
ICST Transactions on Scalable Information Systems Research Article

Specifying Usage Control Model With Object
Constraint Language
Min Li1

1Australian Council for Educational Research

Abstract

The recent usage control model (UCON) is a foundation for next-generation access control models with
distinguishing properties of decision continuity and attribute mutability. Constraints in UCON are one
of the most important components that have involved in the principle motivations of usage analysis and
design. The importance of constraints associated with authorizations, obligations, and conditions in UCON
has been recognized but modeling these constraints has not been received much attention. In this paper
we use a de facto constraints specification language in software engineering to analyze the constraints in
UCON model. We show how to represent constraints with object constraint language (OCL) and give out
a formalized specification of UCON model which is built from basic constraints, such as authorization
predicates, obligation actions and condition requirements. Further, we show the flexibility and expressive
capability of this specified UCON model with extensive examples.

Received on 09 January 2012; accepted on 11 January 2012; published on 04 February 2013

Copyright © 2013 Li, licensed to ICST. This is an open access article distributed under the terms of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi:10.4108/trans.sis.2013.01-03.e5

1. Introduction
Modern information systems require fine-grained and
flexible access control policies, which need dynamic
and expressive access control models. Traditional access
control models such as lattice-based access control
(LBAC) [19] and role-based access control (RBAC) [20]
primarily consider static authorization decisions based
on subjects’ permissions on target objects. Policy-based
authorization management systems have been proposed
[6, 10, 13], in which a centralized reference monitor
(or distributed reference monitor with centralized
administration) checks a subject’s permission when
access is requested and the request is granted according
to the security policies at the time of the access
request. Once a subject is granted a permission, there
are no more security checks for continued access.
Developments in information technology, especially in
electronic commerce applications, require additional
features for access control. Recently proposed usage
control (UCON) model is a new access control model
that extends traditional access control models in
multiple aspects [17] and considered as the next
generation access control model [21].

The usage control (UCON) model was introduced
as a unified approach to capture a number of

extensions for traditional access control models. In
the UCON model, the authorization-based decision
process utilizes subject attributes and object attributes.
Attributes can be identities, security labels, properties,
capabilities, and so on. The UCON model includes
obligation and conditions as well as authorizations as
part of usage decision process to provide a richer and
finer decision capability. Obligations are requirements
that have to be fulfilled for usage allowance. Conditions
are subject and object-independent environmental
requirements that have to be satisfied for access. These
decision predicates can be evaluated before or during
exercise of a request. In addition, usage of target
object may require certain updates on subject or object
attributes before, during or after a usage exercise.

Park and Sandhu [17, 21] presented the conceptual
model of UCON, which consists of several constraints.
For example, people may have to click ‘accept’
button for license agreement or have to fill out a
certain form to download a company’s whitepaper. In
addition, there are environmental requirements, such
as, only IEEE member can access full papers in the
IEEE digital library. Constraints can be described in
natural languages, such as English, or in more formal
languages. Natural language specification has the

EAI European Alliance
for Innovation 1

ICST Transactions on Scalable Information Systems
January-March 2013 | Volume 13 | Issue 01-03 | e5

http://creativecommons.org/licenses/by/3.0/


M. Li

Usage Decision Authorization (A)

Subjects (S) Rights (R) Objects (O)

Obligations (B) Conditions (C)

Subject Attributes Object Attributes
(ATT(S)) (ATT(O))

Figure 1. Components of UCON model

advantage of ease of comprehension by human beings,
but may be prone to ambiguities [1]. Constraints in
formal language are suitable for persons with a strong
mathematical background, but difficult for average
business or system developers to use. For instance,
Zhang et al.[23] proposed a formalized specification
of the principles of UCON with a temporal logic.
The authors in [23] are security experts and system
developers who have to understand organizational
objectives and articulate major policy decisions.

This paper focuses on constraints specification, that
is how constraints can be represented. The main con-
tribution of this paper is to specify constraints of
UCON model with object constraints language (OCL).
Although constraints are one of the important compo-
nents of UCON model, there is less study in previous
works stressing this. With OCL, we provide a tool
to precisely describe constraints for system designers
and administrators. The specification also provides the
precise meaning of the new features of UCON, such as
the mutability of attributes and the continuity of usage
control decisions. Another contribution of this paper is
that we give out a formalized specification of UCON
model which is built from these basic constraints, such
as authorization predicates, obligation actions and con-
dition requirements.

The rest of this paper is organized as follows. In the
next section, we identify the motivation of our work in
this paper and review the related technologies such as
UCON, Unified Modeling Language (UML) and OCL.
Constraints in authorization decisions, obligations and
conditions are discussed in section 3. Formalized
specifications of usage control model are expressed with
OCL in section 4. Some related work is reviewed in
section 5 and the conclusions are in section 6.

2. Motivation and Related Technologies
Constraints in UCON are one of the most important
components that have involved in the principle
motivations of usage analysis and design. Using OCL
that has been used to express constraints in analysis
and design as an industrial standard constraints

specification language, we demonstrate that OCL can
help us specify previously identified constraints at the
system design step.

2.1. Usage Control
UCON has recently received considerable attention as
a promising alternative to traditional access control
model, such as access matrix [16], mandatory access
controls (MAC) [2, 11], discretionary access control
(DAC) and role-based access control (RBAC) [12, 22].
Usage control is used for the access control in the
pervasive environment. There are eight components:
subjects, subject attributes, objects, object attributes,
rights, authorizations, obligations, and conditions in
usage control model (see Fig. 1). Subjects and Objects
are familiar concepts from traditional access control,
and are used in their familiar sense in this paper. A right
represents access of a subject to an object, such as read
or write. Subject and object attributes are properties
that can be used during the access decision process.
Examples of subject attributes are identities, group
names, roles, memberships, credits, etc. Examples of
object attributes are security labels, ownerships, classes,
access control lists, etc. In an online shop a price could
be an object attribute, for instance, a particular e-book
may stipulate a 10 price for a ‘read’ right and a 15 price
for a ‘print’ right.

Authorizations, obligations and conditions are deci-
sion factors employed by the usage decision functions
to determine whether a subject should be allowed to
access an object with a particular right. In addition
to these three decision factors, modern information
system require two other important properties called
‘continuity’ and ‘mutability’ as shown in Fig. 2. In tra-
ditional access control, authorization is assumed to be
done before access is allowed (pre). However, it is quite
reasonable to extend this for continuous enforcement
by evaluating usage requirements throughout usages
(ongoing). the presence of ongoing decisions is called
the continuity of UCON. Mutability means that one or
more subject or object attribute values can be updated
as side-effects of subjects’ actions. In case, attributes
are mutable, updates can be done either before (pre),
during (ongoing) or after (post) usages shown in Fig. 2.

2.2. Unified Modeling Language and Object
Constraints Language
The UML [18] is the industry-standard language for
specifying, visualizing, constructing, and documenting
the artifacts of software systems. It simplifies the
complex process of system analysis and design and
further software implementation. The UML has become
a standard modeling language in the filed of software
engineering.

EAI European Alliance
for Innovation 2

ICST Transactions on Scalable Information Systems
January-March 2013 | Volume 13 | Issue 01-03 | e5



Specifying Usage Control Model With Object Constraint Language

before usage ongoing usage after usage

pre-decision ongoing-decision

pre-update ongoing-update post-update

Continuity of Decisions

Mutability of Attributes

Figure 2. Continuity and mutability properties of UCON

Expression with OCL are described with the context
of an instance of a specific type. In an OCL expression,
the reserved word self is used to refer to the contextual
instance. The type of the context instance of an
OCL expression is written with the context keyword,
followed by the name of the type. The label invar:
declares the constraint to be an invariant constraint. For
example, suppose that employees work for a company
and they are involved in projects. These relationships
can be modeled using the class model of the UML. If
the context is Company, then self refers to an instance
of Company. The following shows an example of OCL
constraint expression describing a company that has
more than 200 employees:

context Company invar:
self.employee → size > 200

The self.employee is a set of employees that
is selected by navigating from Company class to
Employee class though an association. The “." stands for
a navigation. A property of a set is accessed by using
an arrow “→" followed by the name of the property. A
property of the set of employees is expressed using a
keyword ‘size’ in this example.

An OCL expression delivers a subset of a collection.
That is, the OCL has special constructs to specify a
selection from a specific collection. For example, the
following OCL expression specifies that the collection
of employees whose age is over 50 is not empty:

context Company invar:
self.employee → select(age > 50) → notEmpty

The select takes an employee from self.employee and
evaluates an expression (age > 50) for the employee. If
this evaluation result is true, then the employee is in the
result set. More examples can be reviewed in [18].

3. Constraints in UCON
Constraints are an important aspect of access control
and are a powerful mechanism for laying out a
higher-level organizational policy. Consequently the
specification of constraints needs to be considered. This

issue has received surprisingly little attention in the
research literature. Next we will give out the main
constraints in UCON.

Authorization Constraints
In today’s highly dynamic, authorizations are pred-

icates based on subject and/or object attributes, which
determine whether a subject should be allowed to access
an object with particular right. Before authorization,
predicates on attributes have to be satisfied. A predi-
cate is a boolean-valued polynomially computable func-
tion built from a set of a subject s’s and an object
o’s attributes and constraints. The following examples
show how we can specify this type of constraints using
OCL.

Example 1: The subject’s credit attribute value in
current state of the system should be larger than $100.

context State invar:
self.attribute → subject.credit > $100

Obligation Constraints
In UCON, an obligation is an action that must be

performed by a subject before or during an access, such
as, filling out a form before playing a licensed music
file.

Example 2: The downloading of a music file may need
the requesting subject to click a privacy button.

context Downloading invar:
self.subject.click‘privacy’ = true

Condition Constraints
Conditions are environmental restrictions that have

to be valid before or during a usage process, such as
system clock, location, system code, etc.

Example 3: A subject obtains a permission only when
the system clock is in daytime.

context Obtain a permission invar:
self.systemclock.daytime = true

Mutability Constraints
Mutability means that subject and/or object

attributes can be updated as the results of an access.
There are three kinds of updates: pre_updates,
on_updates, and post_updates. The updating of
attributes as side-effect of subject activity is a significant
extension of classic access control where the reference
monitor mainly enforces existing permissions.

Example 4: The subject’s current usage number of an
object is increased by 1 at the time of access and decreased
by 1 at the end of access. The update of the object’s attribute
‘usageNum’ can be described as follow:

context Attributes(o) invar:
self.pre_update → exists( usageNum = ‘usageNum(o)+1’)
self.post_update → exists( usageNum = ‘usageNum(o)−1’)

EAI European Alliance
for Innovation 3

ICST Transactions on Scalable Information Systems
January-March 2013 | Volume 13 | Issue 01-03 | e5



M. Li

4. Specifying Usage Control Model with OCL
In this section we present a formalized specification
of usage control models which is built from the
basic components, such as authorization predicates and
mutable attributes etc.

4.1. UCONpreA – pre-authorization Models
Authorizations have been considered as the core
of access control and extensively discussed since
the beginning of access control discipline. Tradition-
ally, access control research has focused on pre-
authorizations in which a usage decision is made before
a requested right is exercised. UCONpreA models utilize
these pre-authorizations for their usage decision pro-
cesses. In UCONpreA models, an authorization decision
process is done before usage is allowed. We begin with
the UCONpreA0

which allows no updates of attributes.

context preA0 invar:
init: self.access = ‘requesting’
derive: if self.access = ‘permitaccess’

then self.preA(attr(s), attr(o), r) = true
else self.access = ‘denyaccess’
endif

while reqesting means the access has been generated
and is waiting for the system’s usage decision, where
preA is a functional predicate that utilizes attr(s),
attr(o), and right r for usage decision making. We write
‘permitaccess’ to indicate that subject s is allowed right
r to object o. Else, ‘denyaccess’ indicates that the system
rejects the access request.

The UCONpreA1
model is similar to UCONpreA0

except it takes pre_update attributes into account,
i.e., let ‘attr:string = self.pre_update → size()’ in the
expression. We use the size property on the set of
pre_updated attributes in preA1, where ‘size()> 1’
indicates at least subject’s or object’s attributes are
pre_updated.

context preA1 invar:
init: self.access = ‘requesting’
derive: let attr:string = self.pre_update → size() in

if self.access = ‘permitaccess’
then

self.preA(attr(s), attr(o), r) = true and
self.pre_update → size()> 1

else self.access = ‘denyaccess’
endif

The specification of UCONpreA3
is similar to that

in UCONpreA1
except it adds post_update processes,

i.e., let ‘attr:string = self.post_update → size()’ in the
expression.

Example 5: In a DRM pay-per-use application, a read
access can be approved when the user Alice’s credit is more

than an ebook’s value. Before the access can be begin, an
update to Alice’s credit is performed.

context preA1 invar:
init: self.access = ‘application’
derive: let attr:string = self.pre_update → size() in
if self.access = ‘read’
then

self.attribute → Alice.credit ≥ ebook.value and
self.pre_update → exists (credit = Alice.credit −

ebook.value→ size()> 1)
else self.access = ‘denyaccess’
endif

4.2. UCONonA – ongoing-authorization Models
In UCONonA model, ongoing-authorizations have been
seldom discussed in access control literature. By
utilizing ongoing-authorization, monitoring is actively
involved in usage decisions while a requested right
is exercised. This kind of continuous control is
useful for relatively long-lived usage rights. In
UCONonA, there are four detailed models. UCONonA0
is immutable ongoing-authorization model that has
no update procedure included. UCONonA1

is ongoing-
authorization model with an optional pre-updates.
UCONonA2

and UCONonA3
include ongoing updates

and post updates respectively.

context onA0 invar:
init: self.access = ‘accessing’
derive: if self.onA(attr(s), attr(o), r) = false

then self.access = ‘revokeaccess’
else self.access = ‘endaccess’
endif

UCONonA model introduces onA predicate instead of
preA. Since there is no pre-authorization , the requested
access is always allowed. The ‘accessing’ means that
the system has permitted the access and the subject
has been accessing the object immediately after that.
In case certain attributes are changed and requirements
are no long satisfied, ‘revoke’ procedure is performed.
We write ‘revokeaccess’ to indicate that right r of
subject s to object o is revoked and the ongoing access
terminated. Else, ‘endaccess’ indicates that a subject
finishes the usage and ends the access.

The expressions of onA1, onA2 and onA3 are sim-
ilar to that in onA0 except they add the updat-
ing of attributes in the expression, i.e., pre_update,
on_update, post_update, respectively. Here, for sim-
plicity we just give out the description of onA1 as
following.

context onA1 invar:
init: self.access = ‘accessing’
derive: let attr:string = self.pre_update → size() in

EAI European Alliance
for Innovation 4

ICST Transactions on Scalable Information Systems
January-March 2013 | Volume 13 | Issue 01-03 | e5



Specifying Usage Control Model With Object Constraint Language

if self.onA(attr(s), attr(o), r) = false
then

self.access = ‘revokeaccess’ and
self.pre_update → size()> 1

else self.access = ‘endaccess’
endif

Example 6: Considering a limited number of simultane-
ous usages, each new access request must be granted and
there is only one access generated from a single user at any
time. when a new request is generated, one existing user’s
ongoing access is revoked by longest idle time. The policy
can be specified as a combination policy of onA1, onA2 and
onA3 as follows.

context onA invar:
let attr:string = self.update → size() in
init: self.access = ‘permitaccess’
derive:

(1) self.pre_update→ exists (accessingS = accessingS(o) ∪ {s})
self.pre_update → exists (idleTime = 0)
(2) if self.access = ‘accessing ∧ idle’ then
self.on_update → exists (idleTime = idleT ime(s) + 1)
(3) if self.attributes → subject.startTime=

MaxidleT ime(object.accessingS)
then self.access = ‘revokeaccess’ and
self.post_update → exists (accessingS = accessingS(o) − {s})
endif

where MaxidleT ime(object.accessingS) is the largest
idleT ime in the object’s accessingS attribute. The first
description is a onA1 rule specifying that whenever a
subject tries to access the object, there must be two pre-
update before the subject starts to access. The second
rule says that the mutability of the subject attribute
by saying that there must be a continuous update of
idleT ime whenever the status of subject is idle. The
third rule specifies the revocation is is determined by
the idleT ime, and the attribute accessingS is updated
by removing the subject.

4.3. UCONpreB – pre-obligations Models
UCONpreB introduces pre-obligations that have to be
fulfilled at the time of a request and before access
is allowed. UCONpreB models consist of two steps.
First step is to select required obligation elements
for the requested usage. The getP reOBL function
represents the pre-obligations required for s to gain
r access to o. Second step is to evaluate whether
the selected obligation elements have been fulfilled
without any error (e.g., invalid e-mail addresses). The
preFulf illed predicate tells us if each of the required
obligations in true. In UCONpreB models, a request may
require multiple pre-obligation elements to be fulfilled.
Suppose the set of pre-obligation elements is indicated

by M which is based on requests that consist of s, o and
r.

context preB0 invar:
let M: Set= {getP reOBL(s, o, r)} in
init: self.access = ‘requesting’
derive: if self.access = ‘permitaccess’
then M → select(m|self .preFulf illed = f alse) → is empty
else self.access = ‘denyaccess’
endif

The expression (M → select(m|self .preFulf illed =
f alse) → is empty) indicates that all the required pre-
obligation elements are fulfilled by using preFulf illed.

The specification of UCONpreB1
is similar to that in

UCONpreB0
except that an pre_update action must be

performed before ‘permitaccess’, i.e., let ‘attr:string =
self.pre_update→ size()’ in the expression.

context preB1 invar:
let M: Set= {getP reOBL(s, o, r)} in
init: self.access = ‘requesting’
derive:
let attr:string = self.pre_update → size() in
if self.access = ‘permitaccess’
then M → select(m|self .preFulf illed = f alse) → is

empty and
self.pre_update → size()> 1
else self.access = ‘denyaccess’
endif

The UCONpreB3
model is similar to UCONpreB0

except
it adds post_update processes.

Example 7: In an online electronic marketing system,
in order to place an order, a customer has to click a
button to agree to the order policies. We define an action
click_agreement as an obligation for each other, where the
obligation subject is the same as the ordering subject, and
the agree_statement is the obligation object. A customer’s
orderList is updated by adding the ordered item after
he/she places an order. This can be expressed with a preB3
policy as the following.

context preB3 invar:
let M: Set= {(s, agree_statement, order)} in
init: self.access = ‘requesting’
derive: if self.access = ‘permitaccess’
then M → select(m|self .preFulf illed = f alse) → is empty
self.post_update → exists (orderList = orderList(s) ∪ {o})
else self.access = ‘denyaccess’
endif

4.4. UCONonB – ongoing-obligations Models
UCONonB models are similar to UCONpreB models
except that obligations have to be fulfilled while rights

EAI European Alliance
for Innovation 5

ICST Transactions on Scalable Information Systems
January-March 2013 | Volume 13 | Issue 01-03 | e5



M. Li

are exercised. Ongoing-obligations may have to be ful-
filled periodically or continuously. In UCONonB mod-
els, there are four detailed models based on mutability
issues. UCONonB0

includes ongoing-obligation predi-
cate instead of pre-obligations predicate. UCONonB1

,
UCONonB2

, and UCONonB3
are same as UCONonB0

except that they add pre-updates, ongoing-updates, and
post-updates, respectively.

context onB0 invar:
let M: Set= {getOnOBL(s, o, r)} in
init: self.access = ‘accessing’
derive:
if M → select(m|self .onFulf illed = f alse) → notempty
then self.access = ‘revokeaccess’
else self.access = ‘endaccess’
endif

Similar to preB, the set M shows the selection
of required ongoing-obligation elements. The spec-
ification (M → select(m|self .onFulf illed = f alse) →
notempty) indicates that not all required ongoing-
obligation elements are fulfilled by using onFulf illed.

The expressions of onB1, onB2 and onB3 are similar
to that in onB0 except it adds the updating of attributes
in the expression, i.e., pre_update, on_update,
post_update, respectively. Next, the description of
onB1 is given for simplicity.

context onB1 invar:
let M: Set= {getOnOBL(s, o, r)} in
init: self.access = ‘accessing’
derive:
let attr:string = self.pre_update → size() in
if M → select(m|self .onFulf illed = f alse) → notempty
then self.access = ‘revokeaccess’ and
self.pre_update → size()> 1
else self.access = ‘endaccess’
endif

4.5. UCONpreC – pre-conditions Model
Conditions are environmental restrictions that have
to be satisfied for usages. By utilizing conditions
in usage decision process, UCONpreC can provide
fine-grained controls on usage. unlike authorization
and obligation models, condition models cannot
be mutable. UCONpreC introduces pre-conditions
predicate that has to be evaluated before requested
rights are exercised.

context preC0 invar:
let M: Set= {getP reCON (s, o, r)} in
init: self.access = ‘requesting’
derive: if self.access = ‘permitaccess’, then
M → select(m|self .preConChecked = f alse) → is empty
else self.access = ‘denyaccess’

endif

In this specification, a set of relevant condition
elements M is selected based on a request possibly
using subject or object attributes. To allow a request,
all of the selected condition restrictions have to be
evaluated by using preConChecked.

4.6. UCONonC – ongoing-conditions Model
In many cases, environmental restrictions have to be
satisfied while rights are in active use. This could
be supported within UCONonC model. In UCONonC ,
usages are allowed without any decision process at
the time of requests. However, there is an ongoing-
conditions predicate to check certain environmental
status repeatedly throughout the usages.

context onC0 invar:
let M: Set= {getOnCON (s, o, r)} in
init: self.access = ‘accessing’
derive:
if M → select(m|self .onConChecked = f alse) → notempty
then self.access = ‘revokeaccess’
else self.access = ‘endaccess’
endif

5. Related Work
The development of access control models has experi-
enced a long history. There are two main approaches
in this field. One is about traditional access control
models, which have been discussed in the introduction.
The other approach is about the research of temporal
access control models, which introduce the temporal
attributes into traditional access control with temporal
logic. A temporal authorization model for database
management systems was first proposed by Bertino et
al. [3–5]. In this model, a subject has permissions on an
object during some time intervals or a subject’s permis-
sion is temporally dependent on an authorization rule.
For example, a subject can access a file only for one
week. Our specified model is different: we consider the
temporal characteristics in a single-usage period, with
mutable attributes of subject and object before, during,
and after an access, that is, the temporal properties
are result of mutability of subject and object attributes,
which change due to the side effects of access and
usages.

Joshi et al. [15] presented a generalized temporal
RBAC model (GTRBAC) to specify temporal constraints
in role activation, user-role assignment, and role-
permission assignment. For example, a user can only
activate a role for a particular duration. The concept
of temporal constraint is different from the mutability
constraints of UCON, since it does not have update
actions. The dependency constraint in GTRBAC [14]

EAI European Alliance
for Innovation 6

ICST Transactions on Scalable Information Systems
January-March 2013 | Volume 13 | Issue 01-03 | e5



Specifying Usage Control Model With Object Constraint Language

is similar to the concept of obligation in UCON, but
the dependency is more like the implication relation
between events in GTRBAC, i.e., if an event happens, it
triggers another event; while in UCON, obligations are
explicit required actions to permit an access.

Bettini et al. [7, 8] presented concepts of provisions
and obligation in policy management: provisions are
conditions or actions performed by a subject before
authorization decision, while obligations are conditions
or actions performed after an access. In this paper,
we distinguish between conditions and obligations.
All the actions that a subject has to perform before
usage are regarded as obligations, while for future
actions, we consider them as the obligations for future
usage requests or long-term obligations. Chomicki and
Lobo [9] investigate the conflicts and constraints of
historical actions in policies. In their paper, actions
are applications activities and constraints are expressed
with linear-time temporal connectors. In our paper, we
specify obligations as actions required by an access and
give formal specification with OCL.

6. Conclusions
This paper has discussed the constraints in UCON
model and provide various kinds of constraints
representation with object constraint language. We have
analyzed the constraints in UCON such as decision
actor constraints and mutability constraints etc. We
also provide a tool to precisely describe constraints
for system designers and administrators. Furthermore,
we give out a formalized specification of UCON
model which is built from these basic constraints,
such as authorization predicates, obligation actions and
condition requirements etc. We show the flexibility and
expressive capability of this model by specifying the
core models of UCON with extensive examples.

References
[1] G. Ahn and M. Shin: Role-Based Authorization Con-

straints Specification Using Object Constraint Language.
Tenth IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises
(2001) 157-165

[2] D. E. Bell and L. J. Lapadula, Secure Computer Systems:
Mathematical Foundations and Model. Mitre Corp.
Report No.M74-244, Bedford, Mass., 1975.

[3] E. Bertino, C. Bettini, and P. Samerati, A temporal
authorization model. In Proceedings of ACM Conference
on Computer and Communication Security. ACM, New
York, 1994.

[4] E. Bertino, C. Bettini, and P. Samerati, A temporal
access control mechanism for database systems. IEEE
Transactions on Knowledge and Data Engineering 8, 1
(Feb.) 1996.

[5] E. Bertino, C. Bettini, and P. Samerati,An access control
model supporting periodicity constraints and temporal

reasoning. ACM Transaction on Database Systems 23, 3
(Sept.)1999.

[6] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, A Logical
Framework for Reasoning about Access Control Models,
In Proc. of Sixth ACM Symposium on Access Control
Models and Technologies, 2001.

[7] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera,
Obligation monitoring in policy management. In Pro-
ceedings of the 3rd InternationlWorkshop on Policies for
Distributed Systems and Networks, 2002.

[8] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera,
Provisions and obligations in policy management and
security applications. In Proceedings of the 28th VLDB
Conference, 2002.

[9] J. Chomicki, and J. Lobo, Monitors for history-based
policies. In Proceedings of the 2nd Internationl Workshop
on Policies for Distributed Systems and Networks, 2001.

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman,
The Ponder Policy Specification Language, In Proc. of
the Workshop on Policies for Distributed System s and
Networks, 2001.

[11] D. E. Denning, A lattice model of secure information
flow, Communications of the ACM, vol. 19, no. 5, 1976.

[12] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Richard Kuhn
and R. Chandramouli, Proposed NIST Standard for Role-
Based Access Control, ACM Transactions on Information
and System Security, Volume 4, Number 3, August 2001.

[13] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian, Flexible Support for Multiple Access
Control Policies, ACM Transactions on Database Systems,
June, 2001

[14] J. Joshi, E. Bertino, B. Shafiq, and A. Ghafoor,
Constraints: Dependencies and separation of duty
constraints in gtrbac. In Proceedings of the 8th ACM
Symposium on Access Control Models and Technologies,
2003.

[15] J. Joshi, E. Bertino, B. Shafiq, and A. Ghafoor, A
generalized temporal role-based access control model.
IEEE Transactions on Knowledge and Data Engineering
17, 1, 2005.

[16] M. H. Harrison, W. L. Ruzzo, and J. D. Ullman,
Protection in Operating Systems, Communication of
ACM, Vol 19, No. 8, 1976.

[17] J. Park and R. Sandhu, The UCONABC Usage Control
Model, ACM Transactions on Information and Systems
Security, Feb., 2004.

[18] M. Richters and M. Gogolla: On Formalizing the UML
Object Constraint Language OCL. In Tok-Wang Ling
etc editor: 17th International Conference on Conceptual
Modeling (ER). Vol. 1507 Springer-Verlag (1998) 449-464

[19] R. Sandhu, Lattice-Based Access Control Models, IEEE
Computer, Vol.26, No.11, November 1993.

[20] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, Role
Based Access Control Models, IEEE Computer, 29, (2),
pp.38-47, 1996

[21] R. Sandhu and J. Park, Usage Control: A Vision for
Next Generation Access Control, The Second Interna-
tional Workshop on Mathematical Methods, Models and
Architectures for Computer Networks Security, 2003.

[22] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, Role-
Based Access Control Models, IEEE Computer, Volume

EAI European Alliance
for Innovation 7

ICST Transactions on Scalable Information Systems
January-March 2013 | Volume 13 | Issue 01-03 | e5



M. Li

29, Number 2, February 1996.
[23] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu,

A Logical Specification for Usage Control, In Proc. of

the 9th ACM Symposium on Access Control Models and
Technologies, 2004.

EAI European Alliance
for Innovation 8

ICST Transactions on Scalable Information Systems
January-March 2013 | Volume 13 | Issue 01-03 | e5


	1 Introduction
	2 Motivation and Related Technologies
	2.1 Usage Control
	2.2 Unified Modeling Language and Object Constraints Language

	3 Constraints in UCON 
	4 Specifying Usage Control Model with OCL
	4.1 UCONpreA – pre-authorization Models
	4.2 UCONonA – ongoing-authorization Models
	4.3 UCONpreB – pre-obligations Models
	4.4 UCONonB – ongoing-obligations Models
	4.5 UCONpreC – pre-conditions Model
	4.6 UCONonC – ongoing-conditions Model

	5 Related Work
	6 Conclusions

