
Optimizing AES for Embedded Devices and Wireless
Sensor Networks

Shammi Didla
sdidla@purdue.edu

Aaron Ault
ault@purdue.edu

Saurabh Bagchi
sbagchi@purdue.edu

Center for Wireless Systems and Applications (CWSA)
Purdue University, West Lafayette, IN 47906, USA

ABSTRACT
The increased need for security in embedded applications
in recent years has prompted efforts to develop encryption
algorithms capable of running on resource constrained sys-
tems. The inclusion of the Advanced Encryption Standard
(AES) in the IEEE 802.15.4 Zigbee protocol has driven its
widespread use in current embedded platforms. We pro-
pose an implementation of AES in a high-level language (C
in this case) that is the first software-based solution for 16-
bit microcontrollers capable of matching the communication
rate of 250 kbps specified by the Zigbee protocol, while also
minimizing RAM and ROM usage. We discuss a series of
optimizations and their effects that lead to our final imple-
mentation achieving an encryption speed of 286 kbps, RAM
usage of 260 bytes, and code size of 5160 bytes on the Texas
Instruments MSP430 microprocessor. We also develop rig-
orous benchmark experiments to compare other AES im-
plementations on a common platform, and show that our
implementation outperforms the best available implementa-
tion by 85%.

Categories and Subject Descriptors
E.3 [Data Encryption]: Standards—AES optimization,
embedded devices

General Terms
Algorithms, Security, Performance

Keywords
AES, encryption, embedded optimizations, secure sensor net-
works, CC2420, MSP430, Zigbee security

1. INTRODUCTION
The proliferation of wireless sensor networks (WSN) in re-

cent years has prompted increased interest in secure commu-
nications for embedded devices. Wireless sensor nodes are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tridentcom2008 Innsbruck, Austria
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

inherently resource-constrained in terms of processor speed,
bandwidth, energy usage, code space, and RAM size. There-
fore, there is a need for secure encryption/decryption imple-
mentations that have a small footprint while performing at
speeds comparable to the radio transmission bitrate on a
low-speed processor.

The Advanced Encryption Standard (AES) became the
standard for encryption to protect sensitive information by
all U.S. government organizations on May 26, 2002 [4]. Its
inclusion in the IEEE 802.15.4 [5] standard as the standard
encryption protocol for ZigBee makes AES ideal for use in
WSNs.

According to the IEEE 802.15.4 specification, Low Rate -
Wireless Personal Area Networks (LR-WPAN) have a max-
imum over-the-air data rate of 250 kbps. Therefore, it is
important for the encryption to match this rate to achieve
optimal wireless communication. After carefully reviewing
and experimenting with previous works, we came to the con-
clusion that no previous software scheme is able to encrypt
data using AES at a rate of 250 kbps or higher. More-
over, there was considerable disagreement among various
research groups about the performance and memory foot-
print of AES implementations. The memory footprint con-
sists of RAM usage and ROM usage. RAM is often a highly
constrained resource on the embedded platforms (e.g., the
Crossbow Mica2 mote has 4 KB and the MSP430 chip has
up to 10 KB). The ROM memory is used to hold the pro-
gram and therefore it is desirable to limit its usage by the
cryptographic functions.

In this paper we show that AES can indeed be rate mat-
ched with the radio communication speed, thus making it
practical for use in WSNs. Our fastest implementation of
AES achieved an encryption speed of 286 kbps and required
5160 bytes of ROM and 260 bytes of RAM. To the best
of our knowledge, no previous implementation on a similar
platform has been able to match this rate. At this encryp-
tion speed, it is also possible to eliminate latency due to the
encryption process in a IEEE 802.15.4-compliant WSN and
therefore use AES on a continuous stream of 128-bit data
blocks.

To achieve this speed, we applied various optimization
techniques to Gladman’s AES implementation [9] for low
resource platforms. We evaluated the effects of specializing
the code (SPECIAL) for AES-128 by removing code that ac-
commodates for variable key length, varying the data type
(DATASZ) that holds the state and key, eliminating func-
tion calls by integrating all functional blocks into a single
function (INLINE), unrolling looping constructs by taking

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tridentcom 2008 March 18–20, 2008, Innsbruck, Austria
Copyright 2008 ACM 978-1-60558-009-8 ...$5.00.

peri
Callout

peri
Typewriter
TRIDENTCOM 2008, 17th–20th Mar 2008, Innsbruck, Austria.
Copyright © 2011–2012 ICST ISBN 978-963-9799-24-0
DOI 10.4108/icst.tridentcom.2008.10409

peri
Typewriter

peri
Typewriter

a copy-paste approach for repeated operations (UNROLL),
reducing moving data around memory by restructuring the
original implementation (REDMEM), eliminating the use
of local buffers to hold the state (LOCBUF), using a global
variable to hold the key schedule (GLOB), generating the
key for each round during the encryption process instead
of precomputing it and storing it in RAM (OTFK) and
using 16-bit memory writes in the MixColumns transforma-
tion (MIX16). We also examined how these optimizations
interact and occasionally conflict with compiler optimiza-
tions and their net effect on performance, ROM and RAM.
Based on our analysis, we recommend the use of SPECIAL,
DATASZ (64-bits), INLINE, LOCBUF, REDMEM and GL-
OB for best performance and additionally apply OTFK to
optimize for RAM usage.

To understand how the flexibility and cost-effectiveness of
our software implementation written in C compares to the
performance advantage of using a hardware implementation,
we tested both solutions in a real-time wireless communica-
tion scenario using evaluation boards equipped with Zigbee-
compliant transceiver chips. We also studied and evaluated
three past attempts at optimizing AES in software that rep-
resent state-of-the-art in optimized encryption implementa-
tions for an embedded platform. By using a common plat-
form, a high precision oscilloscope to accurately measure
time to within ±5µs and by rigorously standardizing tests
across different implementations, we were able to reliably
and quantitatively compare different implementations and
evaluate their performance.

We developed and tested all our code on a Texas Instru-
ments’ MSP430 microcontroller unit (MCU) running at 8
MHz. The MSP430 family of microcontrollers is a popular
choice for several sensor nodes such as the Eyes Node [1] and
the T-Mote Sky [2]. It has a 16-bit RISC Core with a flexible
clock system and its low power consumption of about 250
µA/MIPS-active make it ideal for WSNs. We also bought
evaluation boards that interfaced the MSP430 to a Chip-
con CC2420 transceiver chip. The CC2420 is IEEE 802.15.4
Zigbee-compliant, has an effective data rate of 250 kbps and
has support for hardware MAC encryption (AES-128). We
used this setup to evaluate the performance of a hardware
implementation of AES and also compare it to our software
solution.

Our main contributions in this paper are showing that
AES can perform at the radio communication rate by im-
plementing the fastest software solution to date, presenting
an in-depth analysis of various optimization techniques re-
quired to achieve this speed and performing a rigorous and
quantitative benchmark of multiple software and hardware
solutions.

The rest of the paper is organized as follows. In the
next section, we give details about the other optimized AES
implementations that we chose to evaluate. In Section 3,
we give a brief description of AES, discuss the key aspects
of Gladman’s implementation and the IEEE 802.15.4 MAC
sublayer security specification. In Section 4, we describe all
the computational and memory optimizations we used, dis-
cuss the intuition behind and predict the effect of each. In
Section 5, we describe our experimental setup and method-
ology. In Section 6 we present the results of our experimen-
tation and in the last section, we conclude this paper and
discuss future work.

2. RELATED WORK
We identified three other fast implementations of AES and

obtained the source code from their authors. In addition
to these three, we also chose to evaluate the implementa-
tion provided in the freely available Zigbee Stack for the
CC2420. Below is a brief description, focus and published
performance figures of each of these implementations.

In [12], the authors have benchmarked various block Ci-
phers including Rijndael (AES) on a 16-bit MSP430 micro-
controller. Their implementation is based on code from the
open source OpenSSL library. It is heavily modified and
compiled with the commercial IAR Workbench compiler.
They have speed-optimized and size-optimized versions of
each implementation running in Cipher-Block Chaining Mode
(CBC), Cipher Feedback Mode (CFB), Output Feedback
Mode (OFB) and Counter Mode (CTR). Their estimate
shows that AES performs best in OFB mode taking 3127
clock cycles to encrypt a 128-bit block of plaintext while
taking up 12860 bytes of code memory (ROM) and 70 bytes
of data memory (RAM). Their size-optimized AES imple-
mentation takes 4231 clock cycles to encrypt a 128-bit block
of plaintext taking up 12616 bytes of ROM and 70 bytes of
RAM.

In [14], the authors focus on the need for a compact im-
plementation. Their implementation requires 3322 bytes in
ROM and 177 bytes in RAM. However, to achieve low code
size they have sacrificed performance. Their implementation
takes 3.75 ms to encrypt a 128-bit block of plaintext on a
16-Bit MSP430 microcontroller running at 4 MHz.

In [6], the authors implement AES on a sensor node based
on the 8-bit Atmel ATmega 128L microcontroller running
at 8 MHz. They have based their implementation on Glad-
man’s code that was cited in the AES proposal. Their imple-
mentation can encrypt a 128-bit block of plaintext in 0.857
ms.

Texas Instruments has made available a Zigbee Stack for
the boards using the MSP430 with the CC2420. Even though
the CC2420 has hardware support for AES, the stack in-
cludes a software implementation of the AES-128 encryp-
tion algorithm. We chose to add this to our evaluation list
because we expect wide use of this implementation by WSN
developers. No performance figures are provided with the
implementation.

Figure 7 and Table 5 in Section 6 summarize the pub-
lished results of each of these implementations while also
comparing them to the results obtained using our own test-
ing methods.

3. BACKGROUND

3.1 Advanced Encryption Standard
Rijndael Cipher, developed by Joan Daemen and Vincent

Rijmen was accepted as the Advanced Encryption Standard
on November 26, 2001. It is a symmetric-key block cipher
with a block length of 128-bits and a flexible key length of
128, 192 or 256 bits. This section gives an overview of how
AES works.

3.1.1 Encryption/Decryption Algorithm
A series of permutations and substitutions are applied to

the plaintext for encryption. Fig. 1 illustrates the overall
structure of the algorithm [13]. There are 4 main transfor-
mations used in this process. Each transformation is applied

The Overall Structure of AES

Figure 1: Overall Structure of AES

to a 4 × 4 byte matrix called the State. These transforma-
tions are described below:

• SubBytes: Each byte in the state is substituted by
a byte from a 256-byte look-up table called the s-box.

• ShiftRows: The bytes in each of the 4 rows in the
state are rotated by (n − 1) where n represents the row
number from 1 to 4.

• MixColumns: The state can be considered to be a
4 × 4 matrix and this transformation can be achieved
by multiplying this matrix by:

2

6

6

4

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

3

7

7

5

This multiplication is done in GF
`

28
´

1

• AddRoundKey: In this transformation, the round key
is simply added to the state. In GF

`

28
´

, adding is
equivalent to a bitwise exclusive-or operation.

The encryption process consists of initially applying Ad-

dRoundKey and 10, 12 or 14 rounds depending on the length
of the key. Each round except the last one consists of ap-
plying the 4 transformations to the state. In the last round,
only the SubBytes, ShiftRows and AddRoundKey transfor-
mations are applied.

1All arithmetic in Rijndael is done in a Galois Field with
256 Elements

Procedure Times Called
KeyExpand 1
SubBytes 9
ShiftRows 9
MixColumns 8
AddRoundKey 10

Table 1: Frequency of transformations in applying
AES-128 to a single data block

3.1.2 The Key Expansion
The cipher key is expanded to generate a different key for

each round. Similar to the State, the key is also considered
to be a two-dimensional matrix consisting of 4 rows. Each
column is considered to be a 4-byte word. The expansion is
achieved by applying SubWord and RotWord transformations
and addition in GF

`

28
´

of RCon[], a constant word array.
These operations are described below:

• SubWord: Similar to the SubBytes transformation,
this is done by substituting each byte in the word with
a byte from a 256-byte substitution box.

• RotWord: This transformation cyclically shifts the
bytes of a word one place upwards.

Since the key expansion differs slightly for 128-, 192- and
256-bit keys, and our implementation in this paper deals
with only 128-bit keys, we will discuss only 128-bit key
expansion here. We chose to limit ourselves to AES-128
because we think it provides sufficient data protection for
Wireless Sensor Networks. Moreover, the hardware module
in Chipcon CC2420 is also limited to AES-128.

For AES-128, the expanded key consists of 176-bytes (44
words). The first 4 words of the expanded key consist of the
original cipher key. Every word after that is equal to the
sum of the previous word and the word 4 positions earlier.
For words in positions that are multiples of 4, the SubWord

and RotWord transformations are applied before applying the
above described exclusive-or. After the exclusive-or, another
exclusive-or with the RCon[] associated with the round is
applied.

3.1.3 Profiling
Table 1 is a frequency distribution table of the different

transformations in the encryption process. This serves as
a good starting point in the analysis of the algorithm for
optimization.

3.2 Brian Gladman’s Low Resource Implemen-
tation

In this section, we discuss some of the important aspects
of Gladman’s implementation

3.2.1 Use of Look-Up Tables
As mentioned in the AES proposal, all modular math-

ematics of AES can be reduced to a series of table look-
ups and exclusive-or operations. Almost all implementations
that we looked at including Gladman’s take this approach.
Therefore, we concluded that using look-up tables was the
only viable option in any practical scenario.

Level Attribute Confidentiality Description
0x00 None NO No security
0x01 MIC-32 NO Auth (CBC-MAC) 32 bit MIC
0x02 MIC-64 NO Auth (CBC-MAC) 64 bit MIC
0x03 MIC-128 NO Auth (CBC-MAC) 128 bit MIC
0x04 ENC YES Enc (Counter mode AES)
0x05 ENC-MIC-32 YES Enc + Auth (CCM-Mode) 32 bit MIC
0x06 ENC-MIC-64 YES Enc + Auth (CCM-Mode) 64 bit MIC
0x07 ENC-MIC-128 YES Enc + Auth (CCM-Mode) 128 bit MIC

Table 2: Security modes specified in IEEE 802.15.4

Gladman’s implementation had three 256-byte look-up ta-
bles used for encryption and five 256-byte look-up tables for
decryption.

3.2.2 Combination of Transformations
Gladman combined the MixColumns and SubBytes trans-

formations as well as the ShiftRows and SubBytes transfor-
mations into two functions. These combinations are possible
because the shifting of rows and mixing of columns are al-
ways the same and are independent of the contents of the
state. A large number of memory moves are eliminated by
combining these transformations with the SubBytes trans-
formation.

This technique was developed by Mark Malbrain and his
contribution is acknowledged in Gladman’s code.

3.2.3 Tuning Options
Gladman’s code has 3 options which can be changed prior

to compiling the code. These options are made possible us-
ing conditional preprocessor directives and modify the code
considerably before compilation. These options can be acti-
vated/deactivated by using the #define preprocessor direc-
tive. These are briefly described below:

• HAVE_MEMCPY: Defining this directs the compiler to
take advantage of the memcpy function in the compiler’s
standard library

• HAVE_UINT32: Defining this directs the compiler to
take advantage of 32-bit data types if available on the
target platform

• VERSION_1: Defining this makes extensive use of lo-
cal buffers within functions instead of accessing data
through pointers

3.3 IEEE 802.15.4 Security Specification
The IEEE 802.15.4 standard was first released in 2003 and

revised in 2006. It includes Wireless Medium Access Control
(MAC) as well as Physical layer specifications. Security is
specified as part of the MAC sublayer. Since most WSNs
fall within the category of LR-WPANs, compliance with this
standard ensures reliability, compatibility and scalability of
the network. There are a total of 8 security modes of which 4
ensure data confidentiality. These modes are listed in Table
2.

All four modes that ensure data confidentiality use AES
as the underlying block cipher function. Level 0x04 uses
AES in counter mode whereas levels 0x05 through 0x07 use
AES in CCM mode. Moreover, CBC-MAC is a cipher based
authentication scheme that in this case, once again, uses
AES as the block cipher. For more information on AES
modes of operation, refer to [7].

Therefore all security modes (except 0x00) rely on AES as
the block cipher with a block length of 128-bits. Irrespective

of the mode, a fast implementation of the AES block cipher
is as essential building block of any secure IEEE 802.15.4
compliant system.

4. OPTIMIZATIONS
Gladman’s code implements AES for key sizes of 128 and

256 bits. The code also includes on-the-fly key generation
option. We use his code without the use of any tuning op-
tions as our baseline implementation. In this section, we
discuss in detail the optimizations we applied and the intu-
ition behind each optimization.

Since the integrity of the AES algorithm is of prime im-
portance, these optimizations only aim at streamlining the
program flow so as to achieve the same mathematical oper-
ation using fewer processor instructions. This ensures that
our optimized implementation is in strict accordance with
the AES specification. We verify the correctness of each im-
plementation by comparing them to the test values included
in [4].

4.1 Manual Optimizations

4.1.1 Specialization of Code (SPECIAL)
As mentioned before, the baseline implementation is a

generic implementation capable doing AES-128 as well as
AES-256. This definitely adds to the code size and hurts
the performance of the key expansion process. By focusing
on AES-128 and making the code less generic, we can elimi-
nate a lot of conditional constructs and thereby substantially
decrease the code size and improve performance.

4.1.2 Varying Data Type Size (DATASZ)
One of Gladman’s tuning options is to take advantage

of 32-bit data types (if available) instead of the 8-bit data
types. Our compiler’s largest data type is 64-bits. We ex-
pect the use of 8-bit data types to be highly inefficient since
we are operating on a 16-bit platform. The use of data types
larger than 16-bits is tested though we do not expect a sub-
stantial performance gain beyond 16-bit types. We expect
this to show a substantial effect in the AddRoundKey transfor-
mation since the processor can exclusive-or 16-bits at a time
instead of doing 8-bits at a time. Our profiling data (Table
1) also shows that AddRoundKey is the most frequently used
transformation.

4.1.3 Function-Inlining (INLINE)
Function inlining is a very common optimization tech-

nique. Instead of organizing code into discrete functions
which can be reused as and when required, all the func-
tional blocks of the algorithm are coded into a single func-
tion. This eliminates the need to save the state of the func-
tion onto the stack and subsequently retrieve it. Function
inlining improves performance but also increases code size
if there is repeated use of code segments that perform the
same set of operations on different data sets. In AES, each
transformation is called only once per round. Therefore,
when using a loop construct, we expect to see only a slight
increase in code size. However, if the loops are unrolled and
the functions are inlined, the code size might increase sub-
stantially. To have more control over function inlining, we
chose to manually do this as opposed to using the compiler
option.

4.1.4 Loop Unrolling (UNROLL)
Loop unrolling is another very commonly used optimiza-

tion technique which has similar effects as function inlin-
ing. Instead of using a looping construct to iterate multiple
times and use an index to perform the same operation on
different sets of data, the code to perform the operation is
copy-pasted multiple times. Since AES-128 has 10 rounds, 9
of which consist of exactly the same set of transformations,
any performance gain from loop unrolling will be 9 fold. By
manually unrolling the loops, we can also eliminate calcu-
lating array indices based on the loop counter. This usually
results in better performing code while adding substantially
to the code size.

4.1.5 Reducing Memory Moves (REDMEM)
The baseline implementation has several memcpy function

calls while operating on the input state. We can eliminate
copying of data from one memory location to the other by
restructuring the code so that each transformation function
saves its output in a location that is used as the input for
the next transformation. To be able to do this, we will need
to perform two sets of transformations on the state during
each iteration of the main loop. This approach is illustrated
in Fig. 2.

Make Copy

buffer1

buffer2

Transformation
function

input state

output state

buffer1

buffer2

Transformation
function

input state

output state

buffer1

buffer2

Transformation
function

input state

output state

buffer2

buffer1

(a) ORIGINAL (b) REDMEM

Figure 2: Restructuring the program to reduce data
movement (REDMEM)

4.1.6 Eliminate Local Function Buffers (LOCBUF)
Gladman’s code had a tuning option to either copy the

state into a local buffer and then operate on it or access the
state by passing a pointer to it to the transformation func-
tion. Gladman suggested that the performance implication
of having a local buffer would depend on the platform. This
is due to the fact that different microcontrollers have differ-
ent memory addressing modes. Since the MSP430 family has
a wide range of addressing capabilities, we expect passing of
pointers to be more efficient since we eliminate copying the
data.

4.1.7 Use of Global Variables (GLOB)
Due to the above mentioned issue with addressing modes,

global variables have an advantage over local variables since
their address can be precomputed before runtime by the
compiler. AES is very efficient in terms of memory usage.

state

code

data

state

function

(a) USE OF LOCAL BUFFER

do something;

do something;

…

…

state

code

data

function

(a) DIRECT ACCESS USING POINTER

do something;

do something;

…

…

Make Copy

Figure 3: Alternative approach to accessing the
state from a function

It uses a minimal amount of memory for all its transforma-
tions and can operate with the help of a 128-bit extra buffer
to store the temporary state. The only scope for use of a
global variable is to store the 176-byte key schedule since
this is accessed by multiple functions at all stages of the
encryption/decryption process.

4.1.8 On-the-fly-key Generation (OTFK)
For encryption/decryption, a 16-byte key gets expanded

into a 176-byte key which can then be reused for 128-bit
blocks of plaintext data. The 176-byte array that holds
the key accounts for a very large percentage of the RAM
requirement of AES. In cases where data memory is more
important that performance, the need for a 176-byte array
can be eliminated by generating the key on the fly during
each round. This technique becomes proportionally less effi-
cient compared to the pre-keyed version with increasing size
of the plaintext to be encrypted with the same key.

4.1.9 16-bit Memory Writes in MixColumns (MIX16)
As described in Section 3, the MixColumns transformation

can be implemented using XOR operations and table look-
ups. Each 8-bit entry in the state is replaced by XORing
four 8-bit values from precomputed tables. To reduce the
number of memory writes, we can compute a 16-bit entry
for the state by using a 8-bit shift and an OR operation on
two sets of four 8-bit values. The effectiveness of this opti-
mization depends on the speed of memory writes versus the
cost of bitwise-or and bitwise-shift operations. For example,
if A8, B8 are 8-bit numbers and v8[] and v16[] are arrays of
8-bit and 16-bit elements respectively, the statements:

v8[0] = A8;

v8[1] = B8;

have the same effect as

v16[0] = A8|(B8 ≪ 8);

4.2 Compiler Optimizations
The msp-gcc compiler we are using is based on version

3.2.3 of GNU GCC. It includes several compiler optimiza-
tions which are broadly divided into 4 categories:

• O1 (level 1): compiler tried to reduce code size and
execution time

• O2 (level 2): compiler turns on all optimizations except
loop unrolling, function inlining and register renaming

• O3 (level 3): compiler turns on all optimizations in-
cluding loop unrolling, function inlining and register
renaming

• Os (Optimize for size): compiler turns on all O2 opti-
mizations that do not increase code size

Since the primary focus of our paper is to optimize for
speed, we compiled all versions of our implementation with
the O3 option. Since O3 turns on a large number of com-
piler optimizations, in some cases, it cancels out the effect
of our manual optimizations. To understand and analyze
such cases better, we also tested all our code without the
use of any compiler optimizations. This method enabled us
to get a clear idea of the effects of O3 as well as our manual
optimizations. We discuss each optimization and its effect
in Section 6.

5. EXPERIMENTAL METHOD

5.1 The Setup
As mentioned before, we chose to develop on the MSP430

platform. These microcontrollers are available in different
configurations. Key features of the MSP430F1611 MCU we
used are listed below:

• Clock frequency of 8 MHz

• 48 KB ISP Flash ROM

• 10 KB RAM

• Power consumption: 330µA at 1 MHz, 2.2 V

Our main reason for choosing the MSP430F1611 is the
commercial availability of an evaluation board from Soft-
Baugh Inc. The evaluation board interfaces the MSP430 to
a Chipcon CC2420 transceiver chip as specified in techni-
cal documentation provided by TI [11]. Key features of the
CC2420 are listed below:

• 2.4 GHz IEEE 802.15.4 compliant RF transceiver

• 250 kbps effective data rate

• Low power consumption: 17.4 - 19.7 mA, 2.1 - 3.6 V

• 4-wire SPI interface

• Serial clock up to 10 MHz

• Hardware MAC encryption (AES-128)

All code was tested on the Softbaugh DZ1611 Zigbee demo
boards (Fig. 4, taken from [3]). The MSP430 can be pro-
grammed by either a JTAG interface provided on the board
or a custom BootStrap Loader (BSL) interface.

Some changes were made to the board:

• The default 6 MHz crystal oscillator was replaced with
a 8 MHz crystal to get peak performance from the
microcontroller.

Figure 4: SoftBaugh DZ1611 Zigbee demo board

• Four pull-up resistors were added to the 4-wire SPI
interface between the CC2420 and the MSP430. This
was done because the CC2420 operates on active low
signals.

We chose to develop using the open source mspgcc toolchain.
This is a port of the gcc compiler and a subset of GNU tools
to the MSP430 platform. We used mspgcc version 3.2.3.

5.2 Metrics
Upon reviewing previous works, we see significant dis-

agreement with regard to the resource requirements of AES
as well as its performance capability. Several reasons can
account for this:

1. Measurement methodology

2. Differences in implementation

3. Hardware platform

4. Software tools

In this section, we discuss an accurate method for mea-
suring parameters that are of interest to us: namely, RAM,
ROM and Speed. This will help us better evaluate AES and
its implementations.

5.2.1 ROM
or Code memory is the flash memory used by the pro-

gram when it is loaded onto the MCU. This is the most
straightforward parameter to measure. When the C code
is compiled, the compiler generates several segments. The
TEXT segment contains executable instructions and global
constants and is loaded into the the MCU’s ROM. The size
of each segment and its target physical address can be ob-
tained using the msp430-objdump utility. We are interested
in measuring the code memory used by the AES implemen-
tation only and not the whole program which includes the
main() function with the code to initialize the MCU and call
the encryption/decryption functions. To do this we compile
the test code without the encryption/decryption code to ob-
tain the size contributed by the main function and subtract
this from the size of the TEXT segment of the original test
code. This value is the best estimate of the ROM require-
ment of the AES module.

5.2.2 RAM
or Data memory refers to the volatile, high-speed on-

board memory of the MCU. This resource is extremely lim-
ited on most embedded systems. It is also hard to measure
because in addition to global variables, we also need to take
into account the variable stack size. Accurately measuring
the stack size has been a difficult challenge for embedded
systems developers. Yet it is important because bugs re-
sulting from stack overflows are unpredictable and hard to
find. We chose to use a very accurate and reliable method
that tends to be somewhat involved. The steps required to
calculate the stack size are given below:

1. Compile the code with the -g option to include debug-
ging information for use by msp430-gdb (MSP430 port
of the GNU debugger)

2. Load the code on the MCU through msp430-gdb using
the JTAG interface for real-time debugging

3. Using msp430-gdb, set break points at the start of each
function

4. Set a watch for register 1 of the MSP430 microcon-
troller. Register 1 is used as the Stack Pointer (SP)

5. Run the program and keep track of the minimum value
of SP. This is because the stack always grows up, thus
the minimum value of SP would give us the maximum
size of the stack

6. Subtract the minimum value of the stack from the
value of SP at the main() function to get the stack
depth of AES

Once we have a value for the maximum depth of the stack,
we can add the size of the DATA segment and the BSS
segment to account for initialized and uninitialized global
variables.

5.2.3 Software Encryption Speed
is the number of bits of plaintext data that can be en-

crypted per second. Since the time to encrypt a single block
of plaintext is on the order of microseconds, it is important
to rely on a method that can measure at this resolution.
To avoid any interference, we execute our code in a stan-
dalone mode without any underlying operating system on
the msp430 and without the possibility of interruption.

We use the digital output pins of the MCU to set pins
high just before initiating the encryption process and set
it low just after completion. Using a oscilloscope capable
of sampling voltage at a rate of 2 giga-samples per second,
we recorded the square wave generated by the output pin
going high and low and used the auto-measure feature of
the scope to measure the time when the digital output pin
remained high. We used an infinite loop which encrypted
and decrypted a block of data. For AES, a single block is
128 bits in size. Our code sets the output pin high during
encryption and low during decryption. The accuracy of this
technique depends on the scale setting of the oscilloscope
display. In Table 3, we list the scale settings that we have
used for our measurements and the accuracy of each setting.

We also use this time measurement technique to mea-
sure time taken by the AES key expansion process and the
CC2420 transmission rate.

Scale Accuracy
100µs/divsion ±1µs
200µs/divsion ±2µs
500µs/divsion ±5µs

Table 3: Scale settings and Accuracy of the Agilent
DSO3202A

5.2.4 CC2420 Hardware Encryption Speed
poses a slightly different challenge because the encryption

takes place on the CC2420 chip. We are limited by the
interface it provides to the microcontroller to make any time
measurements. Though the CC2420 supports a serial clock
of up to 10 MHz, we are limited to 4 MHz by the MSP430
SPI (Serial Peripheral Interface) master mode. However, a
serial clock of 4 MHz allows us to interact with the CC2420
at a rate of 4 Mbps which is much higher than the radio
transmission rate of 250 kbps. Therefore, we do not see the
serial link as a major performance bottleneck.

Similar to our timing method for software encryption, we
used digital output pins of the MSP430 and an oscilloscope
to measure time. Using the CC2420 hardware module in-
volves multiple steps. These are:

1. Writing to the CC2420 RAM

2. Issuing the encrypt command to the CC2420

3. Wait for encryption module to complete processing by
requesting status byte

4. Read from the CC2420 RAM

Though step 3 alone accounts for the time spent on en-
cryption by the CC2420 hardware module, we need to factor
in all of the steps listed above to get an application level es-
timate of encryption time.

Note that we evaluate the characteristics of the CC2420
in standalone encryption mode only. We assume that the
circuitry used in standalone mode is the same as the circuitry
used in inline mode. However, the CC2420 is not capable
of performing decryption in standalone mode, so our results
are limited to encryption only.

6. RESULTS

6.1 Effects of Optimizations
Fig. 5 shows the effects of applying our optimization tech-

niques on performance, RAM and ROM with the O3 com-
piler option, Fig. 6 shows similar metrics without the O3
option.

6.1.1 Specialization of Code (SPECIAL)
Modifying the generic baseline implementation and mak-

ing it specialized for AES-128 reduced the code size from
4942 to 4316 bytes. Due to the elimination of conditional
constructs that accommodated the key expansion for differ-
ent key sizes, we see a performance improvement of 183.52%
in the key expansion process. Since the RAM size depends
on the maximum depth of the stack, it is not effected by the
key expansion process which happens before the encryption
process that has a much greater stack requirement.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12

Version

R
O
M
 (
b
y
te
s
)

0

100

200

300

400

500

600

R
A
M
 (
b
y
te
s
)

ROM

RAM

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

Version

T
im
e
 (
m
s
)

Encryption time (ms)

Decryption time (ms)

Key Expansion time (ms)

Figure 5: Effect of optimizations on encryptions
speed, ROM and RAM usage. Refer to Table 4 for
optimizations associated with version numbers

6.1.2 Varying Data Type Size (DATASZ)
As expected, moving from 8-bit types to 16-bit types has

a huge performance benefit of 39.53% due to the use of a
16-bit microcontroller. We also see a drop in code size from
4882 to 4314 bytes and RAM size from 244 to 232 bytes.

The mspgcc compiler also supports 32-bit and 64-bit types.
On testing with these sizes, the gain in speed is negligible.
However, on testing the same variations without the com-
piler optimization flag, we see a more noticeable difference.
Without the O3 flag, in moving from 16-bit to 64-bit types,
the speed increased by 7.03% while the ROM decreased from
6138 to 5950 bytes. This shows that the compiler optimiza-
tions work well to speed up the AddRoundKey transformation.

6.1.3 Loop Unrolling (UNROLL)
When the O3 compiler optimization is selected, the com-

piler automatically tries to perform loop unrolling as well as
function inlining. We see that manually unrolling the loop
when the O3 compiler optimization was selected had a nega-
tive impact on RAM, ROM and Speed. The RAM increased
by more than 2.2 times and the code size increased by more
than 3.61 times. The speed also decreased by 14.73%.

This effect of loop unrolling is counter-intuitive and is due
to the compiler’s inability to determine which portions of
code need to be optimized. To verify this, we applied manual
loop unrolling without the use of O3 and as expected, we
observed a slight increase of 2.15% in speed and a 452 byte
increase in code size.

6.1.4 Function Inlining (INLINE)

Version Optimizations applied
1 NONE
2 SPECIAL, DATASZ(8-bits)
3 SPECIAL, DATASZ(16-bits)
4 SPECIAL, DATASZ(32-bits)
5 SPECIAL, DATASZ(64-bits)
6 SPECIAL, DATASZ(64-bits), MIX16
7 SPECIAL, DATASZ(64-bits), MIX16, UNROLL
8 SPECIAL, DATASZ(64-bits), MIX16, INLINE
9 SPECIAL, DATASZ(64-bits), MIX16, INLINE, REDMEM
10 SPECIAL, DATASZ(64-bits), MIX16, INLINE, REDMEM, LOCBUF
11 SPECIAL, DATASZ(64-bits), MIX16, INLINE, REDMEM, LOCBUF, GLOB
12 SPECIAL, DATASZ(64-bits), INLINE, REDMEM, LOCBUF, GLOB

Table 4: Optimizations associated with version num-
ber of each implementation. All versions compiled
with -O3 option provided by msp-gcc

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12

Version

T
im
e
 (
m
s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
O
M
 (
b
y
te
s
)

Encryption time (ms)

Key Expansion time (ms)

ROM

Figure 6: Effect of optimizations on encryption
speed and code size (without the use of msp-gcc O3
option). Refer to Table 4 for optimizations associ-
ated with version numbers

As mentioned before, O3 directs the compiler to attempt
function inlining on the entire code. Therefore, compiling
the source code with O3 with manual function inlining only
gave us a negligible advantage. To evaluate the advantage
gained due to function inlining, we compiled the source code
without O3 and observed an increase of 20.55% in speed
without sacrificing code space. This is because each trans-
formation is called only once within the main loop which
iterates through the rounds.

6.1.5 Reducing Memory Moves (REDMEM)
Reducing movement of data from one buffer to the other

during the encryption process resulted in a 42.12% increase
in performance. But this also increased the code size signif-
icantly by 1134 bytes.

When we tested the effects of reducing memory moves
without the use of compiler optimizations, we observed a
decrease in performance. This is because the compiler opti-
mization enforces the use of more direct memory addressing
which results in faster array accesses.

6.1.6 Eliminate Local Function Buffers (LOCBUF)
Use of a local buffer for the state within a function resulted

in only a slight increase in performance, code size and RAM.
This was again due to the effect of O3 which optimizes mem-
ory accesses using pointers. Without the use of O3, we see
a more significant increase of 27.30% in performance and a
decrease of 1096 bytes in code size.

6.1.7 Use of Global Variables (GLOB)
Storing the entire key schedule in a global variable hurt

the performance of the key expansion process by 6.38% and
resulted in a negligible improvement in encryption time.
Again, without the use of O3, use of global key schedule im-
proved key expansion performance significantly by 29.27%.
This shows that the compiler is also effective at optimizing
memory accesses for global variables.

6.1.8 On-the-fly-key Generation (OTFK)
Generating keys on-the-fly saves 160 bytes of RAM. This

represents a key trade-off between performance and RAM
usage. Performance is hurt only when encrypting multiple
blocks as the round keys are recalculated for each block.
This design choice largely depends on the size of the plain-
text data to be encrypted using a single key.

6.1.9 16-bit Memory Writes in MixColumns (MIX16)
When compiled with the O3 option, using an 8-bit shift

and or operation to generate a 16-bit value to write to RAM
instead of writing two 8-bit values hurt performance by 2.22%.
However, without the use of compiler optimizations, the per-
formance showed a slight improvement. This shows that the
compiler optimizes memory writes enough to make the use
of 16-bit writes unnecessary.

6.2 Recommended Optimizations
Based on our analysis, we recommend these optimizations:

• SPECIAL

• DATASZ (64-bits)

• INLINE

• LOCBUF

• REDMEM

• GLOB

Using the msp430-gcc compiler at the O3 optimization
level boosts performance by an additional 40.49%.

OTFK can be used on top of the above optimizations in
cases where it is important to use minimal amount of RAM
and the size of the plaintext data to be encrypted with a sin-
gle key is not too large. If however, the data to be encrypted
is large, then to prevent data replay attacks, different keys
will have to be used anyway and therefore OTFK is less
useful.

Using the above optimizations, we achieved an encryption
speed of 286.35 kbps, RAM requirement of 260 bytes and a
code size of 5160 bytes.

6.3 Comparison with Other Implementations
In Fig. 7, we see how our fastest implementation com-

pares to previous attempts at optimizing AES on a similar
platform. Our timing measurements for each implementa-
tion differ slightly from the published values as we compiled
and tested each implementation on our platform. We can
see that we have accomplished a significant improvement of
104.02% in encryption speed, 12.5% in key expansion and
an overall improvement of 84.69% over the previous best
performing implementation.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

Implementation

T
im
e
 (
m
s
)

Encryption time

Key Expansion time

Figure 7: Comparison of Encryption Time + Key
Expansion Time between our implementation (num-
ber 5) and other implementations (numbers 1-4).
Refer to Table 5 for details about which implemen-
tation corresponds with which number above.

Additionally, Table 5 compares ROM usage among other
implementations. Our version has the smallest ROM usage
of all our empirically measured code sizes, 5160 bytes. Note
that implementation 3 lists a smaller published ROM size,
due most likely to our use of the -O3 compiler optimizations
for our measured values.

RAM usage was similar among all implementations, and
depends largely on whether keys are generated on the fly or
pre-computed. Additionally, it is not clear how RAM us-
age was measured in other published implementations, es-
pecially with regard to stack usage.

Implementation Reference paper Measured ROM Usage Published ROM Usage
1 [6] 5968 bytes n/a
2 [12] 6780 bytes 12616 bytes
3 [14] 6848 bytes 3322 bytes
4 [10] n/a n/a
5 Our implementation 5160 bytes n/a

Table 5: Information about implementations com-
pared in Fig. 7. Measured ROM usage is taken
from the reference implementation code we used,
compiled with -O3 optimizations. Published ROM
usage is taken directly from each published refer-
ence.

6.4 Comparison with Hardware Implementa-
tion

In this section we will examine the pros and cons of using a
hardware implementation as well as describe our experience
in getting it up and running.

Process Time (µs)
Writing to the CC2420 RAM 94.40
Issuing the encrypt/decrypt command to the CC2420 6.40
Wait for encryption module to complete processing by requesting status byte 18.40
Read from the CC2420 RAM 102.40

Table 6: Time taken to complete each step required
to encrypt using the CC2420 hardware AES module

Table 6 shows the time taken to encrypt using the CC2420
AES module. As expected, the hardware module is much
faster than AES in software. This high speed of encryption

does not directly translate into a better performing WSN
since the limiting factor of the network is the radio commu-
nication rate. We have already shown that AES in software
can exceed the maximum specified rate of 250 kbps of IEEE
802.15.4-compliant WSNs. However, using the hardware
module for data encryption does free up the microprocessor
for a few milliseconds which can be used for other tasks. In
a system where performance is crucial, allocating encryption
to the CC2420 hardware and efficiently using microprocessor
resources can result in slightly better performance.

The major disadvantage of using hardware AES is its lack
of flexibility. Though AES-128 is sufficiently secure, security
schemes are regularly evaluated and updated to ensure that
they are not susceptible to newly developed attacks. In [8],
NIST acknowledges that the widely used cipher-based au-
thentication mode, CBC-MAC, has security deficiencies and
details a specification for the CMAC mode. The CC2420
implements AES-based authentication using the CBC-MAC
mode of operation, therefore we assume that its hardware
implementation suffers from these deficiencies. Therefore,
relying on hardware for security is a concern for secure sen-
sor networks.

We also faced considerable difficulty in using the CC2420
AES hardware module due to lack of proper documentation.
We found that the CC2420 is incapable of performing en-
cryption/decryption unless the ciphertext is preceded by an
802.15.4-compliant header. This means that the hardware
AES module cannot be used if the data are not formatted
to be strictly compliant with IEEE 802.15.4. This is an-
other major drawback since sensor networks almost always
have different resource constraints that make it necessary to
customize protocol specifications.

7. CONCLUSION
In this paper, we demonstrated that it is possible for an

optimized C implementation of AES encryption-decryption
to match the communication speed of a Zigbee radio. We
show which optimizations work (and which do not) in in-
creasing computational speed and reducing memory foot-
print. Additionally, we show how they interact with the
optimizations of the GCC compiler. We provide a common,
rigorous set of procedures and metrics for accurately mea-
suring execution speed, ROM usage, and RAM usage. We
use these metrics to benchmark our implementation along
with four existing software implementations of AES on a
common platform (Texas Instruments’ MSP430 processor
with a Chipcon CC2420 Zigbee radio) and show that our
optimized implementation outperforms all previous imple-
mentations. We also evaluate the hardware implementation
on the Zigbee radio and find that it outperforms all software-
based schemes. However, this comes at the cost of lack of
flexibility, e.g., different sized data blocks and difficulty of
evolving to patch future security vulnerabilities.

In future work, we will be using the developed encryption-
decryption scheme as a primitive in a secure application and
to develop efficient interfaces with other primitives such as
authentication. The ultimate goal is to provide an optimal,
secure communication infrastructure for common embedded
platforms.

8. REFERENCES
[1] Eyes project. http://www.eyes.eu.org/.

[2] Moteiv corportation. http://www.moteiv.com/.

[3] Softbaugh, inc. http://www.softbaugh.com/.

[4] Advanced Encryption Standard (AES), FIPS PUB
197, November 2001.

[5] IEEE Standard for Information technology-
Telecommunications and information exchange
between systems- Local and metropolitan area
networks- Specific requirements Part 15.4: Wireless
Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal
Area Networks (WPANs), IEEE Standard
802.15.4-2006, September 2006.

[6] D.-R. Duh, T.-C. Lin, C.-H. Tung, and S.-J. Chan. An
implementation of aes algorithm with the multiple
spaces random key pre-distribution scheme on
mote-kit 5040. In SUTC ’06: Proceedings of the IEEE
International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing - Vol 2 -
Workshops, pages 64–71, Washington, DC, USA, 2006.
IEEE Computer Society.

[7] M. Dworkin. Recommendation for Block Cipher Modes
of Operation: Methods and Techniques. National
Institute of Standards and Technology, December
2001.

[8] M. Dworkin. Recommendation for Block Cipher Modes
of Operation: The CMAC Mode for Authentication.
National Institute of Standards and Technology, May
2005.

[9] B. Gladman. Brian gladman’s aes implementation.
http://fp.gladman.plus.com/AES/index.htm.

[10] T. Instruments. Z-stack: Zigbee protocol stack from
texas instruments, 2008.

[11] S. Karthikeyani. IEEE 802.15.4TM and ZigBeeTM
Hardware Platform using MSP430F1612. Texas
Instruments, September 2005.

[12] Y. W. Law, J. Doumen, and P. Hartel. Survey and
benchmark of block ciphers for wireless sensor
networks. ACM Trans. Sen. Netw., 2(1):65–93, 2006.

[13] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone. Handbook of Applied Cryptography. CRC
Press, 2001.

[14] A. Vitaletti and G. Palombizio. Rijndael for sensor
networks: Is speed the main issue? Electron. Notes
Theor. Comput. Sci., 171(1):71–81, 2007.

