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ABSTRACT
Evaluating the user satisfaction with Next Generation Net-
work applications requires, amongst others, to carefully study
the impact of various access networks with differing perfor-
mance characteristics. This paper presents the concept and
implementation of a network emulator for IP-based packet-
switched wired and wireless access technologies based on
measurement results obtained in real access networks. We
present a generic modeling process which consists of three
stages: (1) metric and measurement methodology selection,
(2) measurements in real access networks, and (3) access net-
work emulation based on the measurement results. Whereas
the proposed modeling concept is generic and can be applied
to any metric, the implementation part of this paper focuses
on changes to the Open Source Linux WAN emulator NetEm
which are required to accurately emulate one-way delay for
access networks. We propose two distinct emulation options
and compare one-way delay measurement results for real
access technologies against the emulated ones, emphasizing
limitations and pitfalls related to access network emulation
in general.

Categories and Subject Descriptors
C.2.1 [Computer]: Communication Networks—Network Ar-
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chitecture and Design; C.4 [Computer]: Performance of
Systems; I.6.5 [Computing Methodologies]: Simulation
and Modeling—Model Development

General Terms
Measurement, Performance, Verification, Design

Keywords
IMS, NGN, Emulator, Access Network, UMTS, 3G

1. INTRODUCTION
After an extensive period of conceptual preparation, packet-
switched Next Generation Networks (NGN) are currently
becoming reality, represented by two main candidate archi-
tectures: the IP Multimedia Subsystem (IMS) standard-
ized by 3GPP and the NGN architecture standardized by
ETSI/TISPAN. The decision to publish IMS and NGN spec-
ifications free of charge has stimulated the development of
several Open Source NGN activities, most notably the Open
Source IMS project [6] due to Fraunhofer FOKUS which is
supported by a huge worldwide community of users and de-
velopers.

Given the enormous technical excellence and market pene-
tration of current 2G and 3G mobile networks, success or
failure of Next Generation Networks will depend primar-
ily on their ability to provide satisfactory user experience.
Therefore, developers will have to test future NGN applica-
tions with respect to user acceptance, including underlying
middleware, signaling, and media protocols. As NGNs are
supposed to be access agnostic, this in particular will require
to carefully study the impact of various packet-switched
wireless and wired access technologies, with significantly dif-
fering performance parameters like delay, jitter or loss rate.

In practice, however, 3G access networks for Open Source
IMS testbeds are commonly replaced by wired Ethernet links
mainly due to cost considerations. As far as evaluations are
concerned, this may lead to a significant decrease of the
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level of confidence in measurement results. Therefore, in
this paper we present our concept and implementation for a
measurement-based access network emulation which can be
used as a highly accurate replacement for any current and
future IMS access network. Following [1] and [2], we use
a three-step approach for access network modeling, starting
with a metric selection process based on user requirements
which are matched against the IETF IP Performance Met-
rics (IPPM) framework [4]. During this process we end up
with a set of metrics which is capable to capture the tar-
geted access network behavior at a sufficiently high level of
accuracy. This is used as an input to the access network
measurement process which implements methodologies to
measure parameter values (or ”singletons” in IPPM termi-
nology) for the chosen metrics in real networks. The mea-
surement methodologies should be sufficiently generic in na-
ture so that identical metric assessment procedures can be
applied to a series of existing physical access networks. The
resulting measurement data are pre-processed to generate
either empirical data (e.g., tables containing delay as a func-
tion of packet size) or analytical models. Finally, appropri-
ate access network emulators (or simulators) use the
resulting empirical configuration data or analytical models
for delaying packets on specific links. Ideally, access net-
work emulators (or simulators) are inserted transparently
into the testing path, connected to all systems under test
through low-delay links. A typical use-case which we will
present later on is a bridge connected by means of Ethernet
wires into the testing path.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces basic concepts of metric selection using
the IPPM model and presents our measurement methodol-
ogy for the specific metric ”one-way delay”. For this metric,
section 3 illustrates the measurement process using results
from a live UMTS network. Based on these measurement
results, section 4 presents two distinct access network emula-
tion alternatives which we have implemented for an existing
Open Source emulator, before section 5 discusses limitations
which are common to payload-dependent delay emulators.
Section 6 concludes the paper with a brief summary and
outlook.

2. METRIC SELECTION AND MEASURE-
MENT METHODOLOGY

Selecting suitable metrics is basically a matter of two dom-
inating aspects, i.e. the pronounced asymmetrical nature
of many wired and wireless access networks, and the asym-
metrical structure of typical client-server-based application-
layer protocols, where ”protocol symmetry” refers to both
request-to-reply message count and message size ratios be-
ing close to 1. While, e.g., round-trip delay (RTD) might be
a valid metric for the delay of highly symmetrical protocols
over a specific wireless link, asymmetrical higher-layer pro-
tocols increase the complexity of simulation or emulation
models because of their varying message size and varying
ratio for requests and replies. Thus, for instance the delay
between sending a Session Initiation Protocol (SIP) request
and receiving the corresponding reply over an asymmetrical
wireless link depends significantly on the sizes of both re-
quest and reply, as well as on whether the request was sent
in the uplink and the response was received in the downlink
or vice versa. This is particularly true in the case of huge

presence- or geo-information XML bodies sent over the up-
link as response to small SIP request messages which have
been received in the downlink.

Summarizing, the focus of metrics selection for access net-
work measurements is on capturing the asymmetric nature
and behavior of these networks. In the remainder of this pa-
per we follow the reasoning of the IPPM framework, which
advocates a clean separation between metric, methodology,
and measurement process.

2.1 IP Performance Metrics Model
The Internet Protocol Performance Metrics (IPPM) work-
ing group of the Internet Engineering Task Force (IETF) has
standardized the base framework for IP Performance Metrics
as RFC 2330 in September 1999. This framework defines re-
quirements on performance metrics, recommends procedures
and details on common uncertainty and error sources in IP
network measurements. Several RFCs refine metrics based
on the requirements of RFC 2330, the following ones be-
ing relevant for access modeling: RFC 2679 and RFC 3432
define one-way delay metrics, which are used by RFC 3393
to derive IP delay variation metrics. RFC 2680 proposes
the corresponding one-way loss metric, which is refined by
RFC 3357 to define loss patterns, whereas RFC 2681 intro-
duces a round-trip delay metric for IPPM. Finally, RFC 3148
defines a framework for bulk throughput capacity measure-
ments.

In the rest of this paper we illustrate the stages of our ac-
cess network modeling process for the metric one-way delay
as defined in RFC 2679. However, we would like to empha-
size that similar methodologies, measurement and emulation
processes can be defined for any other metric.

2.2 Measurement Methodology
High one-way link delay is one prominent characteristic of
many access networks, specifically of 2.5G/3G cellular ac-
cess networks. While one-way delays in lightly loaded wired
local area networks and area-restricted core networks range
typically in the order of tens to hundreds of microseconds,
the delay in 2.5G and 3G networks can exceed this value by
at least three orders of magnitude. Moreover, test measure-
ments have indicated these wireless links to exhibit signifi-
cant correlation between delay and packet payload size.

One of the requirements on our delay measurement tools
is to bypass firewalls, NATs and gateways. Concerning the
measurement methodology, this implies to select ICMP (In-
ternet Control Message Protocol) echo as packet type for all
delay measurements, due to several benefits: First, most
firewalls and NATs permit ICMP echo messages to pass
through, even if other protocols are blocked. Second, the
request-response messaging pattern matches closely the sig-
naling behavior that we target for assessing Session Initia-
tion Protocol (SIP) behavior. Third, the ICMP echo mes-
sage header size of 8 bytes is identical to the one of UDP
messages, affording inference on the behavior of, e.g., RTP
or SIP over UDP messages for specific payload sizes.

One notable downside of ICMP echo packets with respect to
deterministic delay measurements is the fact that some net-
work elements (routers) may treat ICMP packets differently



from TCP or UDP traffic. Nonetheless, for the relatively
high delay that we expect to measure for access networks
we argue that the delay difference between UDP, TCP and
ICMP packets in core network elements is negligible.

2.3 One-way Delay Measurement Setup
According to RFC 2679, clock synchronization between two
measurement hosts is the main uncertainty factor in one-way
delay measurements. Therefore the clocks of these hosts are
frequently synchronized against global time, e.g., using the
Global Positioning System (GPS) as a common, accurate
timebase, resulting in medium investments and configura-
tion effort. However, we argue that clock synchronization
is not required for accurate one-way delay measurements.
The simple but highly accurate one-way delay measurement
setup which we propose in the following uses clock cor-
relation instead of active clock synchronization. The
algorithm relies on time correlation markers which are used
during offline correlation to compute accurate clock offset
between server clock and client clock. The setup requires an
extra, highly deterministic, low-delay network path – e.g.,
an Ethernet link, as well as an additional network inter-
face for time correlation, both in the mobile terminal and in
the measurement server. Figure 1 depicts the measurement
setup which we have used for one-way delay measurements.

Figure 1: Generic Measurement Setup for Clock
Synchronization and -Correlation

This setup will typically not require any extra hardware in-
vestments, nor does it necessitate any special drivers. How-
ever, the TimeSync path’s round-trip delay is recommended
to undercut the one of the path under test by orders of mag-
nitude. Accuracy tests have indicated that accuracy of this
time correlation setup is typically better than 0.05 ms for a
switched Ethernet link, improving to values below 0.01 ms
for Ethernet over a single crossed patch cable, depending
on the client’s and server’s specific hardware and operating
system.

In addition to our targeted singleton metric ”Type-P-One-
way-Delay” as defined by RFC 2679, our measurement tool
also uses a sampling procedure resembling the sample metric
”Type-P-One-way-Delay-Poisson-Stream”conforming to the
same RFC. In contrast to RFC 2679, our tool samples one-
way delay singletons at uniformly distributed times while
RFC 2679 requires sampling times according to a pseudo-
Poisson process. However, we consider uniformly distributed
times to be sufficiently uncorrelated to not cause interference
in the access link or in the core network. An additional ex-

Figure 2: Sequence diagram of random payload one-
way delay measurement script

tension to RFC 2679 is that our measurement methodology
uses a second level of randomness, i.e. randomly distributed
payload sizes, thus guaranteeing that temporary network
overload situations impact on the delay of a broad range of
payload sizes and not just on one payload or a few adjacent
ones.

Our measurement methodology relies on sending ICMP echo
request pairs, one of which, having a small and constant pay-
load size, uses the timesync path, whereas the other one, the
actual random payload measurement probe, uses the mea-
surement path. Fundamental to the tool’s operation is that
tcpdump [5] instances listen on all client and server inter-
faces and record timestamps along with headers of all sent
and received ICMP messages. Figure 2 depicts the sequence
diagram for random payload one-way delay measurements.
For clarity reasons we have omitted startup and close-down
procedures which start and stop tcpdumps on client and
server using SSH-secured remote connections.

The random one-way delay loop in Figure 2 iterates over
the user-configured sample count, i.e., it terminates after
having sent a pre-configured total number of ICMP mea-
surement probes. As first step within the random payload
one-way delay loop the tool generates two random values:
one for the packet payload size (message 1.0) and one for
the wait time (message 1.1). Both values, the payload size
value and the waiting time value are uniformly distributed
within user-configured limits. Lower limit for ICMP payload
size is 13 bytes to store the sending timestamp for round-
trip delay calculation, whereas we restricted the upper pay-
load size boundary to the Ethernet MTU (1472 bytes ICMP
payload). Concerning waiting times, inter-packet-gap delays
have to be chosen in such a way that the load generated by
subsequent packets does not exceed the access link’s max-
imum throughput capacity. For UMTS we have selected
random waiting times between 500 ms and 1500 ms.

Prior to sending the measurement ICMP request the mea-
surement tool starts a timer (message 1.2) to trigger the



next loop iteration – possibly before arrival of the ICMP
reply to the current request. Finally, the tool sends the
measurement ICMP request (messages 2.0 and 2.1) whose
payload size matches the previously computed value and
concurrently the timesync ICMP request (messages 2.2 and
2.3). The measurement server records arrival of these ICMP
requests and sends timesync and measurement ICMP echo
replies to the mobile terminal (messages 2.4, 2.5 and mes-
sages 2.6, 2.7, respectively) having a payload which matches
the payload of the corresponding originating ICMP request.
The departure of all ICMP replies is also recorded by the
measurement server and their arrival by the mobile termi-
nal. After measurement completion the offline correlation
process computes one-way delays and losses for any mea-
surement ICMP packet using the clock offset information
which can be extracted from the timestamps of the closest
ICMP timesync packet exchange.

3. MEASUREMENT RESULTS
In terms of performance, the 3G UMTS standard is posi-
tioned in between the 2.5G standards GPRS and EDGE and
advanced 3G standards like HSDPA and HSUPA. Therefore,
this section presents performance measurement results for
UMTS Frequency Division Duplex (FDD) as the reference
technology against which other measured wireless and wired
technologies are to be compared.

3.1 Measurement Configuration
The mobile network we have assessed is mobilkom austria’s
3GPP Rel99 compliant live UMTS FDD network, offering
maximum theoretical transmission rates of 64 kbit/s uplink
and 384 kbit/s downlink. As UMTS modem we have used
an Option Wireless UMTS PCMCIA card, integrated into
Linux using usbserial drivers. Our mobile client was a Com-
paq Armada M700 laptop, equipped with a PIII 850MHz
CPU, 576 MByte RAM and running SuSE Linux 10.2, whereas
the measurement server was a COTS PC based on a 2GHz
Pentium IV CPU equipped with 1 GByte of RAM and run-
ning also SuSE Linux 10.2. We have measured UMTS uplink
and downlink one-way delay for IPv4 ICMP packets, config-
uring the loss limit which discriminates between losses and
delay singletons according to RFC 2679 to be 5 seconds. We
have sent a total of 10000 singletons.

3.2 Random Payload One-way Delay
Round-trip delay measurements lack information regarding
the contribution of uplink delay and downlink to the to-
tal round-trip delay, as well as the IP delay variation con-
tribution of uplink and downlink. Therefore, according to
section 2, we measure one-way delay by dividing any round-
trip delay singleton into one one-way uplink delay singleton
and one downlink delay singleton. While round-trip delay
singleton values have been acquired using the ping utilities’
output, one-way delay singletons are recorded using corre-
lated tcpdump trace files on the measurement server and on
the mobile terminal.

Figure 3 depicts the UMTS network’s uplink one-way delay
profile. The diagram shows packets having adjacent payload
sizes within blocks of 160 bytes to be subject to equal delays
and identical IP delay variation. Note that the rightmost
(full 160 bytes) block shown in the diagram is delayed by

Figure 3: UMTS uplink one-way delay (random
inter-packet delay and random payload size)

a median value of 250 ms, which is 3.5 times the leftmost
block’s delay of 70 ms. Additionally, we can observe a huge
number of outliers which cause a vertical offset to the linear
interpolation line.

Figure 4: UMTS downlink one-way delay (random
inter-packet delay and random payload size)

Comparing the UMTS uplink delay (Figure 3) against the
UMTS downlink delay (Figure 4) we infer that the borders
of downlink delay blocks correlate with the uplink ones. Also
the initial delay (for small payload sizes) and the increase in
delay with payload for UMTS downlink is almost identical
to UMTS uplink.

However, from Figure 4 we conclude that the UMTS down-
link is subject to much less outliers than the UMTS uplink.
Moreover, the IP delay variation (IPDV) for UMTS down-
link blocks amounts to roughly half of the UMTS uplink’s
IPDV. This finding is confirmed by comparing the delay his-
tograms for uplink (Figure 5) and for downlink (Figure 6).
While the uplink histogram shows a relatively flat curve,
downlink singletons are grouped into 10 narrow spikes, any



Figure 5: UMTS uplink one-way delay histogram
(random inter-packet delay, random payload size)

Figure 6: UMTS downlink one-way delay histogram
(random inter-packet delay, random payload size)

spike corresponding to one of the 10 blocks in the down-
link delay diagram (Figure 4, note that the rightmost block,
which corresponds to the largest tested payload sizes, is in-
complete and therefore the rightmost spike is smaller than
the other ones).

4. ACCESS NETWORK EMULATION
As representatives of the third and last stage of our model, in
this section we present two distinct approaches to real-time
access network emulation, discuss implementation changes
and compare measurement results of our implementation
against the reference measurements in real access networks.
Our access network implementation relies on the NetEm
Linux WAN emulator module.

4.1 NetEm functionality
NetEm [3] is an Open-Source module which acts as a queu-
ing discipline, being integrated into the Linux 2.6 kernel
sources. NetEm’s command-line interface uses the tc utility

which is part of the IPRoute2 tools. NetEm features emu-
lation of various impairment parameters like constant delay,
statistical jitter, statistical loss, and reordering on a per-
interface base. For further details on NetEm’s architecture
and functionality we refer to [3].

Figure 7: NetEm WAN Emulator concept

Figure 7 depicts NetEm’s basic queuing concept. Packets re-
ceived on an incoming interface are passed to NetEm which
processes the packets according to the configured impair-
ment factors before enqueuing them on the outgoing in-
terface. Therefore, as indicated in the figure by means of
distinct impairment function symbols, NetEm impairment
parameters can be set on a per-interface base, which is a
pre-requisite for modeling unidirectional links. E.g., in Fig-
ure 7 the interface eth0 along with its associated NetEm im-
pairment factors models the access network’s uplink, while
being fully transparent for downlink packets. For the re-
verse direction, NetEm impairment parameters associated
with Ethernet interface eth1 model the downlink, acting ex-
clusively on packets sent by the measurement server toward
the measurement client.

The precision of NetEm depends on Linux kernel config-
uration parameters (specifically the kernel tick Hz value),
although, starting with kernel release 2.6.22, NetEm also
supports sub-kernel-tick delay resolution. However, NetEm
operating as part of a standard Linux 2.6.20 kernel compiled
for 1 ms kernel tick is sufficiently accurate to be used for the
targeted access network emulation.

For accurate and transparent access network emulation, the
Linux server hosting NetEm in Figure 7 was set up as a
bridge using the Linux Net:Bridge module, being fully trans-
parent at IP level. The measurement client is connected to
one of the bridge’s interfaces, the measurement server to
another bridge interface using 100 Mbit/s Ethernet devices.

4.2 Linear Delay Emulation
With respect to access network emulation, one major de-
ficiency of NetEm is its inability to correlate impairment
parameters with packet payload size. Therefore we have
implemented packet-size-dependent delay using linear delay
approximation as a function of packet size. However, even
if our current implementation focuses on payload-dependent
delay, we would like to emphasize that the described emu-
lation concept is generic in nature and that an implemen-
tation procedure analogous to the one presented below can
be used to easily integrate other payload-dependent metrics
like, e.g., payload-dependent loss with NetEm.



To this end, we have extended NetEm’s tc command line
interface to accept an additional command line keyword
“slope” followed by a mandatory argument which represents
the increase in delay per payload byte. When used in con-
junction with the slope argument, NetEm’s existing constant
delay parameter equals the delay offset for a payload size of
zero, delay(0). This value corresponds to the intersection of
the delay curve’s linear approximation with the y-axis in the
diagram in Figure 3 for uplink and Figure 4 for downlink,
while the value-argument to the slope parameter represents
the inclination of the respective size-delay curve. An in-
coming packet having a payload value of size is therefore
delayed by an amount delay(size) = delay(0)+ slope ∗ size.
Following NetEm’s internal processing chain, this effective
payload-dependent delay value is then adjusted subject to a
uniformly distributed IP delay variation whose mean value
also depends on the specific link measurement results. This
second stage of processing adds the level of uncertainty to
the delay which is required for accurate access network em-
ulation.

Figure 8: UMTS NetEm linear uplink delay emula-
tion results

Figure 9: UMTS NetEm linear downlink delay em-
ulation results

Figure 10: UMTS NetEm linear uplink delay corre-
lation with UMTS results

Figure 8 and Figure 9 depict uplink and downlink one-way
delay measurement results for linear NetEm UMTS emula-
tion. We have configured NetEm using the slope and initial
delay values shown in Figure 3 and Figure 4 configuring an
IPDV (NetEm jitter) value of 10 ms for uplink and 4 ms for
downlink.

An important measure of emulation quality is the correlation
between original measurement data and the corresponding
linearly interpolated emulation results. Figure 10 compares
these two measurement results for UMTS uplink. The dia-
gram indicates that the linear emulation’s slope and jitter
parameters have been configured correctly, whereas the lin-
ear emulation fails to reproduce the huge number of outliers
which are present in the original UMTS uplink delay mea-
surements. In addition the emulation generates some delay
values which do not match the original ones (represented by
lightly colored dots visible close to the blue UMTS blocks’
edges) while other original UMTS delay values are not gen-
erated by the emulation (specifically the lower corner of the
UMTS blocks).

Primary reason for missing outliers is NetEm’s normal jit-
ter distribution which we have used. If required for specific
tasks, replacing the normal distribution by a heavily right-
tailed distribution can generate these outliers. However, the
linear emulation for round-trip delay is in line with our re-
quirements to emulate “typical” UMTS behavior.

4.3 Table-based Delay Emulation
Linear approximation can provide satisfactory accuracy for
most access technologies. However, the linear interpolation
for UMTS uplink in Figure 8 and Figure 9 fail to account for
the discrete increase in delay of almost 20 ms median value
at the edges of the rectangle blocks. An ideal linear interpo-
lation (crossing the block centers) deviates by −10 ms for the
lower payload value and by +10 ms for the higher payload
value when compared to the measured median value.

Therefore we have improved the slope-based emulation by
implementing a table-based access network emulation which



maps payload values to delay values. An important factor
which finally decides on emulation accuracy is the algorithm
used for converting access network measurement results to
emulator delay tables. The solution which we have adopted
is to use a 3-payload aggregated point-wise median as shown
in Figure 12 and Figure 13 for uplink and downlink, respec-
tively. The delay table value for a payload size of s is com-
puted as the median delay value for all measurement values
of payloads s − 1, s, and s + 1.

Figure 11: UMTS uplink delay curve based on
payload-size point-wise median

Subject to a sufficiently high number of singletons, the most
accurate delay representation yields a curve which consists
of the median delay value computed separately for any pay-
load size. However, the shape of the median curve for uplink
in Figure 11 illustrates that randomly chosen payload val-
ues combined with a too low number of singletons can lead
to missing delay singletons for specific payload sizes. The
median delay curve indicates missing singletons for two pay-
load values (173 bytes and 959 bytes), as well as significant
outliers for other payload sizes.

Figure 12: UMTS uplink delay curve based on 3-
payload-size aggregated median

Figure 13: UMTS downlink delay curve based on
3-payload-size aggregated median

One solution to eliminate this uncertainty factor is to in-
crease the number of measurement singletons. However, in-
creasing the singleton count results in higher measurement
costs, as well as significantly increased overhead associated
with one-way delay singleton correlation. Therefore we have
decided to adopt an alternative solution which consists of
aggregating groups of delay singletons for adjacent payload
sizes. Our evaluation has lead to the conclusion that for the
selected number of 10000 singletons distributed randomly
over approximatively 1450 payload sizes the median curve
aggregating 3 adjacent payload sizes, as shown in Figure 12
is the best tradeoff between accuracy and outlier avoidance.

Our implementation of table-based delay re-uses the concept
which NetEm has adopted for jitter implementation. We
have added a new command-line argument delaytab to the
tc command line which expects two mandatory parameters:
one table name (e.g., umts) and one direction parameter
(e.g., UL for uplink or DL for downlink).

The table consists of lines which store space-separated pairs
of MAC-layer payload size and corresponding delay value.
The tc utility reads the table, converts and transfers it to
the kernel space, where one such table can be instantiated
per physical or logical network interface. Once NetEm was
configured to use the table, it delays any incoming packet
based on its payload size. NetEm’s native implementation
of delay and jitter parameters was not affected by the de-
laytab parameter, therefore table-based delays can be sub-
ject to IP delay variation, distribution and correlation like
any constant NetEm delay values.

Whereas the emulation – similar to linear slope based em-
ulation – fails to emulate the huge number of outliers, a
comparison of the two diagrams shows that the typical case
is perfectly emulated in terms of delay and IP delay vari-
ation. Specifically the narrow spikes visible in the uplink
delay diagram in Figure 3, caused by hardware anomalies
in the original UMTS measurement setup’s modem, are em-
ulated correctly. Adding appropriate outliers is feasible by
replacing NetEm’s normal delay distribution by an appro-



priate distribution. However, we consider it important to
focus on typical emulation delay aspects and therefore we
will postpone the outlier distribution for further study.

Figure 14: UMTS NetEm table-based uplink delay
emulation results

Figure 15: UMTS NetEm table-based downlink de-
lay emulation results

An analysis of table-based emulation uplink and downlink
measurement results (depicted in Figure 14 and Figure 15,
respectively) confirms that the above-mentioned delay spikes,
as required, impact exclusively on the uplink’s one-way de-
lay. Moreover, conforming to the original UMTS measure-
ment result values shown in Figure 3 and Figure 4, the em-
ulation’s IP delay variation value for uplink is almost dou-
ble of the downlink’s IPDV value. The IPDV value can be
mapped graphically to the height of rectangle blocks in the
above-mentioned diagrams which averages a value of 25 ms
for uplink blocks and 12 ms for downlink blocks.

4.4 Emulation Performance
Preliminary performance tests running our modified NetEm
implementation on a Pentium III 850 MHz PC, equipped
with 512 Mbyte of RAM and running SuSE Linux l0.2 in-
dicate that our implementation changes do not deteriorate

Figure 16: UMTS NetEm table-based uplink delay
emulation histogram

Figure 17: UMTS NetEm table-based downlink de-
lay emulation histogram

NetEm’s original good performance. Configured as a bridge,
the emulator is capable to handle a limit of approximatively
150000 packets per second, being limited by interrupt han-
dling. Using two 100 Mbit/s Ethernet interfaces the CPU
was only lightly loaded (10-15%), only after replacing the in-
terfaces by Gbit Ethernet and increasing the MTU we were
able to fully load the CPU. However, targeting transfer rate
limited access networks the emulator is capable to accurately
simulate tens to hundreds of concurrent links, depending on
the specific access technology and configuration which it em-
ulates.

5. LIMITATIONS OF ACCESS NETWORK
EMULATION

The previous sections have illustrated how access network
delay can be emulated using linear and/or table-based em-
ulation methodologies. However, there are some limitations
which must be considered for realistic access network emu-
lation. It is important to note that these limitations are not



specific to our emulator implementation, but rather apply to
any IP-level emulator which enforces payload-size depending
delay.

5.1 IP Fragmentation
The first important aspect concerns IP fragmentation. The
enhanced access network emulator is configured as a bridge
and can therefore be connected transparently in between
the measurement server and the measurement client using
two 100Base TP Ethernet interfaces. All IP packets bypass-
ing the emulator are fragmented based on the path MTU
size, meaning that packets exceeding the path MTU size are
divided into fragments having a size which is less than or
equal to the Ethernet MTU of 1500 bytes. SIP signaling
messages can easily exceed this limit, particularly SIP mes-
sages including location or presence XML documents can
equal sizes of 5 KBytes or more.

Without dedicated fragment support, an emulator delays
any separate IP fragment based on its fragment size and
not based on the size of the original IP packet. E.g., as-
suming an Ethernet path MTU of 1500 bytes, an IP packet
of 3500 bytes size (including IP headers) is fragmented into
three parts, two 1500 bytes fragments and one 540 bytes
fragment. In the linear emulation case the expected emula-
tion delay is delay = slope∗3500+delay0 whereas the effec-
tively emulated delay due to fragmentation will be delay =
slope∗1500+delay0, as all three fragments will arrive within
a short timeframe. Even more severe, the third fragment of
540 bytes time will overtake the larger fragments, causing a
reordering situation.

The solution we have adopted is based on the methodology
which the IP protocol itself uses for re-assembling IP frag-
ments. Part of any IP header is a field termed fragmentOff-
set which stores the offset of the current fragment (in bytes)
relative to the start of the IP packet. Delaying any single
fragment by an amount fragmentOffset + fragmentSize safe-
guards that the delay emulated for the last fragment equals
the delay of the entire IP packet. The receiver’s IP stack is
required to wait for IP packet re-assembling until the last
fragment has arrived, therefore assuring that the emulator
generates correct delay. This methodology is appropriate
and provides reliable results for both, the table-based and
for the linear emulation approach.

5.2 FIFO Queuing Aspects
One aspect of size-based delay emulation which we have
mentioned in the previous subsection, namely small IP frag-
ments overtaking large ones, is not restricted to IP fragments
but also applicable to IP packets. Particularly whenever two
IP packets arrive shortly one after each other at an emula-
tor’s input port and the first packet’s payload size signif-
icantly exceeds the one of the second packet, chances are
high that the emulator will send out the second packet prior
to sending out the first one. The reason for this re-ordering
is the way NetEm emulates link delay. Indeed, NetEm com-
putes a delay value for any incoming packet, converts this
delay to a desired output (dequeue) time and then places the
packet in the outgoing queue. Therefore, once size-based de-
lay is implemented, larger packets will have a later output
timestamp than smaller packets, risking to be overtaken by
smaller ones which have arrived short time after the large

ones. The higher the emulator’s configured slope factor, i.e.,
the more limited the access network’s transfer capacity, the
more pronounced the reordering effect will be.

However, this emulator behavior is not observed in real ac-
cess networks where the network delay is caused primar-
ily by limited access network transfer capacity and where
the packet ordering is maintained. I.e., real access links
exhibit strict FIFO ordering. To maintain this FIFO or-
dering concept for delay-based emulation we have changed
NetEm’s queuing concept with respect to the output times-
tamp. Specifically we have added a“latest timestamp”marker
to the outgoing queue which remembers the timestamp (as
absolute time) when the last of all currently enqueued pack-
ets is due to leave the queue. Whenever enqueuing a new
packet its output time is modified in that we add the queue’s
latest timestamp marker value to the packet’s computed de-
lay value. After increasing the queue’s latest timestamp
marker to the packet’s output time the packet is enqueued.

The queuing methodology which we have implemented em-
ulates the behavior of typical 3G access networks, where
Packet Data Protocol (PDP) contexts enforce strict FIFO
queues for user data.

5.3 Scheduling Effects and IP Delay Variation
Our measurements have shown that emulation of shared
channels is much more challenging than emulation of ded-
icated channels. Primary reason is the access network’s
scheduling strategy for specific scenarios which highly de-
pends on the cell load at a specific point in time. As an
example we present the diagram showing downlink measure-
ment result for Cell-DCH state HSDPA delay in Figure 18.

Figure 18: HSDPA random payload downlink delay
for Cell-DCH state (3-payload median)

Supposedly because of scheduling effects on the Iub inter-
face, the delay diagram in Figure 18 presents a noticeable
layered structure for downlink singletons. The inter-layer
distance of about 10 ms delay is an explicit indication that
the HSDPA TTI of 2 ms can not be the reason for this lay-
ering. Therefore we consider the Iub interface with its 10 ms
scheduling interval to be the most likely candidate. Depend-
ing on the specific cell/link load, the Iub scheduler spreads a



specific payload size over a distinct number of frames. What
makes emulation so difficult is that our proposed method-
ology can not capture external load factors, which bias sig-
nificantly on the measurement result as illustrated by the
3-payload download median curve in Figure 18.

A histogram analysis indicates that the second layer (cen-
tered at 57 ms delay) comprises about 50% of all downlink
delay singletons while the third layer (centered at 67 ms) ag-
gregates about 40% of the singletons. However, what makes
emulation really challenging is that for payload sizes be-
tween 700 bytes and 1100 bytes the median curve oscillates
between the second and the third layer. Our conclusion is
that the median-based methodology which was appropriate
for emulating most other access technologies must be en-
hanced for shared channel emulation.

We consider percentile-based probabilistic functions which
select one delay value out of a discrete set of possible de-
lay values as most promising solution for a realistic shared
channel emulation. Applying NetEm’s jitter and some im-
proved outlier generation functionality on this delay value
can help in generating the required layered delay structure.
This functionality is not yet implemented but considered as
a topic of highest priority for future Work.

5.4 Emulating Beyond Measurement Limits
The size of IP datagrams is limited to 65535 bytes. Even
though it is unlikely to encounter such huge datagrams in
real applications, emulators must be prepared to delay any
IP packet up to the maximum IP datagram size. However,
financial effort and measurement duration for acquiring a
sufficiently large number of random delay singleton for this
huge payload range can be substantial.

Therefore we have limited our access network measurements
to payload sizes up to the Ethernet MTU of 1500 bytes.
Test measurements for larger payload sizes confirm repeat-
ing delay patterns for tested 2G and 3G access technologies.
Provided that the MTU of any network in the measure-
ment path is smaller than the Ethernet MTU we consider
it therefore legitimate to extrapolate measurement results
for our specific payload range to a larger payload range. If
the above-mentioned MTU condition is not satisfied, specifi-
cally, if the access network MTU is larger than the Ethernet
MTU, additional measurements are required to avoid im-
pact of larger MTUs on the measurement results. E.g., in
the case of WiMAX, the round-trip delay of about 33 ms
doubles when the payload exceeds the WiMAX MTU which
was configured to be 1500 bytes.

While linear emulation works seamlessly for huge payload
sizes, additional effort is required for extrapolating existing
table-based measurement results for larger payload sizes. To
this end, the measurement range’s starting block and end-
ing block must be correlated, taking into account the de-
lay offset. However, automatic extrapolation is difficult and
can become highly complex for unknown access technologies
without a detailed analysis of layers below IP.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented and discussed a generic ap-
proach to measurement-based access network modeling. The

key advantages of our proposal focus on the simplicity of the
model as well as its automated concept. Although metric
selection and metric assessment implementation are two ini-
tial steps which require intense human interaction, once a
measurement framework is implemented it can acquire data
for any existing access network infrastructure. The result-
ing measurement data can be processed automatically to
extract relevant parameters for simulation or emulation, ex-
cept for the case of analytical modeling, which - if used at
all - requires again human intervention. However, once the
measurement parameters have been acquired for all access
technologies under test, fully automated, client-controlled or
server-controlled application testing can be implemented by
means of the framework which we have presented.

The proposed framework is flexible and easily extensible, as
new metrics can be added to the existing testing infrastruc-
ture by means of the control path loop mentioned above,
while carefully dealing with potential side effects on the ex-
isting metrics. Some of the directions of current and future
work have already been indicated in section 5 and are ex-
pected to further drive our proposal in becoming a major
step towards a fully automated concept of modeling various
access technologies for NGN networks.
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