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Abstract

A social network often has numerous interesting attributes. When an attribute is quantified, a social tomography would
arise from the underlying social network. One of the most interesting attributes is crime hotspots, whose existence has
been strongly supported by observations that serious crimes ranging from residential burglary to homicide are strongly
patterned in time and space, and by mathematical modeling. So far, however, the structures of hotspots, including their
size distributions, have not been adequately studied. Here, we focus on a special type of hotspots, the sex offender
clusters, in the United States, and show that their size distribution, where size is defined as the ratio between sex offender
population and total population in a 5-digit zip code area, follows a power-law distribution. In contrast, such local total
population, both general and sex offenders, do not quite follow power-laws. A heavy-tailed power-law distribution is
fundamentally different from a thin-tailed distribution such as a Poisson distribution, and can be used as an objective
criterion for defining sex offender clusters. More fundamentally, a power-law is a defining property of self-similarity or
fractal behavior. Therefore, our finding indicates that sex offender clusters, size-wise, self-organize into a fractal, due to
interplay of economic conditions of offenders, policies and public perceptions.
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1. Introduction

Imagine driving through a good-sized city and pass through
many unmarked safe and not-too-safe neighborhoods. At
the turn of a corner, we may find ourselves in a very
different neighborhood from where we just left a moment
ago. While a city may have a flat physical layout, different
neighborhoods may possess very different “tomography”,
with “health” and “cancers”. Structure in a social network
with complex tomography may not be flat or benign, but
could be dangerous. When geo-spatial layout couples with
sociology, the concept of social “tomography” can provide
significant insights into the underlying structure and potential
impact of the network. An important aspect of social
tomography is crime hotspots.

It is well-known that serious crimes ranging from
residential burglary to homicide are strongly patterned in time
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and space forming the crime “hotspots” [1–3]. Their existence
recently has further been demonstrated by mathematical
modeling [4–6]. Few studies, however, have researched the
general structure of hotspots, such as their size distribution.
In fact, the size of hotspots given by mathematical models is
more or less fixed [4, 5]. To gain a deeper understanding of the
structure of hotspots, in this work, we focus on a special type
of crime hotspots, the clustering of sex offenders in different
states of the U.S.

Recent estimates by National Center for Missing and
Exploited Children indicate that there are nearly 603,000
sexual offenders registered in local, state and federal
databases in the U.S. [7]. Furthermore, about 60,000 – 70,000
arrests are made each year in the U.S. for charges of child
sexual assault [8]. With the increasing public awareness
of sexual offenses, there has been strong public support
for community notification as well as residence restrictions,
two legislations that provide, respectively, information to
communities regarding released offenders [9–12] and limit
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the locations where sex offenders can reside [13–16]. The
rationale behind these policies and the support they have been
receiving can be partially attributed to the perception that sex
offenders may recidivate.

Community notification and residence restrictions have
resulted in housing difficulties for many sex offenders.
As a result, many of them have to live in cheap,
disorganized, deprived, and segregated communities [17, 18],
a phenomenon that is suggestive of sex offender clusters
[19–21]. This is a very troublesome phenomenon — if
sex offenders are truly clustering, then rehabilitation efforts
targeted to convicted offenders may not have much success;
even worse, communities with sex offender clusters can
become highly problematic or intimidating neighborhoods.
To aid policy makers, correction agencies and local law
enforcement officials in developing suitable policies to
mitigate sex offender clusters and ensure environmental
fairness for offenders while protecting innocent women and
children, it is important to develop objective and effective
means of determining whether sex offenders are truly
clustering.

Clustering can be studied by a variety of methods,
including excellent models such as complex networks [22, 23]
and neutral clustering [24–26]. In crime study literature,
Poisson statistics have been widely used, and deviations from
the Poisson model may be used to define a hot spot[27, 28].

In this work, we ask a fundamental question: in what way
do the underlying statistics of sex offender data deviate from
a Poisson model? In searching the answer, we naturally come
up with a new and more quantitative way of determining
whether sex offenders are clustering.

More importantly, we can now answer whether sex
offender clusters within a state may have an overarching
organizing principle.

For our purpose, we examine four states, one is New
York, to represent the East coast, another is California, to
represent the West coast, and two more are Illinois and Ohio,
to represent the Midwest. We show that the distribution of the
size of sex offender clusters, where size is defined as the ratio
between the sex offender population and the total population
in a five digit zip code area, follows a power-law tail. The start
of the power-law tail defines objectively a threshold value,
below which, a zip code area is classified as normal, while
above which, a zip code area is classified as containing a sex
offender cluster. A power-law distribution is fundamentally
different from exponential distributions. The prevalence of
power-law distribution thus underpins the deviation from
Kulldorff’s Poisson process based spatial scan statistic [28].
More importantly, a power-law is a defining property for self-
similarity or fractal behavior [29]. Therefore, the existence of
power-law size distribution for sex offender clusters signifies
that sex offender clusters, size-wise, self-organize into a
fractal, due to interplay of economic conditions of offenders,
policies and perceptions.

2. Materials and Methodology

The sex offender data for Ohio, New York, and California
were obtained from the National Sex Offender Public Website
1, while those for Illinois were obtained from Illinois Sex
Offender Information 2. The total population data for the four
states were obtained from U.S. Census Bureau 3. We have
discarded problematic data entries, including those with zero
population or those with sex offender population equal to or
greater than the total population. The basic statistics of the
data are summarized in Table 1.

Kulldorff’s spatial scan statistic for identifying a hot spot
or cluster is based on maximizing deviations from a Poisson
distribution [28]. Poisson distribution, like exponential
and Gaussian distributions, belongs to the so-called thin-
tailed distributions, whose moments are all finite. The
opposite of the thin-tailed distributions is called heavy-tailed
distributions. It is described by

P[X ≥ x]∼ x−α, x→ ∞ (1)

where P[X ≥ x] is called complementary cumulative
distribution function (CCDF). When α < 2, the variance
and all moments higher than the second-order are infinite.
Furthermore, when α ≤ 1, the mean also diverges. When an
arbitrary number of random variables with infinite variance
(i.e., α < 2) are summed together, the distribution for the
summation is not a Gaussian random variable with a finite
variance, but is a random variable still with infinite variance
— the limiting distribution is called an α-stable law (this is
the generalized central limit theorem; see Chapter 7 of [29]
for details).

In this study, we test whether any statistics of sex offenders
can be described by a heavy-tailed distribution. If yes, then
obviously the statistics for sex offenders deviate from those of
Poisson, and it has to be concluded that sex offender clusters
indeed exist. Specifically, we consider all n 5-digit zip code
areas of a state. Denote the population in the i-th zip code
area by pi, and the population of sex offenders in the same
area by si. We shall examine whether {pi, i = 1,2, · · · ,n} and
{si, i = 1,2, · · · ,n} follow heavy-tailed distributions. More
importantly, we shall examine if their ratio, which may be
called raw risk,

ri = si/pi, i = 1,2, · · · ,n (2)

follows a heavy-tailed distribution. For later convenience,
we define two more quantities:

r0 =
∑

n
i=1 si

∑
n
i=1 pi

(3)

1http://www.nsopw.gov/Core/OffenderSearchCriteria.aspx?Advanced=1
2http://www.isp.state.il.us/sor/sor.cfm
3http://factfinder.census.gov/home/saff/main.html?_lang=en
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States New York California Illinois Ohio
Total population 18,975,844 33,863,571 12,214,709 11,353,002

Offender population 20,663 38,036 13,037 19,205
Number n of 5-digit 1,602 1,667 1,072 1,160

zip code areas
Population ratio r0 0.0011 0.0011 0.0011 0.0017

Mean ratio r 0.0017 0.0039 0.0021 0.0019
Threshold r∗defining 0.0022 0.0013 0.0018 0.0020
the start of power-law

α exponent 1.70±0.05 1.25±0.05 1.66±0.06 1.89±0.04
Number C of

sex offender clusters 361 669 388 361
defined by r ≥ r∗

ratio C/n 22.5% 40.1% 36.2% 31.1%

Table 1. Basic statistics for the data studied here; r0 and r are defined by Eqs. (3) and (4), and r∗ is the starting
point of the power-law distributions, as shown in Figs. 2, 5,8 and 11.

which is the global ratio between the sex offender population
and the total population, and

r =
1
n

n

∑
i=1

si

pi
(4)

which is the mean of the ratios.
Note that mathematically, self-similarity or fractal is

characterized by one or many power-law relations [29]. To
appreciate why power-law yields self-similar perception, let
us imagine a very large number of balls flying around in the
sky, with their sizes following a power-law distribution,

p(r)∼ r−α.

See Fig. 1. Being human, we will instinctively focus on
balls whose size is comfortable for our eyes — too small
balls cannot be seen, while too large balls block our vision.
Now let us assume that we are most comfortable with the
scale r0. Of course, our eyes are not sharp enough to tell
the differences between scales r0 and r0 + dr, |dr| � r0.
Nevertheless, we are quite capable of identifying scales such
as 2r0, r0/2, etc. Which aspect of the flying balls may
determine our perception? This is essentially given by the
relevant abundance of the balls of sizes 2r0, r0, and r0/2:

p(2r0)/p(r0) = p(r0)/p(r0/2) = 2−α.

Note that the above ratio is independent of r0. Now suppose
we view the balls through a microscope, which magnifies all
the balls by a scale of 100. Now our eyes will be focusing
on scales such as 2r0/100, r0/100, and r0/200, and our
perception will be determined by the relative abundance of the
balls at those scales. Because of the power-law distribution,
the relative abundance will remain the same — so does our
perception.

3. Results
Let us first focus on the State of Illinois. We computed
the distributions for the total population, the sex offender
population, and their ratios. The CCDFs, in log-log scale,
are plotted in Fig. 2. We first note that the CCDF for the
total general population and sex offenders in Illinois shown in
Figs. 2(a,b) are quite different from the powerlaw population
distribution of all US cities with population of 10000 or more,
as reported by Newman [30]. Most interestingly, the plot for
the ratio is a well-defined power-law. The starting point for
this power-law behavior corresponds to r∗ = 0.0018, which is
larger than the global ratio r0 but smaller than the mean ratio
r listed in Table 1.

The excellent power-law relation shown in Fig. 2(c) highly
suggests that sex offender clusters form a fractal process.
Since power-law distribution is entirely different from a
Poisson distribution, it is natural to consider zip code areas
with raw risk ri ≥ r∗ as neighborhoods with sex offender
clusters. Among the 1072 zip code areas studied, we find that
388 satisfy this condition. Therefore, about 36% of the zip
code areas can be considered sex offender clusters.

It is instructive to show these sex offender clusters in a map.
Since Google Earth is error-prone, we have used ArcGIS. We
tried two methods. One is to represent a sex offender cluster
by a circle, with its radius proportional to the raw risk ri. This
is shown in Fig. 3, where each circle is chosen to be red.
The approach however, has a drawback: some circles can be
substantially bigger than the physical size of a zip code area.
To overcome this problem, we have designed a color-encoded
scheme, where normal zip code areas with ri < r∗ are simply
represented by a white background. Each zip code area that
can be considered as a sex offender cluster is represented by
a single color. This yields a color map shown in Fig. 4. Since
such a map preserves the actual size, sometimes one has to
zoom in to see the details. One example is shown at the top
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right corner of Fig. 4, which corresponds to the Chicago area.
We observe that when a neighborhood is small, in order to see
its true “color”, we have to zoom in.

Note that our results have shed some new light on two
earlier studies. One is by Grubesic [27], who found that
the primary sex offender cluster may morph from the entire
state to a big swatch of the state of Illinois. The primary
reason is that the sex offender clusters are size-invariant on
a wide range of scales; therefore, when a size parameter
corresponding to the population in Kulldorff’s spatial scan
statistic is varied, one cannot easily see which parameter best
defines a sex offender cluster.

Another study is by Hughes and Burchfield [31]. They
found that sensitive facilities (e.g., day care centers) are
significantly more abundant in disadvantaged neighborhoods
than in affluent neighborhoods. While this can partially be
attributed to the least restrictive (e.g., 500 ft) residence
restrictions law in Chicago, it is also due to the fact that
many of those disadvantaged neighborhoods are not yet sex
offender clusters.

We have carried out similar analyses on data for Ohio,
New York and California. The results are shown in Figs. 5
- 13. Especially from Figs. 5, 8, and 11, we observe that
sex offender clusters in those three states also form fractal
processes. The key parameters for them are listed in Table 1.
We find that the number of sex offender clusters in New York
is the smallest.

Note from Table 1 that r∗ is usually larger than the global
ratio r0. This is to be expected, as otherwise, there will be
too many sex offender clusters. However, r∗ may be smaller
than the mean ratio, r. This reflects the large scale range
that the power-law distribution is defined, as is evident from
Figs. 2, 5, 8, and 11. Given the large number of sex offenders
registered in each state, the wide power-law scaling range
may be considered a good attribute, in the sense that the sex
offenders do not tightly cluster in only a few neighborhoods.
On the other hand, if one wishes to have smaller number of
sex offender clusters, one may use a more stringent criterion
to define sex offender clusters, such as using the condition
r ≥ βr∗, β > 1. Clearly, the number of sex offender clusters
will decrease with increasing β.

4. Discussions

The primary goal of the present study is to uncover the
general organizing principle of sex offender clusters in the
U.S. To have representative samples of sex offenders in the
U.S., we have examined four states, New York, California,
Illinois, and Ohio. We have found that sex offender size,
where size is defined as the ratio between sex offender
population and total population in a 5-digit zip code area,
follows a heavy-tailed (or power-law) distribution. A heavy-
tailed distribution is fundamentally different from a thin-
tailed distribution such as a Poisson distribution, which forms
the basis of the null hypothesis of Kulldorff’s spatial scan
statistic. Therefore, a power-law distribution can be used as

an objective criterion for defining sex offender clusters — the
start of the power-law tail defines unambiguously a threshold
value, below which, a zip code area is normal, while above
which, a zip code area should be classified as containing a sex
offender cluster. A power-law is a defining property for self-
similarity or fractal behavior [29]. The existence of power-
law size distribution for sex offender clusters signifies that sex
offender clusters, size-wise, self-organize into a fractal. Note
that in the sex offender research community, sex offender
clustering is largely attributed to the interplay of economic
conditions of offenders, policies and public perceptions [17–
21, 27]. While economic, policy, and social pressures are
undoubtedly important elements for the formation of sex
offender clusters, other processes relevant to social network
formation could also be to blame.

How may the present study be utilized by policy makers,
correction agencies and local law enforcement officials for
developing suitable policies to mitigate sex offender clusters,
ensure environmental fairness for offenders, and protect
innocent women and children? These issues could be tackled
by focusing on a few important variables: (1) the number
of registered sex offenders in a state; (2) the number of
neighborhoods without sensitive facilities such as day care
centers so that sex offenders are allowed to live; and (3)
total population in the neighborhoods where sex offenders
can legally live. To be free of sex offender clusters, it is most
desirable that sex offenders are distributed to these allowable
neighborhoods as uniformly as possible. Unfortunately, this
can be hardly achieved, because of many complicating factors
such as housing price and availability of housing in those
neighborhoods. Therefore, ideal uniform distribution for the
ratio of sex offenders and total population in a neighborhood
is not attainable. However, with suitable policy, it is possible
to transform a power-law distribution to a distribution with a
much lighter tail. Of course, a more fundamental solution is
to decrease the number of sex offenders.

Our analyses have suggested many interesting future
research topics in the study of crime hotspots in particular
and social tomography in general. One topic is the modeling
of crime hotspots, noting that the basic models for simulating
hotspots are based on exponential laws [4–6], which is
fundamentally different from the power-law distribution we
have reported here. Another topic is to analytically or semi-
analytically examine the behavior of Kulldorff’s spatial scan
statistic under the context of power-law distributions. The
third is to zoom in the many regions in our circle- and color-
encoded maps for further study. In particular, it would be
tremendously interesting to examine sex offenders on scales
even smaller the 5-digit zip code areas examined here, such
as street-to-street level, or examine the gradients between
adjacent neighborhoods. Furthermore, it would be interesting
to also examine temporal correlations of sex offenses and
other crimes. Such studies may shed new light on prior works
on micro-scale crime variations [32–34]. Crime variations
on such scales would be crucial for determining social
tomography.
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We also note that the notion of hotspots in crimes can
be readily extended to include insurgency hotspots [35],
hot-topics in science and engineering that have attracted a
lot of investment attention world-wide, hot-items sales in
retail stores that have caused waves of spur-of-the-moment
purchasing, marine life conservation hot-zones off from the
coasts by the environmental community, etc. Quantitative
behaviors of these attributes can greatly enrich the notion of
social tomography.

Finally, we note that the present work may be extended
to enrich the study of complex networks, epidemiology,
population dynamics, and ethnography. It merits noting that
ethnography is closely related to culturomics [36], whose
study has been greatly boosted by the recent release of
googlebook’s Ngram data [37, 38].
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Figure 1. Random fractal of discs with a power-law distributed size: P[X ≥ x] = (1.8/x)1.8.
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Figure 2. Tail probabilities P[X ≥ x] for total population, sex offender population and their ratio. a) total population of
1072 distinct zip codes in the State of Illinois, b) sex offender population in those zip codes, and c) the ratio between
sex offender population and total population.
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Figure 3. Raw risk ri for exposure to sex offenders in Illinois, 2010, as represented by red circles.
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Figure 4. Raw risk ri for exposure to sex offenders in Illinois, 2010, as encoded by a color map.
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Figure 5. Same as Fig. 2 except for the State of Ohio.
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Figure 6. Same as Fig. 3 except for the State of Ohio.

Figure 7. Same as Fig. 4 except for the State of Ohio.
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Self organized hotspots and social tomography
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Figure 8. Same as Fig. 2 except for the State of New York
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Figure 9. Same as Fig. 3 except for the State of New York.

Figure 10. Same as Fig. 4 except for the State of New York.
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Self organized hotspots and social tomography
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Figure 11. Same as Fig. 2 except for the State of California
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Figure 12. Same as Fig. 3 except for the State of California.

Figure 13. Same as Fig. 4 except for the State of California.
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