an ICMP ping to a particular host. In this case, the ping
is the reconnaissance activity and the host is the target. Alterna-
tively, someone could send a single SYN packet to port 80 on a
particular host. Here the reconnaissance activity is the attempt to
determine if a web server is present on that host. When an adver-
sary probes multiple targets, this is considered to be a scan.

Staniford et al. [15, 14] defined four types of scans: vertical, hori-
zontal, strobe and block. A vertical scan consists of scanning mul-
tiple ports on a single host, where the aim is to find a weakness in
that particular host. A horizontal scan was a scan against a single
service across multiple hosts, such as scanning a network for the
presence of web servers. Scanning multiple services across mul-
tiple hosts, such as scanning for hosts running both http and ssl
services, was called a strobe scan, while a block scan consisted of
scanning all ports on all hosts.

Staniford et al. [15, 14] went on to define stealthy scans as scans
that were designed to evade detection. One approach to doing this
was to scan slowly enough that the detection system did not cor-
relate the activity. A second approach, distributed scanning, con-
sisted of using multiple hosts to each scan a portion of the target
space.

In this paper I use the term co-ordinated scanning to represent the
co-ordinated use of multiple sources to scan a target, where each
source scans a portion of the target space. A distributed scan, by
comparison, consists of multiple hosts scanning a target space, but
where there is no co-ordination between the hosts. An example of
a distributed scan is the case of Stumbler, described by Intrusec as
a passive peer-to-peer distibured port scanner [7].

4.2 Detection Algorithm

The algorithm developed to detect the presence of co-ordinated
scans focused on scans performed against a network — either hori-
zontal or strobe scans. It made the assumption that a scan detection
system was already in place to monitor the target network, and that
the scans performed as part of the co-ordinated activity are detected
by that system. Thus the input to the algorithm is the set of detected
scans over some period of time. In particular, the algorithm requires
for each scan the source of the scan and each scan target (IP/port
pair).

Given this input, the algorithm was inspired by the set covering
problem, where the goal is to determine if there is some subset of

the scans that, when combined, cover the same port or ports across
a contiguous portion of the network. The set covering problem
consists of determining the minimum number of sets required to
cover an entire space. In contrast, this algorithm focused finding a
set of sets (scans) such that the coverage of the space (network) was
maximized while the overlap between sets (scans) was minimized.
This algorithm is described in detail by Gates [4].

There are three variables that are controlled by the administrator
who is using this algorithm: scan window, coverage and overlap.
The scan window refers to the number of scans that are input for
analysis to determine if any co-ordinated scans are present. Cov-
erage refers to the percentage of the target network that the adver-
sary has scanned. The administrator can specify if he only wants
to detect those adversaries who have scanned the entire network,
or some minimum portion of it. Overlap refers to the amount
of overlap between the scans. This variable was added to ensure
that the adversary could not avoid detection by having sources that
scan overlapping targets. The administrator can set the maximum
amount of overlap he expects an adversary to use.

4.3 Generating Test Data Sets

The DETER network', which is based on Emulab software® [16],
is a testbed that is focused on supporting network security research.
Figure 1 demonstrates a typical network setup for testing the secu-
rity algorithm described in Subsection 4.2. In this case there are
five agents (scanning clients), one handler (who controls the five
agents), two hosts emulating a /16 network, and a monitoring host
positioned between the scanning hosts and the scanned network.
The monitoring host was running tcpdump to capture all of the net-
work traffic generated by the scanning hosts.

The algorithm being tested could be reasonably varied in seven dif-
ferent dimensions. The first three are coverage, overlap and scan
window, which are controllable by the security administrator and
discussed in Subsection 4.2. The adversary can also choose partic-
ular scan characteristics that might affect the detection capability
of the algorithm, such as the number of sources involved in the co-
ordinated scan, the number of ports being scanned, and the scan-
ning algorithm being used. The scanning algorithm refers to the
algorithm used to distribute the scan destinations amongst the scan-
ning hosts (two algorithms were available for these tests). The last
variable is the size of the network being scanned, as the detection
capability might be different between, for example, a /24 network
and a /16 network. In this case, the network size was treated as a
discrete value, with only /24 and /16 networks being considered.
This limitation was placed on th data due to the characteristics of
the available network traces.

The extreme values for each of the seven variables were determined
(e.g., for the number of sources the values ranged from two to 100).
Using just the two extreme values for each variable resulted in 128
possible combinations. However, one of the scanning algorithms
did not have the capability to generate overlap between the scan-
ning sources, and so the actual final value was 96 combinations.
Thus experiments were performed using these 96 combinations. In
addition, 20 combinations were randomly chosen from within these
ranges where possible. (Note that the choice of scanning algorithm
was discrete, with only two choices, as was the choice of network
size.) Network traffic was collected from running these combina-

http://www.isi.edu/deter/
http://www.emulab.net/

Figure 1: Co-ordinated port scan DETER set up with 5 agents,
1 handler and a /16 subnet.

tions. The final result was 116 different data sets consisting of scan
traffic (collected using tcpdump), where the scans met the speci-
fied conditions. Thus the scans used for testing the detector were
generated in a systematic manner and generally represent the more
extreme cases, thus testing the limitations of the detector.

Network traffic flows were collected from several live networks us-
ing the SiLK [5] suite of software. More specifically, traffic was
collected from four /16 networks during a time period of approxi-
mately two weeks, and traffic was collected from another four /24
networks during a one month time period. Summary scan infor-
mation was extracted for each network using the scan detection
approach outlined by Gates et al. [6]. An assumption was made
that no co-ordinated scans were present in this background traffic.
The resulting traffic capture was used as background traffic for the
116 scan combinations identified earlier. Care was taken to ensure
that the background traffic selected for each of the scans was dif-
ferent for each data set. This was done by first randomly choosing
the traffic collected from one of four different networks (of the ap-
propriate size), and then by randomly choosing a starting location
within the background traffic. The number of noise scans required
(varied from 100 to 1000 for this particular set of tests) were then
collected from that point forward into the scan data.

4.4 Testing Results

I analysed the results from our experiments using detection rate and
false positive rate as described by Axelsson [3]. Here the detection
rate is the probability of generating an alert, A, given that there was
an event, I, P(A|I). The false positive rate is the probability that
there was an alert given that there was no event, P(A|-1).

The detection algorithm was run on each of the 116 data sets de-
scribed in Section 4.3 with the detection rates and false positive

rates calculated for each data set. The detection rate was defined
as the number of sources correctly identified as being part of a
co-ordinated scan, while the false positive rate was defined as the
number of sources that were incorrectly identified as being part of
a co-ordinated scan. The number of co-ordinated scans detected
were not taken into account. Thus the detection rate might be 100%
with a 0% false positive rate for a particular data set, yet the single
co-ordinated scan was actually detected as multiple co-ordinated
scans. Cases such as this are not analyzed separately in this paper.

Both the detection rate and the false positive rate were modeled
using regression equations. In the case of the detection rate, the
data demonstrated a nearly bimodal distribution, with 96 of the 116
co-ordinated scans either being detected perfectly or not at all. The
remaining 20 were determined to be detected if at least 50% of
the scanning sources were correctly detected. Due to the bimodal
distribution, a logistic regression was used, resulting in a model
of the detection rate that returned a probability that scans with a
particular characteristic will be detected:
. e¥
P(co-ordinated scan is detected) = A
14 e¥

where g is a weighted summation of the seven variables identified
in Subsection 4.3. The scanning algorithms were mapped to either
zero or one, while the network size was represented by the number
of hosts in the subnet (256 or 65536). The number of variables
was reduced using the Akaike Information Criterion [1], indicating
those variables that contributed most to the detection rate of the
algorithm. The sign on the weight for each variable indicates if an
increase in the value of the variable causes an increase or decrease
in the detection rate.

&)

The false positive rate was similarly modeled, however it used a
linear regression rather than a logistic regression (as the false posi-
tives did not demonstrate a bimodal distribution). The actual results
and modeling approach are described in more detail by Gates [4].

This subsection demonstrates that testing an algorithm in a system-
atic manner can result in a model of how that detector performs.
Gates [4] demonstrates in detail how well the model performs at
predicting the detector’s performance in previously unseen circum-
stances through further testing, and further demonstrates how this
approach can be used to compare detectors. A complete descrip-
tion of these results is outside the scope of this paper, but is briefly
provided here to demonstrate the power of using an emulation ap-
proach to testing network security detectors.

S. CONCLUSIONS

In this paper I described the two appraoches currently used in test-
ing network security detectors: simulation and real network traces.
Simulation provides the most control over the test environment,
however it is difficult to simulate network traffic [13] and previous
attempts [8] have had several flaws [11, 9]. Network traces have the
advantage of containing actual data (and so eliminate the problems
associated with simulation), however the data is not labeled, and so
it is not possible to determine the detection rate as the number of
events in the data are not known. Additionally, the events of inter-
est may not even be present in the captured traffic. Further, testing
in a single environment, be it simulated or real, does not indicate
how well an algorithm will perform given a different environment.

I presented an emulation approach to testing network security de-
tectors that is based on a combination of actual network traces and

attacks captured from a network testbed. This combined appraoch
provides both realistic background traffic and realistic attacks. It
addresses the disadvantage of simulations not having realistic data,
as well as the disadvantage of network traces not containing labeled
attacks. However, this approach is particularly suited to testing de-
tectors designed for a single event, rather than, for example, generic
intrusion detectors.

This approach was demonstrated by testing a co-ordinated scan de-
tector using actual network traces and co-ordinated scans captured
from the DETER network security testbed. The results were anal-
ysed, demonstrating that they could be modeled using regression
equations. The use of the emulation appraoch allows the researcher
to test their algorithm in multiple environments in a controlled and
systematic fashion. Further, the use of regression equations pro-
vides the potential to extrapolate from the emulation to previously
unexplored environments, indicating how the detector might per-
form given a new network or attack characteristic.

6. REFERENCES

[1] H. Akaike. Information theory as an extension of the
maximum likelihood principle. In B. N. Petrov and F. Csaksi,
editors, Proceedings of the 2nd International Symposium on
Information Theory, pages 267 — 281, Budapest, Hungary,
1973.

N. Athanasiades, R. Abler, J. Levine, H. Own, and G. Riley.
Intrusion detection testing and benchmarking methodologies.
In Proceedings of First IEEE International Workshop on
Information Assurance, pages 63 — 72, Darmstadt, Germany,
March 2003.

S. Axelsson. The base-rate fallacy and the difficulty of
intrusion detection. ACM Transactions on Information and
System Security, 3(3):186 — 205, 2000.

C. Gates. Co-ordinated Port Scans: A Model, A Detector and
an Evaluation Methodology. PhD thesis, Dalhousie
University, Feb 2006.

C. Gates, M. Collins, M. Duggan, A. Kompanek, and

M. Thomas. More NetFlow tools: For performance and
security. In Proceedings of the 18th Large Installation
Systems Administration Conference (LISA 2004), pages
121-132, Atlanta, Georgia, USA, November 2004.

C. Gates, J. J. McNutt, J. B. Kadane, and M. Kellner. Scan
detection on very large networks using logistic regression
modeling. In Proceedings of the IEEE Symposium on
Computers and Communications, pages 402 — 407,
Pula-Cagliari, Sardinia, Italy, June 2006.

Intrusec. Intrusec alert: 55808 trojan analysis.
http://www.intrusec.com/55808.html, 2003.
Last visited: 1 July 2003.

R. P. Lippmann et al. Evaluating intrusion detection systems:
The 1998 DARPA off-line intrusion detection evaluation. In
DARPA Information Survivability Conference and
Exposition, volume 2, pages 12 — 26, 2000.

[9] M. V. Mahoney and P. K. Chan. An analysis of the 1999
DARPA/Lincoln Laboratory evaluation data for network
anomaly detection. In Proceedings of the Sixth International
Symposium on Recent Advances in Intrusion Detection,
pages 220 — 237, Pittsburgh, PA, USA, September 2003.

[10] R. A. Maxion and K. M. Tan. Benchmarking anomaly-based
detection systems. In Proceedings of 2000 International
Conference on Dependable Systems and Networks, pages
623 — 630, June 2000.

[2

—

3

—

[4

—

[5

—

[6

—_

[7

—

[8

—

(1]

[12]

[13]

[14]

[15]

[16]

J. McHugh. Testing intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system
evaluations as performed by Lincoln Laboratory. ACM
Transactions on Information and System Security, 3(4):262 —
294, 2000.

R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and

L. Peterson. Characteristics of internet background radiation.
In Proceedings of the 4th ACM SIGCOMM Conference on
Internet Measurement, pages 27 — 40, Taormina, Sicily, Italy,
October 2004.

V. Paxson and S. Floyd. Why we don’t know how to simulate
the internet. In Proceedings of the 29th conference on Winter
simulation, pages 1037-1044, Wisconsin, 1997. ACM Press.
S. Staniford, J. Hoagland, and J. McAlerney. Practical
automated detection of stealthy portscans. Journal of
Computer Security, 10(1):105 — 136, 2002.

S. Staniford, J. A. Hoagland, and J. M. McAlerney. Practical
automated detection of stealthy portscans. In Proceedings of
the 7th ACM Conference on Computer and Communications
Security, Athens, Greece, November 2000.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation, pages 255 —
270, Boston, MA, USA, December 2002. USENIX
Association.

