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ABSTRACT
Monitoring network state can be crucial in Future Inter-
net infrastructures. Passive monitoring of all the routers is
expensive and prohibitive. Storing, accessing and sharing
the data is a technological challenge among networks with
conflicting economic interests. Active monitoring methods
can be attractive alternatives as they are free from most of
these issues. Here we demonstrate that it is possible to im-
prove the active network tomography methodology to such
extent that the quality of the extracted link or router level
delay is comparable to the passively measurable informa-
tion. We show that the temporal precision of the measure-
ments and the performance of the data analysis should be
simultaneously improved to achieve this goal. In this paper
we not only introduce a new efficient message-passing based
algorithm but we also show that it is applicable for data
collected by the ETOMIC high precision active measure-
ment infrastructure. The measurements are conducted in
the GEANT2 high speed academic network connecting the
sites, which is an ideal test ground for such Future Internet
applications.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications, Net-
work topology ; C.2.2 [Computer-Communication Net-
works]: Network Operations—Network monitoring

General Terms
Measurement, Algorithms

Keywords
Oneway delay measurement, Queueing delay Tomography
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1. INTRODUCTION
The possibility of obtaining fast and reliable network per-

formance estimates is a vital step in order to perform ambi-
tious tasks such as the design of refined and more efficient
traffic-control and dynamic-routing protocols, and the de-
tection of anomalous and/or malicious behavior. Measure-
ment, collection, and analysis of network data such as link
delay and loss is unfeasible on large scale since subnetworks
might have conflicting economic interests. While there is no
gain for individual routers to collect performance statistics,
it costs considerably in terms of computation, hardware and
maintenance. Furthermore the transmission of this informa-
tion to some central control node would create considerable
networking overhead. Network tomography[17] is an emerg-
ing field of research whose goal is performance estimation
of decentralized, unregulated and heterogeneous networks
such as the Internet. The basic idea of Network tomogra-
phy is to perform active measurements that do not require
special coordination from the network operators and cause
limited traffic overhead. These measurements are related to
the unobserved quantities of interest such as delays inside
the network. Statistical inference techniques are applied in
order to recover this hidden information. The term Network
Tomography was introduced by Vardi[17] to stress the simi-
larity between inferential problems in network and medical
tomography. As it relies on statistics collected only at the
end hosts its infrastructure is scalable and can offer lower
hardware and maintainance costs.

In order to make it a viable alternative of direct pas-
sive monitoring we should overcome some existing problems:
i) The network tomography computation requires a summa-
tion over all possible combination of internal delays in the
network and has a non-polynomial computational complex-
ity. ii) The temporal resolution is low since the processed
primary network measurements do not have sufficiently high
precision. Also the computational complexity limits the res-
olution achievable in realistic runtime. iii) The computation
does not scale well with the size of the network.

In this paper we show that it is possible to handle these
problems and to realize large scale network tomography in
practice. Our most important result is that using a new
modified version of the classical message-passing algorithm
the computations of network tomography can be accelerated
substantially. It is shown that the computation of the likeli-
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Figure 1: An example of queueing delay distribution
for a single up-link queue determined by our new it-
erative algorithm from high temporal resolution de-
lay data. Inset The logarithm of the complementary
cumulative distribution of the Weibull distribution
P (X > x) = exp(−bxa) is a power-law function. The
logarithm of the measured complementary cumula-
tive distribution is shown on a log-log scale to derive
the parameters of the Weibull approximation. The
slope of the fitted line yields a, which is related to
the Hurst-exponent a = 2(1 − H) and H = 0.79.

hood function and its numerical maximization through the
Expectation-Maximization (EM) algorithm can be done re-
cursively, thus we can introduce a highly reliable estimator
through a fast computation of polynomial complexity. The
linear scaling of the runtime of the new algorithm with the
network size is shown numerically.

This accelerated method can then be used for process-
ing high temporal resolution measurements. For testing
our methods on real data we conduct measurements in the
ETOMIC active probing infrastructure[4], where special DAG
3.6GE measurement cards and GPS time synchronization
of the measurement hosts provide one-way delay data with
100 ns absolute precision.

The combined result of the fast algorithm and the high
temporal resolution is that we can infer internal delay dis-
tributions with high resolution. This new richness of detail
makes it possible to analyze the shape of these distribu-
tions further. We find cases when our tomography topology
permits to resolve single hop links. We analyze the tail dis-
tribution of a single queue (see Fig. 1) and even the Hurst
exponent of the self-similar input traffic on the link can be
determined. Another result demonstrated in our experiment
is that hundreds of delay distributions can be measured si-
multaneously by using about ten measurement sites. The
timescales of distributions span three orders of magnitude
and a new network wide spatial scaling law of average queu-
ing delays is discovered (see Fig. 2).

The plan of the paper is as follows: in Sec. 2 we introduce
the model and framework and we discuss previous results for
the ML estimator and the EM algorithm. In Sec. 3 we in-
troduce our new recursive algorithm and provide some basic
numerical tests on it. In Sec. 4 we introduce the measure-
ment infrastructure, topology discovery and one-way delay
measurements. In Sec. 5 we present the issues of the numer-
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Figure 2: A new scaling law for queuing delays in
the Internet. The complementary cumulative dis-
tribution of the average queueing delays on a semi-
logarithmic plot. The continuous line is a ∼ − log(x)
distribution corresponding to a ∼ 1/x type scaling
of the corresponding probability density of average
delays.

ical implementation of the inference algorithm. In Sec. 6
we show newly discovered scaling properties of the inferred
queuing delay data.

2. QUEUEING DELAY DISTRIBUTION IN-
FERENCE

In this section we review the problem of queueing delay
distribution inference. Consider a tree as the one depicted
in Fig. 3. Each node is labeled by a number i and link i
connects node i it to its parent node. During an observa-

Figure 3: A four-leaf binary tree

tion a batch of back-to-back packets are sent from the root
to all the leaves. At branching points packets are directed
towards their destination leaf. The process continues until
the packets reach the leaves. At the leaves we measure the
end-to-end delays the probe packets experience in the net-
work. From this information the delay distributions of the



internal links are to be inferred. The overall delay observed
at a receiver is given by the sum of the delays xi on all
the links where the packet has travelled. Thus for a given
batch of packets the directly observable end-to-end delays
yj (j running over all leaves) are related to the internal link
delays xi by the following linear combination

Y = AX, (1)

where A is the routing matrix. For instance given a scenario
of a four-leaf binary tree of Fig. 3 the relation reads:

0

B

B

@

y4

y5

y6

y7

1

C

C

A

=

0

B

B

@

1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1

1

C

C

A

0

B

B

B

@

x1

x2

...
x7

1

C

C

C

A

. (2)

In our inference model we use the following assumptions:

• Observed end-to-end delays are independent random
variables for each observation time t.

• During the experiment the routing matrix A, deter-
mined by the network topology and the routing tables,
is constant for all observations.

• Each hidden link delay xi experienced in a given mea-
surement is independent and identically distributed
random variable characterized by a delay distribution
θi(xi). We denote the collective set of these parame-
ters as Θ.

We adopt the notation Y t = (yj) , t = 1, . . . T , for all
observed delays at the leaves and Xt for the unobserved
internal-link delays in a given observation t; {Y t} and {Xt}
represent the whole set of T observations. For a given set of
link parameters Θ the likelihood of different observations is
factorized:

P ({Y t}|Θ) =
T

Y

t=1

P (Y t|Θ) (3)

The likelihood of a given observation at time t is given by:

P (Y t|Θ) =
X

Xt

P (Xt|Θ)1Y t=AXt (4)

where 1Y t=AXt is the indicator function on the set of possi-
ble values of Xt such that they satisfy the routing equation
Y t = AXt. Its computation requires the summation over
all possible values of the link-delays Xt leading in general
to an exponential complexity.

In [3, 16] it is claimed that internal delay probabilities Θ
can be uniquely related to the joint probabilities γ of ob-
serving a certain set of delays at the leaves.1 The resulting
set of equations Θ = Γ−1(γ) can be computed iteratively,
the procedure involving the solution of symbolic polynomial
equations. The corresponding estimator Θ̂ was defined es-
timating the probabilities of the events at the leaves with
their observed frequencies γ̂ and plugging these estimates
in the exact equations. The fact that γ̂ is a consistent and
asymptotically normal estimator of γ ensures that Θ̂ is also
consistent and asymptotically normal. The advantage of

1This identifiability property is true for the so-called canoni-
cal trees, defined as those that satisfy the condition θi(0) > 0
∀i. This condition maintains that none of the loss probabil-
ities for the links is 1.

this method is that it is very fast because the equations are
obtained recursively. At the same time estimating the prob-
abilities γ with the frequencies γ̂ seems reasonable, at least
when the number of observation is very large.

In [2] authors introduce Maximum-likelihood estimators
to infer loss probabilities for the internal segments of a net-
work tree and in [3, 16] the approach was generalized to
link-delay inference. These are obtained through the well-
known formula:

ΘML = argmaxΘ ln p(Y |Θ) (5)

where ln p(Y |θ) is the log-likelihood, i.e. the logarithm of
the probability of observing Y given that the parameters of
the network are Θ. The Maximum-Likelihood method is a
central and well-established method of inference. Standard
theorems ensure that the ML estimator is consistent and
asymptotically normal and make it the standard for param-
eter estimation.

In a subsequent paper [12] the iterative estimates were
compared with Maximum-Likelihood estimates. The two
methods yield the same result in the case of loss inference,
but in the case of delay estimation it was shown in [12]
that ML produces different estimates from those of [2]. The
difference between the two approaches can be understood
considering as parameters to be estimated the set of proba-
bilities γ instead of the set of probabilities Θ. Since there is
a bi-unique relationship Θ = Γ−1(γ) between them (which
can be computed recursively through the algorithm of [16])
the ML estimate of γ is given by γML = Γ(ΘML). Al-
though in some cases ΓML may be equal 2 to the observed
frequencies Γ̂ they are different in general. Furthermore it
was shown in [12] that ML yields more reliable estimates
than those of the iterative method. Given that both estima-
tors are consistent, the effect disappears when the number
of observations goes to infinity, but can be rather dramatic
for a finite number of observations, see Fig. 5 of [12]. In [12]
it is suggested that the effect originates from the fact that
the mapping θ = Γ−1(γ) is obtained solving symbolic poly-
nomial equations whose roots can be unstable.

2.1 The ML estimator and the EM algorithm
The main problem in obtaining the ML estimator is the

maximization of the likelihood. Candidates are the extrema
but in general it is not possible to find analytical solutions for
the extremization equations. Following Ref. [12] we use the
Expectation-Maximization algorithm, a well-known method
for missing-value problems which is guaranteed to converge
to a local maximum of the likelihood function. Given a
log-likelihood ln

P

X P (X, Y |Θ) to be extremized, the EM
algorithm yields a series of converging estimates Θn through
the iterative formula:

Θn+1 = argmaxθ

X

X

P (X|Y, Θn) ln P (Y,X|Θ) (6)

This can be seen as a two-step process, in the first step (Ex-
pectation) the expectation of the function lnP (Y, X|Θ) is
computed with respect to the probability P (X|Y, Θn), in the
second step (Maximization) the expectation is maximized
with respect to Θ. The basic result concerning EM is that
during the EM iteration step the value of the true likelihood

2The Gaussian distribution is a classical example in which
estimating the average of the distribution with the sample
average is equivalent to estimating it through ML.



function is non-decreasing, in particular if it has a unique
maximum point it will converge to it.

In the present context the function to be maximized in
the EM algorithm is given by:

Q(Θ, Θn) =
X

{Xt}

P ({Xt}|{Y t}, Θn) ln P ({Y t}, {Xt}|Θ)

(7)
The expectation step requires the knowledge of the function
P ({Xt}|{Y t}, Θ), which is factorized over different observa-
tions:

P ({Xt}|{Y t}, Θ) =

T
Y

t=1

P (Xt|Y t, Θ). (8)

The distribution of the delays on a given observation is also
factorized, provided they satisfy the routing equation:

P (Xt|Y t, Θ) = Ct

Y

i

P (xt
i|θi)1Y t=AXt (9)

where Ct is a observation-dependent normalization constant.
On the other hand the function P ({Y t}, {Xt}|Θ) can be also
written in a factorized form:

P ({Y t}, {Xt}|Θ) =

T
Y

t=1

"

Y

i

P (xt
i|θi)1Y t=AXt

#

(10)

When computing the expectations, after some manipula-
tions we get:

Q(Θ, Θn) =

T
X

t=1

N
X

i=1

X

Xt

P (Xt|Y t, θn) ln P (xt
i|θi) (11)

where N is the total number of nodes and P (xt
i|θi) is the

probability distribution of the delay on link i. Following [16]
we parameterize it through a normalized function θi(x) such
that:

P (xt
i|θi) = θi(x

t
i) (12)

where the possible values of xi includes xi = ∞, that corre-
sponds to the loss of the packet. Introducing Lagrange mul-
tipliers to ensure the normalization of the θi(x) the bound
function Eq. (11) can be extremized differentiating explicitly
with respect to θi(x). The resulting equations lead to:

θn+1
i (x) = Ci

T
X

t=1

P (Y t, xt
i = x|Θn)

P (Y t|Θn)
(13)

where the Ci is an x-independent proportionality constant
to be determined through the normalization condition. In
the above equation P (Y t|Θn) is the probability that the final
delays are Y t when the link parameter is Θn and P (Y t, xt

i =
x|Θn) is the probability that the final delays are Y t and that
the delay at node i is x when the link parameter is Θn.

On the other hand the computation of the Likelihood re-
quires a summation over all possible internal delays and in
principle has an exponential computational complexity. In
order to avoid such a computation, Yu and Liang (2003) in-
troduced a pseudo-likelihood estimator, obtained maximiz-
ing not the true likelihood but a more tractable approxima-
tion of it. They show that, much as ML and the recursive
estimator, the pseudo-likelihood estimator is also consistent
and asymptotically normal.

Next we show that the computation of the likelihood and
its numerical maximization through the EM algorithm can

be done in a recursive way rigorously without the intro-
duction of approximations and pseudo-likelihood estimators.
Thus we have a highly reliable estimator through a fast com-
putation of polynomial complexity.

3. RECURSIVE COMPUTATION OF THE
LIKELIHOOD

Although in principle the computation of the two quanti-
ties needed to perform the EM iteration step in Eq. (13) has
exponential complexity, they can be computed recursively
on the tree in a message-passing fashion[5]. In the following
we redefine the notation in order to simplify the presenta-
tion. According to Eq. (13) each observation can be treated
separately so in the following we omit the index t. Given
a node i, f(i) represents its father on the tree, that is the
node that sends the packets to it, while d(i) represents the
set of nodes that are connected to i through a single link,
that is the set of nodes that receive their packets directly
from i. The delay xi is defined as the difference between the
time when the packet leaves node f(i) (the father of i on
the tree) and the time when node i sends the messages to
its descendants d(i). The delay depends on the properties
of the physical link i − j and on buffering delays at node
i. We define yi as the set of delays observed at the leaf
nodes connected to node i, i.e. those that are the leaves
of the sub-tree whose root is node i. Accordingly y0 is the
whole set of observed delays (Y in the notation of the pre-
vious section) since each node at the leaves is connected to
the root 0. The quantity Ri is defined as the total delay
of the packet when it is sent by node i. In order to imple-
ment the EM algorithm, according to Eq. (13), we need two
quantities: P (y0|Θ) and P (y0, xi|Θ). P (y0|Θ) is the total
probability of observing the delays y0 while P (y0, xi|Θ) is
the probability of observing the delays y0 and a delay xi on
node i.

All the probabilities we are considering in this section are
constrained to a given fixed value of Θ, therefore in the
following, for simplicity, we omit also the argument Θ. We
present the approach in the case of continuous values of x
and R including the value ∞ corresponding to the loss of the
packet, the generalization to discretized distributions being
straightforward. In order to compute P (y0) we introduce for
each node the quantities P (yj |Rj) that is the probability of
observing delays yj at the leaves connected to j given that
j sent its messages with a delay Rj . These quantities obey
a recursive equation:

P (yj |Rj) =
Y

i∈d(j)

Z

dRidxiP (xi)P (yi|Ri) ×

× δ(Ri − (Rj + xi)) (14)

where the factor δ(Ri − (Rj + xi)) enforces the condition
Ri = Rf(i) + xi, i.e. it is a Dirac delta function when Ri,
Rj or xi are all finite while it take values 0 or 1 when either
Ri, Rj or xi is infinite. The functions P (yj |Rj) can be
computed recursively starting from the leaves of the tree
where the following condition holds:

P (yi|Ri) = δ(Ri − yi) for i ∈ leaves (15)

Then the total probability P (y0) can be computed as P (y0|0).
3

3Note that in practice it is useless to consider the case in
which more than one node is directly connected to the root,



In order to compute the quantity P (y0, xi) we introduce a
new set of functions P (Rj , y0/j). This is the joint probabil-
ity that there is a delay Rj at node j and that y0/j delays
are observed at all the leaves but those connected to j.

Given a node i whose father is j = f(i), P (Ri, y0/i) obeys
a recursive equation:

P (Ri, y0/i) =

Z

dxidRjP (xi)P (Rj , y0/i) ×

× δ(Ri − (Rj + xi)) (16)

P (Rj , y0/i) = P (Rj , y0/j)P (yj/i|Rj) (17)

P (yj/i|Rj) =
Y

k∈d(j)/i

Z

dxkdRkP (xk)P (yk|Rk) ×

× δ(Rk − (Rj + xk)) (18)

Using the set of functions P (yi|Ri) previously computed,
these equations can be solved recursively going down on the
tree from the root where the following condition holds:

P (R0, y0/0) = δ(R0) (19)

The knowledge of the functions P (Ri, y0/i) allows to com-
pute the probability P (y0, xi) which is given by:

P (y0, xi) =

Z

dRjdRiP (Rj , y0/i)P (xi)P (yi|Ri) ×

× δ(Ri − (xi + Rj)) (20)
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Figure 4: True and ML inferred link delay distri-
bution of links 1, 4, 13 and 85 from 2000 and 10000
measurements, on an 85-nodes tree (see text)

We have applied the present algorithm to the analysis
of a simulated experiment. In order to make contact with
previous results, the parameters of the model are those of
Ref. [12]. In particular the range of possible delays is dis-
cretized with values going from 0 to 14 plus the value ∞. We
generate T = 2000 and T = 10000 iid multicast measure-
ments and make inference on the internal delay distributions
through the EM algorithm. As observed by Yu and Liang
(2003) the T = 2000 is the T -regime where the recursive al-
gorithm of Ref. [16] could sometime yield imprecise results.
We consider a multicast tree with the topology of a regular

because they would correspond to completely uncorrelated
trees

tree with 3-levels and bifurcation number c = 4, accordingly
the total number of nodes is 85 and the total number of
parameter to be estimated is 85 × 16 = 1360. Note that
by means of the recursive ML algorithm we obtain ML esti-
mates for system sizes ten times bigger than those reachable
through the exponential computation of ML. In subfigures
in Fig.4 we report the true and inferred ML values for some
links at different levels of the tree.

4. LARGE-SCALE QUEUEING DELAY
TOMOGRAPHY MEASUREMENT

Multicast tomography was tested in the MINC project[6].
A similar approach using unicast end-to-end measurements
is also used in Ref. [3]. In this section we show the mea-
surement infrastructure we used to conduct queueing delay
tomography experiments on a regular basis in the European
Internet. We highlight the most important implementation
issues and show how to resolve them to collect reliable data
for the analysis. We briefly sketch the steps of the tomog-
raphy experiment and give the configuration parameter set.
Then we review the main issues of the computation process.

4.1 The measurement infrastructure
The European Traffic Observatory Measurement Infra-

struCture (ETOMIC) is a modern high-precision, synchro-
nized measurement platform. It consists of 18 measure-
ment nodes, the infrastructure (see Fig. 5) provides the
ability to perform a rich variety of experiments with differ-
ent probing techniques. Measurement nodes are operating
in the 100 Mbps ethernet LANs of various academic insti-
tutes in Europe(see [7] for more details). Each institute is
served by the high speed European academic research net-
work GEANT and the hosts are typically 2-4 hops away
from the high speed core. An ETOMIC measurement node

Figure 5: The measurement stations of the
ETOMIC infrastructure. Measurement nodes are
operating at various academic institutes in Europe.

is basically a standard PC, hosting an additional interface
card (Endace DAG 3.6GE) designed for precise active and



passive measurements. They embed a separate high stability
reference clock that provides very accurate time-stamping of
the IP probe packets, with a time-resolution of 60 ns. The
pulse-per-second reference signal comes from GPS devices
connected directly to the DAG cards, thus the clocks are
globally synchronized on the 100 ns scale.

4.2 Topology discovery
We started the discovery of network topology connecting

the hosts of ETOMIC with standard traceroute. Several
load balancing routers were discovered which make the net-
work paths ambiguous. We then changed the procedure and
modified the traceroute program to use UDP probe pack-
ets with fixed IP address and port number pairs. This way
we managed to fix the network path as the load balancing
routers discovered in our experiment seem to route these
packets in a unique manner. This is much in the flavor of
the recently introduced Paris Traceroute[1]. As a first at-
tempt, we can construct the tree graph from the sequences
of IP addresses produced by the modified traceroute. IP
addresses are considered as nodes and they are connected if
they are successive hops in a path. By using the long term
network path observations in the ETOMIC infrastructure,
the missing IP addresses showing up as ⋆ in the tracer-

oute output can also be identified or at least distinguished
from each other. There are certain cases when the resulting
graph does not span a proper branching tree and is not di-
rectly suitable for our purposes. A branching tree comprises
one root (the node where packets are sent from), several
leaves (the receiver nodes) and inner nodes. The root node
should have only one child, otherwise the tree can be split
up into independent trees starting with the children of the
root node. The leaves have no children by definition. The
inner nodes are branching nodes if they have two or more
children. From a general tree-like graph one can construct
a branching tree by replacing sequences of nodes with single
child with a compound link connecting the branching nodes
(or leaves in the end) directly. Network tomography will re-
solve the delay distributions of these compound links, which
might consist of several hops in the network. In certain cases
in our experiment it is possible to find and resolve single hop
links. In general the number of hops in compound links de-
creases with increasing number of observation points.

A more important issue is that the topology of the tracer-
oute graph is not always a tree. This is due to the fact
that routing in real networks not always follows the shortest
network path principle. There exist rear cases when a path
that splits off at some branching point joins another segment
of the graph again. Nodes at the joining points have more
than one fathers (see Fig. 6), which is not allowed in a tree.
As the probe packets visit these segments at different time
instances – which can be carefully checked in the experi-
ments – they do not interact with each other and pose no
real problem later at the ML evaluation step. We can han-
dle the situation simply by introducing clones of the nodes
and handling them as if they were separate nodes in each
affected network path. We connect the clones to their new
fathers. If there are more than one branching and merg-
ing points along two paths, all common nodes after the first
branching point (counted from the root) have to be handled
as separate logical nodes.

4.3 Measuring the one-way delays of probes
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Figure 6: Generating the proper tree graph. In the
(upper graph) example shown probes sent from mea-
surement host ”ERIC” diverge at branching point 1.
There are probes that are routed 1–2–5–6, and oth-
ers as 1–3–5–7. Probes coming from nodes 2 and 3
will meet in the queue of node 5 with a negligeable
probability since the difference of the propagation
delays along the two different paths is much larger
than the queuing delay in the queue of node 5. In
this case we have to clone node 5 and introduce 5a
and 5b as two separate nodes. The resulting ranch-
ing tree graph (lower graph) is then suitable for the
delay tomography analysis.

For delay tomography purposes the one-way delay of pack-
ets in batches of probes needs to be measured. In our mea-
surement batches of back-to-back UDP packets are sent out
addressed to the different destinations. Both IP addresses
and port numbers are fixed. Packets are time stamped both
at the sender and receiver hosts by the GPS synchronized
DAG cards. The precision of stamps is about 100 ns at each
side in absolute global time. The one-way delay is given by
the difference of timestamps. Back-to-back packets are used
in order to ensure that packets travel together on the shared
part of their network paths, experiencing approximately the
same network delay conditions. For this purpose and also to
avoid self-congestion small size UDP packets (48 bytes) are
used. By this method the number of probe packets sent in
a batch will scale linearly with the number of destinations
N involved in the experiment. In our experiments N = 13
on the average. Measurements from the different sources are
running simultaneously. 10000 probe batches are sent to the



network of which less than 0.5 % are lost due to the asyn-
chronous process start or finish at the measurement sites.
Between consecutive batches 10 ms time gap is kept to let
the network relax and ensure the independence criterion in
Eq. (3). Experiments of this type are running regularly since
July 2006 in the ETOMIC infrastructure several times a day.
Since then a collection of data (collected from 850 experi-
ments) is evaluated and stored in the ETOMIC database[15].

5. IMPLEMENTATION OF THE
INFERENCE ALGORITHM

In this section we present the numerical implementation
of the inference algorithm. Since we collect a large amount
of raw data of end-to-end delay times between several ma-
chines, and we provide also the inferred probability distribu-
tions of the inner links online[7], the implementation should
give a preview of the inferred inner link delay distributions
available in a few seconds. If time and CPU resources al-
low, the delay distributions must be later refined at higher
resolutions. We note here, that the link delay distribution
inference is calculated independently for each sender host,
hence the topology and inner link delay distributions can be
calculated in parallel.

5.1 Successive approximation
A simple solution for both of the above demands is an

iterative method, that applies the presented ML inference
with different bin sizes. First a very raw estimation of the
link delay distribution is calculated. For this first estimate
we are using only a few large size bins and the ML calcu-
lation starts from the uniform distribution. Note that any
other distribution can be used here that initializes each bin
with nonzero values. After having a raw estimate of the dis-
tributions, a successive approximation phase begins. Here
the bin size is reduced to the final resolution in successive
steps according to a predefined series. For each bin size the
ML algorithm starts from the smoothed version of the dis-
tributions calculated at the previous level and runs until the
convergence criterion is satisfied. When the ML algorithm
converges for the smallest prescribed bin size the calculation
finishes.

This successive method has several advantages: i) The
calculation can be interrupted at any bin size and later it
can be refined again easily without storing and maintaining
any other inner variables of the evaluation. ii) A further
advantage is that the resulting distributions at each step of
the approximation can be used for checking the convergence
criterion of the ML estimation. iii) Network topology is
fixed during the approximation steps. One can observe a
given link and compare the delay distributions that were
calculated at different bin sizes. From the difference between
the distributions it is possible to estimate the error of the
distribution parameters. Reusing the parameters of former
distribution instead of using eg. uniform distribution as the
initial distribution for the ML estimator will also speed up
the inference process, see Table. 1.

Finally we mention, that it is possible to accelerate the
overall convergence of the calculation by choosing the bin
size sequence properly. The runtime required by the algo-
rithm for a distribution with B number of bins scales with
B2, since the calculation time of the ML estimation is mostly
determined by the calculation of the convolution integrals

Number of bins Acceleration
50 0.704

100 0.606
200 0.599
400 0.439

Table 1: Acceleration gained in the runtime of our
ML algorithm for cases with and without the knowl-
edge of the previous, coarser time resolution at var-
ious number of bins. (Larger number of bins means
higher resolution.)
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Figure 7: Performance analysis of the ML imple-
mented. Left: Varying the time resolution of the
distributions ie. increasing the number of bins is
investigated. The total runtime of the algorithm
scales better than O(B2). We show the results for
the tree graph of the source node ”COLB”. Right:
Scaling analysis. The runtime of the ML algorithm
is tested against the number of receiver nodes in the
network. Results for the sender node ”COLB” are
shown. The runtime increases approximately lin-
early with the number of leaves in the tree. The
variance of the runtime denoted by the error bars
grows even slower.

Eq. (14). The convolutions have to be evaluated in each in-
ner EM step of the ML algorithm. The execution time then
scales with sB2, where s is the number of EM iteration steps
at a given bin size. Choosing proper initial distribution with
a given bin size Bi results in fast convergence, which needs
only a few ML steps si. For a given - usually exponentially
decreasing - sequence of bin sizes (or B1, B2, . . . , Bk number
of bins) the total runtime s1B

2
1 + s2B

2
2 + . . . + skB2

k grows
much slower than sB2

k, where s is the number of steps needed
if we run the calculation immediately at the largest number
of bins Bk. This is supported by the numerical evidence
shown in Fig. 7.

From the point of view of large scale deployment of net-
work tomography as a monitoring tool in the future, an im-
portant property is the scaling of the runtime of the infer-
ence algorithm with the number of monitoring nodes. The
great advantage of the message-passing algorithms is that
they have good scaling properties. It is expected that com-
putational complexity grows only linearly with the longest
path in the tree. In our experiment we studied the size
dependence of the runtime of the inference algorithm. In
measurement trees corresponding to various sender nodes
we changed the number of receiver nodes from 2 to 10. In
each case we repeated the analysis for all possible selection
of nodes and averaged the resulting run-times. In Fig. 7
we show a typical result for one of the sender nodes. The
observed linear growth of the runtime with the number of re-



ceiver end nodes affirm the expected good scaling properties
of the new method.

6. NEW SCALING PROPERTIES OF THE
QUEUING DELAY

In the past decade it became obvious that Internet has
several interesting fractal and scaling properties, such as the
self-similar nature of traffic[18] and the power law scaling of
the network topology[13]. The accelerated inference algo-
rithm now makes it possible for us to get higher resolution
distributions than it was possible in our earlier works[8, 9]
and to find interesting new scaling properties in our data.
We highlight that our distributions show signs of self-similar
traffic on the links. Then we also establish a new scaling law
for the distribution of the average link delays.

In Fig. 8 we show one of the tree graphs with the inferred
queueing distributions. We can interpret some of the main
distribution types of the Figure. For some of the links no
distribution is shown. These are empty links inside the very
high speed (≈10 Gbps) part of the GEANT network. The
first link originating from the root node ”ELTE” is a sin-
gle up-link hop. The corresponding single hop distribution
shown in Fig. 1 is a typical single queue delay distribution
in case of self-similar input traffic. A Weibull distribution
can be fitted and the Hurst exponent can be determined via
the formula of Norros[14]

P (X > x) ∼ exp

„

−
(C − m)2H

2k2(H)cvm2
x2−2H

«

, (21)

where C is the link capacity, m the input traffic average
rate, cv = σ/m the standard deviation divided by the in-
put traffic mean and k(H) = HH(1 − H)1−H , being H the
Hurst parameter. So far similar analysis was possible only
on passively collected single router delay data[11, 10].

In Fig. 9 a typical distribution for a compound link con-
sisting of many hops is shown. This and all the other down-
link distributions are convolutions of the distributions of the
hops in the compound link. The distribution is similar to
a typical one-way end-to-end delay distribution. This dis-
tribution can also be well fitted by a Weibull distribution,
though the Hurst exponents of the links have no simple re-
lation to the Weibull parameter in this case.

It is possible now also to analyze the measured 183 differ-
ent delay distributions produced in the measurements car-
ried out from 13 sources. The dataset now covers the whole
European continent and makes possible to draw some pre-
liminary conclusions on the spatial distribution of queuing
delays in a large network. Timescales of the distributions
range over three orders of magnitude. A good overall repre-
sentation of the data can be achieved by plotting the stan-
dard deviation of the distributions against their averages
(see Fig. 10). We can see that the standard deviation scales
linearly with the average over a wide timescale range. This
means that the various distributions come approximately
from the same distribution family with little variation in
shape. This is consistent with our previous observation that
the Weibull family fits well individual distributions, where
standard deviation and average are related by

σ(xi) = g(a)E(xi), (22)

where a is the shape parameter of the Weibull distribution

and g(a) = (Γ(1+2/a)−Γ2(1+1/a))1/2

Γ(1+1/a)
is the prefactor. The
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Figure 9: Inferred queueing delay distribution for
the compound link 2-ERIC. This is a typical down-
link from the high speed core down to the 100 Mbps
local ethernet of the measurement station ”ERIC”.
A fitted Weibull function is also shown.

fitted shape parameters for various distributions are in the
a = 0.5− 2.0 range thus the prefactor is in the g = 0.5− 1.1
range in accordance with Fig. 10.

Perhaps the most interesting result comes from the anal-
ysis of the distribution of average queuing delays. In Fig. 2
we show the complementary cumulative distribution of av-
erage delays measured on the 183 resolved links. On a semi-
logarithmic scale it falls on a straight line indicating that

P (E(X) > x) ∼ C1 − C2 log(x), (23)

in the measurement range xmin < x < xmax. This means
that the corresponding density shows ∼ 1/x type of power
law scaling in the same temporal range. Such distribution
is very special. Without upper and lower cutoffs it has no
finite variance or mean and it is not even normalizable.

While the exact reason for this scaling is not yet obvious
for us, a possible explanation can be that the new scaling
reflects the scaling properties of link capacities built into
the network. The queueing delay time on the links can be
approximated with

x ≈
P

C − m
, (24)

which is the time a packet needs to pass trough a queue
where the available bandwidth is C − m, where C is the
link capacity and m is the input traffic average rate in the
measured interval. For lightly loaded links it can be further
approximated as x ≈ P/C and we can suspect that the 1/x
scaling observed in the queueing delay is caused by the 1/C
type scaling of the link capacities in a large scale network.

7. CONCLUSIONS
In this paper we introduced a new rigorous recursive algo-

rithm for the computation of the likelihood and its numerical
maximization through the EM algorithm in network tomog-
raphy. We showed on standard numerical examples that its
computational performance is better than that of previous
methods. We implemented the algorithm and analyzed real
high precision tomography measurements carried out in the
ETOMIC infrastructure. It has been shown that the runtime
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Figure 8: A typical tree graph with the inferred queueing delay distributions. Only the nontrivial distributions
are shown. Hop distance between neighboring routers are labelled. Branching nodes, anonymized as 1,2,3,4,9
and 11, are in the high speed (≈10 Gbps) part of the academic research network GEANT. The queuing delays
between these routers are below the resolution of the measurement and are not shown. The ELTE-1 link
is a single hop. We analyze its distribution in detail in Fig. 1. In Fig. 9 we investigate the compound link
2-ERIC, which is a typical multiple hop down-link.

of the algorithm scales with the system size. We managed
to get high resolution queueing delay distributions from the
European academic and research network GEANT. On sin-
gle hop links the Hurst exponent of the self-similar input

traffic has been determined from the exponent of the fit-
ted Weibull distribution. Weibull distributions with various
shape parameters give good approximation of the delay dis-
tributions of compound down-links. A new extreme scaling
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Figure 10: The standard deviation as a function of
the average of the queueing delay distributions. The
straight line is σ(xi) = E(xi). standard deviation
values are in the 0.5E(X) < σ(X) < 1.1E(X) range,
except for the smallest averages (coming from the
high speed links), where the standard deviation is
inaccurate due to the limited resolution of the mea-
surement.

property of the investigated part of the Internet has been
discovered in the averages of the delay distributions.
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