
The homes of tomorrow: service composition
and advanced user interfacesI

Claudio Di Ciccio1, Massimo Mecella1,*, Mario Caruso1, Vincenzo Forte1, Ettore Iacomussi1,
Katharina Rasch2, Leonardo Querzoni1, Giuseppe Santucci1, Giuseppe Tino1

1Dipartimento di Informatica e Sistemistica, University of Rome ‘‘La Sapienza’’, via Ariosto 25, I-00185 Rome, Italy;
2KTH Royal Institute of Technology, School of Information and Communication Technology Forum 120, 16440
Kista, Sweden

Abstract

Home automation represents a growing market in the industrialized world. Today’s systems are mainly based on
ad hoc and proprietary solutions, with little to no interoperability and smart integration. However, in a not so
distant future, our homes will be equipped with many sensors, actuators and devices, which will collectively expose
services, able to smartly interact and integrate, in order to offer complex services providing even richer
functionalities. In this paper we present the approach and results of SM4ALL- Smart hoMes for All, a project
investigating automatic service composition and advanced user interfaces applied to domotics.

Keywords: advanced user interfaces, domotics, smart devices, smart homes, service composition, SM4ALL

Received on 24 May 2011; accepted on 11 July 2011

Copyright � 2011 Di Ciccio et al., licensed to ICST. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution
and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/trans.amsys.2011.e2

1. Introduction

Embedded systems, i.e. specialized computers used in
larger systems in order to control the bundled equip-
ments, are nowadays pervasive in immersive realities.
For instance, they are widely adopted in those scenarios
where both explicit and implicit interactions with
human users are needed, in order to (i) provide contin-
uous sensed information and (ii) react to service
requests from the users themselves. Examples are digital
libraries, eTourism applications, automotive appliances,
next-generation buildings and domotics. Sensors/
devices/appliances/actuators offering services are no
more static, as in classical networks (e.g. for environ-
mental monitoring and management or surveillance),
but they form an overall distributed system that needs

to continuously adapt instead. Such a task can be
achieved by adding, removing and composing basic ele-
ments, i.e. the offered services.

This paper intends to outline some insights stemming
from the European-funded project SM4ALL (Smart
hoMes for All—http://www.sm4all-project.eu/), started
on 1 September 2008 and finished on 31 August 2011.
SM4ALL aims at studying and developing an innovative
platform for software smart embedded services in immer-
sive environments, based on a service-oriented approach
and composition techniques. This is applied to the chal-
lenging scenario of private homes in the presence of users
with different abilities and needs (e.g. young, elderly or
disabled people).

In order to introduce the novel idea of services under-
lying SM4ALL, the reader should consider the following
scenario: a person is at home and decides to take a bath.
He/she would like to simply express this to the house;
then, the available services should collaborate in order
to move the house itself to a new state in which the
desired situation holds. The temperature in the bath-
room should be raised through the heating service, the

IThis work has been partly supported by the EU project FP7-
224332 SM4ALL (http://www.sm4all-project.eu/).
*Corresponding author. Email: mecella@dis.uniroma1.it

ICST Transactions
on Ambient Systems Research Article

EAI European Alliance
for Innovation 1

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

http://creativecommons.org/licences/by/3.0/
http://www.sm4all-project.eu/
http://www.sm4all-project.eu/
mailto:mecella@dis.uniroma1.it

wardrobe in the sleeping room opened in order to offer
the bathrobe, the bath filled up with 37 �C water, etc.
Some services, nonetheless, cannot be directly automated.
If we consider a disabled user, the act of helping her to
get to the bath can be considered an action offered by a
service, though implemented, so to speak, by a human
being, such as the nurse. We might suppose that she is
notified (e.g. through her smartphone/tablet, while
doing her job in another room) to go into the bath and
help the patient at the right moment. This service could
also be realized by the son of the patient (or any other
person), living in a nearby house: thus, if the nurse is
not at home, he is in turn asked to help the patient.
The scenario draws the idea of a system of services, some
of which are offered by completely automated systems
(such as sensors, appliances or actuators), while the others
are realized through the collaboration of other humans.
Clearly, as in all the complex systems, there are tradeoffs
to be considered: for instance, the goal of the person will-
ing a relaxing bath could be in contrast with the availabil-
ity of the nurse/son offering the ‘help’ service.

The rest of the paper is organized as follows: Section 2
provides a background on the current state of the art for
home automation systems and other relevant techniques
adopted in our approach, e.g. service composition,
Section 3 gives the reader an overview of the SM4ALL sys-
tem architecture. For sake of space, the remainder of the
paper focuses only on some components, namely (i) the
Pervasive Layer (Section 4), (ii) the Service Repository
and the common service and data models used by all
the components (Section 5), (iii) the Composition Layer
(Section 6) and (iv) the User Interface (Section 7), which
are among the most innovative ones produced by the pro-
ject. Finally, Section 8 draws some conclusions.

2. Relevant work

Presently, we are assisting at a blooming of research pro-
jects on the usage of smart services at home and domot-
ics, in particular for assisting people with physical or
mental disabilities.

For instance, at Georgia Tech, a domotic home has
been built for the elder adult with the goals of compen-
sating physical decline, memory loss and supporting com-
munication with relatives [1]. This work also considers
issues of acceptability of domotics identifying key issues
for the adoption of the technology by the end user.
Acceptability, dangers and opportunities are also surveyed
in [2]. Having a reliable system is a primary concern for all
users.

At Carnegie Mellon, people’s behavior is studied by
automatic analysis of video images [3]. This is fundamen-
tal in detecting anomalies and pathologies in a nursing
home where many patients live. Pervading the environ-
ment with active landmarks, called Cyber Crumbs, aims
at guiding the blind by equipping him/her with a smart

badge [4]. A number of projects to give virtual compan-
ions to people, to monitor people’s health and behavioral
patterns, and to help Alzheimer patients are presented in
[5]. The Gator Tech Smart House [6] is a programmable
approach to smart homes targeting the elder citizen. The
idea is to have a service layer based on Open Services
Gateway Initiative, in order to enable service discovery
and composition. This work is close to what we propose
as for the service-based approach, though it does not
commit to any open standard or XML-based technology;
no reference is made to the communication model
adopted in the home and, most notably, there is no spe-
cific attention toward user interfaces.

Finally, in [7], the current adoption of service technol-
ogies for smart energy systems, including domotic ones, is
discussed.

As far as service composition is concerned, there have
been in the last years several works addressing it from dif-
ferent points of view. So far, the work on services has lar-
gely resolved the basic interoperability problems for
service composition (e.g. standards such as WS-BPEL
and WS-CDL exist and are widely supported in order to
compose services, even if their applicability in embedded
systems is still to be demonstrated), and designing pro-
grams, called orchestrators, that execute compositions
by coordinating available services according to their
exported description is the bread and butter of the service
programmer [8, 9].

The availability of abstract descriptions of services has
been instrumental in devising automatic techniques for
synthesizing service compositions and orchestrators.
Some works have concentrated on data-oriented services,
by binding service composition to the work on data inte-
gration [10]. Other works have looked at process-ori-
ented services, in which operations executed by the
service have explicit effects on the system. Among these
approaches, several consider stateless (also known as
atomic) services, in which the operations that can be
invoked by the client do not depend on the history of
interactions, as services do not retain any information
about the state of such interactions. Much of this work
relies on the literature on Planning in AI [11–13]. Others
consider stateful services which impose some constraints
on the possible sequences of operations (also known as
conversations) that a client can engage with the service.
Composing stateful services poses additional challenges,
as the composite service should be correct with regard
to the possible conversations allowed by the component
ones. Relevant approaches span over different areas,
including research on Reasoning about Actions and Plan-
ning in AI, and research about Verification and Synthesis
in Computer Science [14–17].

In this paper, we focus on composition of process-ori-
ented stateful services. In particular, we have considered,
extended and realized the framework for service composi-
tion adopted in [18–23], sometimes referred to as the

C. Di Ciccio et al.

EAI European Alliance
for Innovation 2

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

‘Roman Model’ [24, 25]. In the Roman Model, services
are represented as transition systems (i.e. focusing on
their dynamic behavior) and the composition aims at
obtaining an actual composite service that preserves such
an interaction. The composite service is expressed as a
(virtual) target service specifying a desired interaction
with the client.

Several research activities dealt with the idea of auto-
matically generating different interfaces according to dif-
ferent variables, i.e. users, context and devices. The
problem of generating different interfaces for different
devices, having a single common application, is often
indicated as the problem of creating plastic interfaces
[26], i.e. creating user interfaces that adapt to devices
characteristics.

Many ideas come from past research in model-based
user interface design [27], where the designer is supposed
to design an interactive system by editing and manipulat-
ing abstract models (e.g. task models) that describe the
system’s behavior and where the system is supposed to
automatically generate the final application code.

The same idea of heavily exploiting formal models to
design interactive applications comes from research on
data-intensive web design, as illustrated in [28], that
stems from past research on model-based hypermedia
design, like RMM [29], and that has a major focus on
data modeling.

The Abstract Adaptive Interface of SM4ALL diverges
from these approaches because it does not have the goal
of generating directly an interface. Instead, it provides
all the pieces of information needed to design an interface
that is suitable for the actual home status and for user
preferences, in a parametric way. In particular, looking
at the status of the available services, it provides the list
of possible user actions together with associated icons
and textual commands; the list is then ordered according
to the home status and user preferences (cf. Section 7).
Once such information is provided, it is possible to imple-
ment interfaces targeting different hardware platforms
(e.g. smartphones or laptops) and interaction styles (e.g.
icon based or menu based).

Finally, we would like to point out that some projects
(e.g. EU-PUBLI.com [30] in an e-Government context
and WORKPAD [31] in the field of emergency manage-
ment) considered the issue of collaborating services, when
some of which are not actually classical software applica-
tions, but human operators executing actions. As
assumed in this work as well, they were all abstracted by
the system as services and therefore seamlessly integrated
into a general architecture.

3. The SM4ALL architecture

The goal of the SM4ALL architecture, shown in Figure 1,
is to seamlessly integrate devices, in order to simplify the
access to the services that they expose, and dynamically

compose such services in order to offer the end users
more complex functionalities and a richer experience with
the domotic environment. There is an ever-increasing
variety of devices, such as controlling parts of the home
(doors, lights), media devices, etc. Sensors are devices
for measuring physical quantities, ranging from simple
thermometers to self-calibrating satellite-carried radiome-
ters. Sensors and devices have an inherent connection,
e.g. a device for opening the window blinds can change
the luminosity value detected by a sensor. In SM4ALL,
all the devices make their functionalities available accord-
ing to the service-oriented paradigm. Due to the different
technologies employed by the devices that are expected to
interact within SM4ALL, the architecture relies on
abstracting them as SOAP-based services, according to a
riche service model (cf. Section 5.2) consisting not only
of the service interface specification, but also of its conver-
sational description, of the related graphical widgets (i.e.
icons) to be presented in the user layer (by means of
graphical interfaces, BCIs,...), etc. Proxies are indeed the
software components offering such services by ‘wrapping’
and abstracting the real devices offering the functional-
ities. Services are not necessarily offered by hardware
devices, but could also be realized through a human inter-
vention; in this case, the proxy exposes a SOAP-based ser-
vice to the platform above, whereas it interacts with the
service provider (i.e. the human) by means of a dedicated
graphical user interface, when executing the requested
operations.

One particular service is the Localization Service, built
on top of a subsystem for localizing persons1 inside the
home. It is in charge of tracking users in order to provide
the location of each. The granularity of the provided infor-
mation is at the level of presence inside a room (i.e. the ser-
vice is able to state, e.g. whether ‘Massimo is in the kitchen’,
though it cannot recognize his position within, e.g. in front
of the oven, rather than on the chair nearby the table).
Because of (i) the current advancements of indoor localiza-
tion technologies, (ii) the requirements of the project and
(iii) the consideration that indoor localization is a subject
worthy of a research project per se (therefore, the research
on this topic is out of the scope of SM4ALL), it is a sufficient
and viable solution for the project.

During their run time, services continuously change
their status, both in terms of values of sensed/actuating
variables (e.g. a service wrapping a temperature sensor
reports the current detected temperature, a service wrap-
ping windows blinds report whether the blinds are open,
closed, half-way, etc.) and in terms of their conversational
state. The definition of the sensed/actuating variables,
representing the ‘state’ of the domotic environment, is

1This subsystem is realized by adapting a commercial tool,
namely the Ekahau Real-Time Location System (RTLS)—
http://www.ekahau.com/.

The homes of tomorrow: service composition and advanced user interfaces

EAI European Alliance
for Innovation 3

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

http://www.ekahau.com/

performed in accordance with the data model. The data
model, as well the service model, is designed to be ‘addi-
tive’, i.e. each new domotic device, plugged in the home,
is expected to add new pieces to these models in order to
register itself to the system.

A Pervasive Controller and a Discovery Framework are in
charge, when a new device joins the system, to dynami-
cally load and deploy the appropriate service, and to reg-
ister all the relevant information into the Service Semantic
Repository. All of the status information, both in terms of
(i) service conversational states and (ii) values of the envi-
ronmental variables, are kept available in the Context
Awareness Manager, through a publish and subscribe
mechanism.

Proxies, Pervasive Controller and Discovery Frame-
work, together with the data and service models, consti-
tute the Pervasive Layer of the SM4ALL architecture.

On the basis of the service descriptions, Composition
Engines are in charge of providing complex services by
suitably composing the available ones. In SM4ALL, three
different types of approaches are provided, each providing
different functionalities and therefore complementing
one another, in order to provide a rich and novel environ-
ment to the users:

Off-line synthesis (provided through the Off-line
Synthesis Engine). In the off-line mode, at design/
deployment time of the house, a desiderata (i.e. not
really existing) target service is defined, as a kind of
complex routine, and the synthesis engine synthesizes
a suitable orchestration of the available services realiz-
ing the target one. Such an orchestration specification
is used at execution time (i.e. when the user chooses to
invoke the composite/desiderata service) by the
Orchestration Engine in order to coordinate the avail-
able services (i.e. to interact with the user on one hand
and to schedule service invocations on the other
hand). In this approach, the orchestration specifica-
tion is synthesized off-line (i.e. not triggered by user
requests, at run time) and executed on-line as if it were
a real service of the home. The off-line mode is based
on the Roman Model: it will be further detailed in
Section 6. The Off-line Synthesis Engine produces
what in SM4ALL is referred to as a routine.

On-line planning (provided through the On-line
Planning Engine). The user, during its interaction
with the home, may decide not to invoke a specific ser-
vice (either available/real or composite), but rather to

 All Text TagsNew..black!Please enter your comments hereblack!IN PDF, delete FN and insert 3.1 subsection manually
Link GetPutRun

Figure 1. The SM4ALL Architecture.

C. Di Ciccio et al.

EAI European Alliance
for Innovation 4

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

ask the home to realize a goal; in such a case, the
engine, on the basis of specific planning techniques
[32], synthesizes and executes available service invoca-
tions in order to reach such a goal.

Visual design of complex services (provided
through the Compound Service Workbench).
A skilled user may want to define a compound service,
by visually composing services offered by proxies, in
a way similar to what currently happens in technolo-
gies like WS-BPEL. The compound service offers an
aggregated operation, which is the result of the proper
orchestration of operations offered by other services.
Also in this case, the synthesis is performed off-line,
but differently from the previous case, it is not
supported by automatic techniques, but by a visual
workbench. Both routines and compound services fall
under the category of ‘composite services’.

The Orchestration Engine interprets the specification of
a composite service (either synthesized automatically,
through the Off-line Synthesis Engine, or visually by
the user, through the Compound Service Workbench)
and consequently orchestrates the set of component ser-
vices. In the case of the On-line Planning Engine, due
to the need of continuously planning and monitoring ser-
vices during plan executions, the Orchestration Engine is
bypassed and services are directly invoked by the planner
itself.

The Rule Maintenance Engine manages the automatic
firing of actions when a predetermined situation occurs,
i.e. the rules activated when given conditions hold. Rules
can be defined by administrators through the User Layer.
The triggering of rules to be applied, since they are auto-
matic, is caused by changes in the environment and is
therefore indirectly caused by the Context Awareness
Manager when the predefined conditions are verified.
Its output is the request to fulfill a (simple/composite)
service or goal, as if the requests were generated by a user.

The Invocation Dispatcher is in charge of concretely
invoking services (both simple or composite) and plans.
All service invocations go through the Invocation
Dispatcher. For example, if the Orchestration Engine, or
the On-line Planning Engine, needs to invoke a service,
the request is forwarded to the proper component through
the Invocation Dispatcher. This is needed in order to differ-
ently manage requests for plans, basic and composite ser-
vices, and allows a simple form of concurrency control (as
it will be further clarified in the following).

Composition Engines, Invocation Dispatcher, Rule
Maintenance Engine, Orchestration Engine, Context
Awareness Manager and Semantic Service Repository
constitute altogether the Composition Layer of the
SM4ALL architecture.

Users are able to interact with the home and the plat-
form through different kinds of user interfaces, e.g. a
home control station accessible through a touchscreen

in the living room. In particular, Brain–Computer Inter-
faces (BCIs) [33] allow also people with disabilities to
interact with the system [34]. Of course, users can still
control the home equipment as if there were not the
SM4ALL platform. For example, a user is obviously
allowed to switch the living room light on directly from
the manual switcher on the wall, without using any BCI
and/or touchscreen; in such a case, the platform, through
the specific proxy wrapping the light/switcher as a
service, is notified of the specific variable value change.
Therefore, all needed actions are undertaken. De facto,
the event is equivalent, due to the engineering of the
platform, to the one of clicking a specific button on the
touchscreen and/or selecting the icon on the BCI.

Users are able, through the interfaces, to invoke actions
offered by services (either simple of composite) and to
achieve goals, in order to reach specific situations that
they would like to be realized in the home. Moreover,
through the interfaces, they receive the feedback about
state changes in the home, as well as requests for further
inputs (in case additional parameters are needed for some
actions to be executed), notifications about action/ser-
vice completions, etc.

In order to abstract over the specific interfaces, the plat-
form provides a unique façade component, namely the
Abstract Adaptive Interface, which is in charge of (i) for-
warding requests to the underlying layers and (ii) receiv-
ing messages from the latter, to be dispatched further to
the proper interface. In such a way, the whole platform is
unaware of the specific interfaces adopted by real users:
particular implementation details are thus hidden.
Indeed, there are specific algorithms needed to properly
arrange icons on a BCI screen, while others are used for
touch devices, and so forth.

Aside from the user interfaces, which are used by inhab-
itants to control and interact with their home, a specific
Administration Interface is provided, in order to execute
complex tasks, including (but not limited to):

d the definition of a target composite service to be syn-
thesized off-line; this is performed by the domotic
engineer at design/deployment time of the home,
when her work is to define routines the users would
like to run afterwards;

d the definition of rules;

d the definition, by a very skilled user, of a compound
service trough the Compound Service Workbench.

As a rule of thumb, whichever task requiring the inter-
action with a user interface, though not strictly related to
the direct control of the home, appears in the Administra-
tion Interface control panel.

Abstract Adaptive Interface and the various user inter-
face modules are collected in the User Layer of the
SM4ALL architecture.

The homes of tomorrow: service composition and advanced user interfaces

EAI European Alliance
for Innovation 5

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

Finally, an underlying Event Notification Service (e.g.
for publishing updates of environmental variables) and a
Security Subsystem (e.g. for AAA of users) complete the
architecture.

3.1. Dealing with concurrency

Systems like SM4ALL are meant to be part of the environ-
ment where humans live, and are thus designed to allow
interaction with multiple users at the same time. More-
over, the actions users can fulfill with these systems can
be both limited in time or last for several tenths of min-
utes. As a consequence, several actions involving different
devices can be in execution at the same time and this can
easily lead to concurrency issues. As an example, suppose
that Alice wants to bake a cake and this requires four eggs
from the refrigerator. At the same time Bob wants to pre-
pare fresh pasta that requires two eggs. However, the
refrigerator currently contains a total of five eggs. There
is clearly a contention among a set of limited resources
(the eggs) that are needed to fulfill some goals. At the
lower level physical devices part of the system can be used
with different purposes by several actors at the same time.
The SM4ALL typical scenario assumes that several humans
act in the house together with the system. The system
cannot take complete control of the house (as users
should be free to act without necessarily interacting with
the system), thus it can happen that a device involved in
the execution of a specific procedure by the system is also
maneuvered directly by a user.

At a higher level it can happen that a single specific
device is considered part of the execution of several differ-
ent procedures enacted by the SM4ALL system. These
procedures can interact in different ways with the device,
but nevertheless require exclusive access to it in order to
avoid possible inconsistencies due to the interleaving
among atomic actions pertaining to the executions of
concurrent procedures. At an even more abstract level,
but with strong practical implications in the system execu-
tion, is concurrency taking place in the physical environ-
ment where SM4ALL is deployed. Some devices, in fact,
act by changing some aspects of the house global status
(think about a heater that, when turned on, increases
the temperature of the room where it is installed). These
changes can negatively impact the execution of actions by
other devices or change the way other concurrent proce-
dures should be enacted. The possibilities seem to be infi-
nite. Controlling concurrency at all the levels in order to
prevent unexpected behaviors represents thus an extre-
mely ambitious goal whose attainment appears far beyond
the objectives of the SM4ALL project.

While a complete solution of the aforementioned issues
goes beyond the scope of this project, nevertheless, we
were faced with their practical implications during the
design of the SM4ALL architecture. We decided to
provide a practical solution that, even if far from being

optimal from the performance and resource utilization
point of view, is able to reduce the implications of concur-
rency issues during system usage.

At first level concurrency is handled directly on the
device. Given the one-to-one mapping between each
hardware device and a corresponding proxy deployed in
the Pervasive Layer, the proxy handles concurrent request
by serializing them. Concurrency can also be limited at
the User Layer by enforcing single-action interactions
with users: each user is allowed to issue a single command
at a time to the system. If the execution of the issued
command takes time, the user will not be able to issue
other commands. This kind of interaction is enforced
through visual elements in the user interface. Concurrent
commands issued by independent users are allowed.
A third point of synchronization is realized within the
Composition Layer. Each command issued at the User
Layer is passed down for plan execution (here we refer
to ‘plan execution’ both in the case of direct invocation
of a service and in the case of invocation of a routine or
complex service, as well as of a goal). Two different paths
are followed in this phase: either the command is related
to a a simple action or an action previously synthesized
(i.e. an action for which an orchestration exists), or the
action is passed to the On-line Planning Engine to pre-
pare a plan for it. Whichever the case is, the resulting
invocations are passed to the Invocation Dispatcher. It
checks if another execution plan is currently in execution.
If this is the case, the Dispatcher checks if the plan that
must be executed includes calls to services that are already
considered by the plan currently in execution. If both
checks are true, the Dispatcher enqueues the plan for later
execution in order to avoid any possible clash with other
concurrent executions.

4. The Pervasive Layer

The Pervasive Layer is in charge of communicating with
home devices. It is able to manage the invocations com-
ing from the upper layers, on one hand, and notify about
the events which are generated by sensors, on the other
hand. Nowadays, many home automation systems are
commercially available, e.g. KNX, LonWorks and X10
are among the most common. Each is based on its own
communication protocol, thus making it very difficult
for them to be integrated inside a unique domotic system.
However, the functionalities offered by the different
home automation systems and their interworking models
are basically the same. The Pervasive Layer is the middle-
ware in charge of offering the home devices functional-
ities to the upper layers through a common
standardized way. Every physical device installed in the
house is managed by a specific software module, which
is responsible for interacting with it and keeping track
of its current state; this module contains all of the logic
needed to communicate with the device. It is named proxy

C. Di Ciccio et al.

EAI European Alliance
for Innovation 6

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

in the SM4ALL architecture: in the SM4ALL context, it
acts like a driver for an operating system. In order to pro-
vide high modularity and dynamicity, proxies are imple-
mented as OSGi bundles; each bundle has its own life
cycle which is completely independent from the others.
Therefore, each proxy can be installed, started, stopped
or removed from the system at run time: no system
reboot or temporary stop is needed.

The skeleton of a proxy, with its SOAP-based commu-
nication stack, is generated automatically from the service
interface. The developer of the proxy is in charge of
implementing service details, according to the specific
automation protocol. Every proxy exposes not only the
interface descriptors and the related data types in use,
but also behavioral descriptors (see Section 5.2) and user
interface configuration details. When a proxy is started
and plugged in the system, it registers itself to the Service
Repository by means of a package containing all of the
aforementioned details. From then on, the service offered
by the proxy can be invoked from the upper layers and the
current conversational state, as well as the controlled envi-
ronmental variables values, can be retrieved at any point
in time. At the beginning of its life cycle, the proxy also
registers itself to the Context Awareness Manager as a
publisher, so that SM4ALL components can be notified
of the changes of states in an asynchronous way. In the
current SM4ALL prototype, proxies are based on KNX.

The approach described above, which basically virtual-
izes devices, can potentially present some performance
issues; hence, we conducted several tests, aiming at mea-
suring the Total Round Trip Time (TOT RTT) of ser-
vice/proxy invocations by a client (e.g. the user layer).
The Total Round Trip Time includes (i) Proxy/KNX
Round Trip Time (PK RTT), i.e. the time needed by
the proxy for sending the command to the KNX bus
and receiving the acknowledgment message back and
(ii) proxy processing time (PPT), i.e. the time needed
by the proxy to compute and refresh its own data
structures.

Three main cases were identified and tested:

1. the client establishes its first connection to the
proxy, does its first invocation and the proxy serves
its first request (case 1 in Figure 2, right bars);

2. the client establishes its first connection to the
proxy, does its first invocation served by a proxy
which has already responded to some previous
requests (case 2 in Figure 2, central bars);

3. the client invokes an operation offered by a proxy
which has previously served some other request,
on top of an already established connection
between the two (case 3 in Figure 2, left bars).

We executed the tests on a local area network, in which
the Pervasive Layer (i.e. the proxies and the KNX software

layer used by all of them) is deployed on a EEE Box with
an Intel Atom N330 dual core processor, 2 GB RAM and
an Ubuntu distribution with the EIB/KNX demon. Each
case was executed 100 times, and the average TOT RTTs
and PK RTTs (over the 100 executions) for each case are
depicted in Figure 2.

As the reader can appreciate, in the typical scenario
(case 3) the overall overhead due to the approach is about
25 ms, mostly due to Internetworking time, which is
absolutely not perceivable by a human (with respect to
the case in which she switches on the light through a stan-
dard switcher on the wall, instead of using the SM4ALL

system). In the worst case (case 3, which happens only
after a full reset and restart of the system) the delay is of
300 ms, still acceptable.

5. The Service Repository and the models

5.1. Service Repository

The main functionality of the Service Repository is to
manage the available services in the smart home, i.e. to
register new services, unregister removed services and
provide an interface for service retrieval. The Service
Repository also serves additional information necessary
for reasoning over the service descriptions, such as the
data model which is used for describing environment
variables.

When a new device is inserted into the system and the
corresponding proxy is deployed into the Pervasive Layer,
the proxy registers a template service description, which
details the functionalities of the service, but is not yet fit-
ted to the smart home it is installed in. Specifically, the
template may refer to variables that only exist in the scope
of the template and may not yet have been set up in the
house. During service registration, the Service Repository
therefore adapts the template description to reflect the
actual house set-up. This includes registering new vari-
ables published by a service, e.g. the conversational status,

Figure 2. Performance tests.

The homes of tomorrow: service composition and advanced user interfaces

EAI European Alliance
for Innovation 7

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

with the Context Awareness Manager, thereby making
them available. The instantiated service description is
from then on available for retrieval by other components.
They are in particular the Composition Engines which
need to query the Service Repository for services that
can be used in compositions/plans. Typical queries for
service matching concern the effects of the services, i.e.
are aimed at finding those services which can change
the user context in the desired way. Especially for the
On-line Planning Engine, it is crucial that these requests
are executed as fast as possible, so that planning can be
performed without long waiting times for the user. In
order to fulfill these requirements, the Service Repository
uses a novel service indexing method and query algo-
rithm, which was developed for SM4ALL and is described
in detail in [35]. The basic idea of the indexing structure
is to model context as a multi-dimensional space, where
each environment variable corresponds to one context
dimension. Service effects are described using projections
of this space into a lower-dimensional space, which
assigns value ranges to those context dimensions which
are changed by the service.

During the registration of a new service, the service’s
effects are added to the in-memory index. Service match-
ing requests are similarly transformed into low-dimen-
sional projections representing the desired service effect.
In the matching algorithm, first all services whose effects
have no dimensions in common with the desired effect are
filtered out using a fast bit-set operation. Only for the
remaining services, it is then checked if the service effects
conform to the desired effects and the matching services
are returned. Using the described mechanisms, we have
found that matching requests can be executed in less than
100 ms even for 1000 available services and 100 different
context dimensions.

5.2. Service and data models

Service and composition models. The service model
focuses on the behavior of services, in terms of conversa-
tional states that they traverse during the execution of the
exposed actions, as well as on the way they (i) affect the
environment and (ii) are inhibited (allowed) in the execu-
tion by the environment (respectively, by the expression
of post-conditions and pre-conditions on top of the vari-
ables—see Section 5.2).

The smart home environment is populated by many
deployed service instances, which are actual occurrences
of given service types (also services for sake of brevity).
Indeed, a developer can produce many instances showing
the same behavior: e.g. many lamps of the same product
series, installed in different rooms, are different instances
of the same service type. Every service instance can be
identified by one or more properties, which are deploy-
ment characteristics (such as the location in the house,
the power consumption, etc.). Figures 3 and 4 show an

example with two service types: airConditionerSer-
vice is supposed to be an air conditioner, while bath-
roomManagementService is a software manager of
the bathroom.

Each service is represented by a transition system, which
is a behavioral representation consisting in states con-
nected by transitions. The state is a break-point in the
execution of a service (depicted as a node in the graphs
of Figures 3 and 4), which new transitions (the arcs)
can be fired from, through the invocation of an action
(the emphasized part of the label). Action names are
intended to correspond to the operation names offered

Figure 3. The airConditionerService transition
system.

Figure 4. The bathroomManagementService transi-
tion system.

C. Di Ciccio et al.

EAI European Alliance
for Innovation 8

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

by the service interfaces (i.e. to the ‘name’ attribute in
‘operation’ nodes of WSDL files).

Transitions can be constrained by pre-conditions and
post-conditions (effects) to verify, respectively, before
and after the related action is executed. Such pre- and
post-conditions are written as logic formulae over the
set of home variables. In Figures 3 and 4, pre-conditions
are written, when expressed, before the action name,
between square brackets; post-conditions are put after
the slash following the action name. The meaning of
increase and decrease is graphically represented by Figures
5 and 6.

As further explained in the following, a user can ask
the system to realize a given behavior, specified by a
target service (or simply, target), as the one depicted in
Figure 7. In particular, the Off-line Synthesis Engine
returns a composition, i.e. an imperative program which,
given the current target state and its next action to
invoke, specifies which is the service instance to call
the next action on, according to any possible coherent
environmental status (in terms of both variables and ser-
vice instances’ states). Hence, it verifies the realizability
of the target service by analyzing the actions, i.e.
whether the paths admitted by transitions lead to consis-
tent states with respect to the available services and the
constraints set by pre- and post-conditions. Target ser-
vices are described through the same syntax and seman-
tics of any other service type.

The Compound Service Workbench works off-line as
well. It allows the construction of new services (namely
compound services), by means of a graphical toolkit.
Whereas the target service must be specified as a transition
system where each action corresponds to one of the
actions that some available service offers, each compound
service action can be a new action, defined as a structured
sequence of the ones exposed by services. Its main utility
is the gained ease in composing new target services:

indeed, the outcome of a synthesis can be wrapped in a
single action and made part of another complex structure
of automated invocations.

In case the user requires a goal to be immediately ful-
filled, she can express the desired objective by means of
formulae over the variables, and the On-line Planning
Engine returns a plan, in terms of a structured path of
invocations over actions, able to lead the environment
to the desired status. Hence, being a planner, it builds
the solution by considering the chain of effects and pre
conditions (respectively, post- and pre-conditions) and
thus establishing the actions to invoke in the proper
order.

The service model is an XML standard for service
descriptors. More than reported here, the XML Schemata
which this model is built upon are published on-line
at http://www.dis.uniroma1.it/�cdc/sm4all/proposals/
servicemodel/latest, so to publicly show it as up to date with
the latest version. Pre- and post-conditions are the natural
link to the data model, described in Section 5.2.

Data model. The data model is an extensible framework
of variable types. It concerns the specific environmental
information used by reasoning engines only. That is, free
parameters such as, e.g. name in an operation cheers

(name: string): string may not adhere to the data
model. Nevertheless, in case the developer wants (i) to
describe the effects on the environment once a service
action is invoked (post-condition), or (ii) to express the
conditions that must hold in the context for an action
to take place (pre-condition), she has to write statementsFigure 6. waterLevelInTub.

Figure 7. A target service, based on the component services
of Figures 3 and 4.

Figure 5. temperatureLevel.

The homes of tomorrow: service composition and advanced user interfaces

EAI European Alliance
for Innovation 9

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

http://www.dis.uniroma1.it/~cdc/sm4all/proposals/servicemodel/latest
http://www.dis.uniroma1.it/~cdc/sm4all/proposals/servicemodel/latest
http://www.dis.uniroma1.it/~cdc/sm4all/proposals/servicemodel/latest

formulated on top of variables whose type is coherent
with the data model.

This is due to the fact that both the Composition Layer
and the User Layer must be able to cope with a prede-
fined uniform set of common data types, so that the inter-
action with the environment is clear, despite the service
developer. We call variable types (or simply types) the
types, and variables are the entities whose type is a vari-
able Type. The data model is an XML standard, i.e. it is
based on XML Schemata to define value spaces. Each ser-
vice developer can define her own types, provided (i) they
are described in XML Schema documents identified by a
unique namespace and (ii) they extend, directly or indi-
rectly, the SM4ALL base types.

The base types are identified by the http://
www.sm4all-project.eu/datamodel/base namespace.
They are published and kept up to date with the evolution
of the standard on a public URL, namely http://
www.dis.uniroma1.it/�cdc/sm4all/proposals/datamodel/
latest. Indeed, types in the data model are derived by
XML Schema native ones, and are designed to be
extended by SM4ALL system service designers. The data
model allows XML Schema simple types only as SM4ALL

variable types, according to the XML Schema definition:
complex types are not considered.

Common variable types are enumerations on top of the
numeric type. This allows the ordering over the possible
values, as inherited from the basic integer type (see Fig-
ures 5 and 6 for a visual representation of it). In such
cases, the insertion of a documentation tag for each
enumerated value provides also a human-readable form.
The documentation node is intended to contain the
information to show the users through the User Layer.
That is to say: if, e.g. a variable of type temperature-
Level reaches the value 3, the reasoning engines are
informed of it, whereas the users are notified of a new
‘warm’ status. Having enumerations over variables with
finite sets of possible values makes feasible and effective
the reasoning tasks of the composition engines.

6. Composition

The On-line Planning Engine performs service composi-
tions at run time, i.e. as the user asks for a new plan it
must return an orchestration to be invoked immediately
after. As previously introduced, the representation of ser-
vices is based upon their pre and post-conditions, i.e.
logic formulae on top of environmental variables; goals
as well are logic formulae on top of the same environmen-
tal variables, which the user expects to become true due
to the enactment of the synthesized plan. The reasoning
core is a planner that, as described in [32, 36], solves
the underlying planning problem through the reduction
of it into a CSP (Constraint Satisfaction Problem—see
[37]).

In the Off-line Synthesis Engines, services are described
as Transition Systems (TSs). Goals are in this case target
TSs which the engine must realize by simulation, on
top of the set of available services. Pre- and post-condi-
tions are expressed as constraints over the TS transitions
(see [38, 39]), on top of environmental variables. Once
the orchestration is computed, the target itself is stored
into the Service Repository: it can be invoked at any time
in the future, like any other service. The returned orches-
tration is different from the On-line Planning Engine out-
put. Indeed, it is a relation that, given the current target
state and the next action to be fired, indicates which ser-
vices can be invoked in order to enact it, according to any
of the possible (i.e. coherent with the realizability of the
goal) services’ and environmental variables states. The
solution approach is based on reducing the problem to
the synthesis of Linear-time Temporal Logic formulae
(see [40]) by Model Checking over Game Structures.

7. The User Layer

The home can be controlled from the user through differ-
ent kinds of interfaces (BCIs, remote controls, touchsc-
reens, keyboards, voice recognition, etc.). The AAI
(Abstract Adaptive Interface) represents the core of the
SM4ALL User Layer. It retrieves status information from
the Context Awareness Manager and service descriptions
from the Service Repository. It organizes the whole in
order to correctly show the available actions to the user,
depending on the interaction mode she is currently mak-
ing use of (i.e. visual, aural, BCI, etc.). Indeed, the AAI is
intended to be put as an abstraction layer among the mul-
tiple user interface devices and the underlying composi-
tion layer.

Its main novelty is represented by the ability to manage
many different user interface models with a unique adapt-
able algorithm, able to change itself on the basis of the
interaction device characteristics (speech/aural, visual/
touch, handheld, brain-controlled ...) and on the basis
of the user preferences, automatically gathered, analyzed
and synthesized on top of the previous interactions with
the system.

Through a message screen the user can see notifications
coming from the system. The room actions’ screen shows
the list of actions that can be invoked, gathered up by
groups which are built according to the rooms where
the services offering the actions are actually located. The
number of available services in the home can be very high,
and a service can offer many actions; on the other hand,
the icons that can be shown on a screen are limited.
A pagination of the information, though useful and
indeed exploited in many prototypes, is not sufficient to
provide an effective interaction, since it would introduce
a huge effort for the user to find the desired element
among the big amount of items, navigating back and

C. Di Ciccio et al.

EAI European Alliance
for Innovation 10

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

http://www.sm4all-project.eu/datamodel/base
http://www.sm4all-project.eu/datamodel/base
http://www.dis.uniroma1.it/~cdc/sm4all/proposals/datamodel/latest
http://www.dis.uniroma1.it/~cdc/sm4all/proposals/datamodel/latest
http://www.dis.uniroma1.it/~cdc/sm4all/proposals/datamodel/latest
http://www.dis.uniroma1.it/~cdc/sm4all/proposals/datamodel/latest

forth. Hence, in SM4ALL, the AAI integrates a mecha-
nism for grouping and smartly ordering the icons in order
to improve the ease of interaction. An icon may represent
either a service or an action. Sometimes, only a few
actions, among the ones offered by a given service, are
available, e.g. a ‘bedroom light’ service offers a ‘turn
off’ and a ‘turn on’ action, but only the first (or the sec-
ond, conversely) can be triggered when the lamp is
switched on (off). In such a case, there is no need to show
the service icon, as the only available action is enough.

When the user can fire more than one action, related to
a single service, a clustering is needed. It is realized by ini-
tially showing the service icon; once activated, all of the
other items are hidden and only the available related
actions are displayed.

Another way to reduce the number of displayed icons
is to divide services themselves into groups represented
by a given type (e.g. ‘Multimedia’ for televisions, MP3
players, etc.). The idea is almost the same: at first, the
menu shows only a type which many services belong
to, and then, after the type is selected, all of the other
items are hidden and the only related services are dis-
played (see Figures 8 and 9).

Beyond grouping, the AAI exploits the possibility to
order the items according to their importance, with
respect to the preferences of each user. This way, the
actions which are known to be more relevant for the user
will be displayed on the first screen, in order to appear at a
first glimpse, while the others are going to be shown next.
Two algorithms are offered: a static one and a dynamic
one. The user can select which one she prefers through

an administration menu. The static algorithm makes use
of explicitly defined user settings to identify her prefer-
ences. Each preference is constituted by (i) a set of condi-
tions, representing the state of the environment which
enables the action, (ii) a time frame in which the prefer-
ence has to be considered (Always, Morning, Afternoon,
Evening, Night) and (iii) a usage expectation degree (cer-
tain, highly probable, very probable, probable). The
dynamic algorithm orders the actions according to the
probability that each one is going to be executed, on
the basis of the current environment status and previous
invocations: the higher the probability, the higher the pri-
ority of the associated icon in the list (partial order). The
home environment status consists of several parametric
values related to the execution (e.g. the time of invoca-
tion). Each parameter is associated to a relevance (weight),
manually tunable by administrators. At every call, the
parametric value is computed and its incidence (score)
re-calculated. Indeed, it is taken from a run-time updated
graph, i.e. a normalized sum of Gaussian curves: at each
execution, a new Gaussian centered in the parameter
value which is associated to the call (e.g. the time of invo-
cation) is added to the previous graph. In order to tune
the evolution of the curve, norm and variance of the
Gaussians are both customizable. If the global peak over-
comes the maximum admissible value (100%), a normali-
zation is automatically performed (see Figure 10). The
probability is thus the sum of the weighted scores (Ri rele-
vancei · incidencei) of all the parameters, related to the
current home environment status.

8. Concluding remarks

Throughout this paper, we presented the pervasive intel-
ligent home system SM4ALL, and we focused, among the
others, on the service composition techniques and on the
self-adapting ones of the User Layer: they are the most
involved in the challenge of hiding the heterogeneity of
used hardware devices to the other software modules,
which is a very important requirement in the field of dom-

Figure 8. An example of the user interface grouping services
by the type they belong to (here, before activating the
‘Multimedia’ services type selector—first icon, on the left of
the horizontal list).

Figure 9. An example of the user interface grouping services
by the type they belong to (here, after the ‘Multimedia’
services type selector is activated).

Figure 10. An example of automatic normalization of the
parametric score.

The homes of tomorrow: service composition and advanced user interfaces

EAI European Alliance
for Innovation 11

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

otics, where a lack of standardization still holds. Cur-
rently, we have developed a running prototype interfaced
with real KNX devices actually installed in a house set up
on purpose in Rome, hosted by Fondazione Santa Lucia.
A showcase has been demonstrated in October 2011; this
has shown the wide acceptability of the system by both
normal-bodied users and disabled ones. However, here
we showed some performance tests demonstrating the
feasibility of the approach.

References
[1] MYNATT, E., MELENHORST, A., FISK, A. and ROGERS, W.

(2004) Understanding user needs and attitudes. IEEE
Pervasive Comput. 3(2): 36–41.

[2] ROBERTS, J. (2006) Pervasive health management and
health management utilizing pervasive technologies: syn-
ergy and issues. J.UCS 12(1): 6–14.

[3] HAUPTMANN, A., GAO, J., YAN, R., QI, Y., YANG, J. and
WACTLAR, H. (2004) Automatic analysis of nursing home
observations. IEEE Pervasive Comput. 3(2): 15–21.

[4] ROSS, D. (2004) Cyber crumbs for successful aging with
vision loss. IEEE Pervasive Comput. 3(2): 30–35.

[5] JOSEPH, A. (2004) Successful aging. IEEE Pervasive
Comput. 3(2): 36–41.

[6] HELAL, S., MANN, W.C., EL-ZABADANI, H., KING, J.,
KADDOURA, Y. and JANSEN, E. (2005) The Gator Tech
Smart House: a programmable pervasive space. IEEE
Comput. 38(3): 50–60.

[7] PARADISO, J., DUTTA, P., GELLERSEN, H. and SCHOOLER, E.
(2011) Smart energy systems. Special issue. IEEE Perva-
sive Comput. 10.

[8] ALONSO, G., CASATI, F., KUNO, H. and MACHIRAJU, V.
(2004) Web Services. Concepts, Architectures and Applica-
tions (Springer).

[9] PAPAZOGLOU, M. (2008) Web Services: Principles and
Technology (Pearson Education).

[10] MICHALOWSKI, M., AMBITE, J.L., KNOBLOCK, C.A., MINTON,
S., THAKKAR, S. and TUCHINDA, R. (2004) Retrieving and
semantically integrating heterogeneous data from the
Web. IEEE Intell. Syst. 19(3): 72–79.

[11] BLYTHE, J. and AMBITE, J.L. [eds.] (2004) In Proceedings of
ICAPS 2004 Workshop on Planning and Scheduling for
Web and Grid Services.

[12] CARDOSO, J. and SHETH, A. (2004) Introduction to
semantic Web services and Web process composition. In
Proceedings of SWSWPC 2004 .

[13] WU, D., PARSIA, B., SIRIN, E., HENDLER, J.A. and NAU,
D.S. (2003) Automating DAML-S Web services compo-
sition using SHOP2. In Proceedings of ISWC 2003.

[14] BULTAN, T., FU, X., HULL, R. and SU, J. (2003) Conver-
sation specification: a new approach to design and analysis
of eService composition. In Proceedings of WWW 2003.

[15] GEREDE, C.E., HULL, R., IBARRA, O.H. and SU, J. (2004)
Automated composition of eServices: lookaheads. In
Proceedings of ICSOC 2004.

[16] MCILRAITH, S.A. and SON, T.C. (2002) Adapting GOLOG
for composition of semantic Web services. In Proceedings
of KR 2002.

[17] PISTORE, M., TRAVERSO, P. and BERTOLI, P. (2005)
Automated composition of Web services by planning
in asynchronous domains. In Proceedings of ICAPS
2005.

[18] BERARDI, D., CALVANESE, D., DE GIACOMO, G., LENZERINI,
M. and MECELLA, M. (2003) Automatic composition of
eServices that export their behavior. In Proceedings of
ICSOC 2003.

[19] BERARDI, D., CALVANESE, D., DE GIACOMO, G., LENZERINI,
M. and MECELLA, M. (2005) Automatic service composi-
tion based on behavioral descriptions. Int. J. Coop. Inf.
Syst. 14(4): 333–376.

[20] BERARDI, D., CALVANESE, D., DE GIACOMO, G. and
MECELLA, M. (2005) Composition of services with non-
deterministic observable behavior. In Proceedings of IC-
SOC 2005.

[21] BERARDI, D., CHEIKH, F., DE GIACOMO, G. and PATRIZI, F.
(2008) Automatic service composition via simulation. Int.
J. Found. Comput. Sci. 19(2): 429–451.

[22] MUSCHOLL, A. and WALUKIEWICZ, I. (2007) A lower bound
on Web services composition. In Proceedings of FOSSACS
2007.

[23] SARDINA, S., PATRIZI, F. and DE GIACOMO, G. (2008)
Behavior composition in the presence of failure. In
Proceedings of KR’08.

[24] CALVANESE, D., DE GIACOMO, G., LENZERINI, M., MECELLA,
M. and PATRIZI, F. (2008) Automatic service composition
and synthesis: the Roman model. IEEE Data Eng. Bull.
31(3): 18–22.

[25] HULL, R. (2005) Web services composition: a story of
models, automata, and logics. In Proceedings of IEEE
ICWS.

[26] THEVENIN, D. and COUTAZ, J. (1999) Plasticity of user
interfaces: framework and research agenda. In Proceedings
of Interact’99.

[27] PUERTA, A. and EISENSTEIN, J. (1999) Towards a general
computational framework for model-based interface
development systems. In Proceedings of 4th International
Conference on Intelligent User Interfaces.

[28] FRATERNALI, P. (1999) Tools and approaches for develop-
ing data-intensive Web applications: a survey. ACM
Comput. Surv. 31(3): 227–263.

[29] ISAKOWITZ, T., STOHR, E. and BALASUBRAMANIAN, P. (1995)
RMM: a methodology for structured hypermedia design.
Commun. ACM 38(8): 34–44.

[30] CONTENTI, M., MECELLA, M., TERMINI, A. and BALDONI, R.
(2005) A distributed architecture for supporting e-Gov-
ernment cooperative processes. In Proceedings of TCGOV
2005.

[31] CATARCI, T., DE LEONI, M., MARRELLA, A., MECELLA, M.,
SALVATORE, B., VETERE, G., DUSTDAR, S. et al. (2008)
Pervasive software environments for supporting disaster
responses. IEEE Internet Comput. 12: 26–37.

[32] KALDELI, E., LAZOVIK, A. and AIELLO, M. (2009) Extended
goals for composing services. In Proceedings of ICAPS
2009.

[33] MCFARLAND, D. and WOLPAW, J. (2011) Brain–computer
interfaces for communication and control. Commun.
ACM 54(5): 60–66.

C. Di Ciccio et al.

EAI European Alliance
for Innovation 12

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

[34] ALOISE, F., SCHETTINI, F., ARICÒ, P., BIANCHI, L., RICCIO,
A., MECELLA, M., BABILONI, F. et al. (2010) Advanced
brain–computer interface for communication and control.
In Proceedings of AVI 2010.

[35] RASCH, K., LI, F., SEHIC, S., AYANI, R. and DUSTDAR, S.
(2011) Context-driven personalized service discovery in
pervasive environments. World Wide Web: http://
dx.doi.org/10.1007/s11280-011-0112-x.

[36] KALDELI, E. (2009) Using CSP for adaptable Web service
composition. Tech. Rep. 2009-7-01, University of Gronin-
gen. www.cs.rug.nl/�eirini/tech_rep_09-7-01.pdf.

[37] DO, M. and KAMBHAMPATI, S. (2000) Solving planning-
graph by compiling it into CSP. In Proceedings of AIPS’00.

[38] DE MASELLIS, R., DI CICCIO, C., MECELLA, M. and PATRIZI,
F. (2010) Smart home planning programs. In Proceedings
of ICSSSM 2010.

[39] PATRIZI, F. (2009) Simulation-based techniques for auto-
mated service composition. Ph.D. thesis, Department of
Systems and Computer Science and Engineering, SAPI-
ENZA—Università di Roma, Rome, Italy.

[40] PNUELI, A. and ROSNER, R. (1989) On the synthesis of a
reactive module. In Proceedings of POPL’89.

The homes of tomorrow: service composition and advanced user interfaces

EAI European Alliance
for Innovation 13

ICST Transactions on Ambient Systems
October–December 2011 | Volume 11 | Issues 10–12 | e2

http://dx.doi.org/10.1007/s11280-011-0112-x
http://dx.doi.org/10.1007/s11280-011-0112-x
http://www.cs.rug.nl/~eirini/tech_rep_09-7-01.pdf
http://www.cs.rug.nl/~eirini/tech_rep_09-7-01.pdf

	1. Introduction
	2. Relevant work
	3. The SM4ALL architecture
	3.1. Dealing with concurrency

	4. The Pervasive Layer
	5. The Service Repository and the models
	5.1. Service Repository
	5.2. Service and data models
	 Service and composition models
	 Data model

	6. Composition
	7. The User Layer
	8. Concluding remarks
	References

