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ABSTRACT 
Dynamic overlay networks on the Internet as well as ad hoc 

networks often rely on self-organizing distributed communication 

and construction techniques. When there are no central manage-

ment facilities and search indices available, flooding is a standard 

method to collect knowledge about the network structure and the 

content on the nodes. In recent time, random walks have attracted 

attention as an alternative search method in P2P networks. The 

efficiency of the method is usually evaluated by simulation 

studies. 

In this paper we use transient analysis as a simple and scalable 

approach to examine the properties of random walks. The 

convergence to steady state and the coverage of the network in the 

course of the random work are main characteristics to be 

analyzed. In our evaluations we consider network examples of 

different type and size.  
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1.  INTRODUCTION 
Several types of peer-to-peer networks have been build and 

widely used in the last decade [3][9]. Among them are hybrid 

systems of different type e.g. with 

 

• centralized servers for search followed by a decentralized 

data exchange (Napster) 

• hierarchical networks usually providing two levels of a few 

super peers and many normal peers, where super nodes again 

provide search tables, e.g., eDonkey, eMule, BitTorrent, 

• structured homogeneous network approaches like Chord 

[12], Pastry etc., with index pointers to support search and 

• unstructured networks, which do not employ indices to 

support content search e.g. the Gnutella network or the 

BubbleStorm approach [13].  
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Randomized techniques approve to be useful in the construction 

and exploration of self-organizing networks, which often are 

subject to a high churn of nodes entering and leaving the network.  

It is discussed in [1][2] how randomness can help to maintain 

dynamic networks with minimum overhead while preserving 

sufficient connectivity of the network. Many of the largest known 

networks build by humans exhibit properties which are generated 

by random expansion including the Internet, citation indices and 

networks of social relationships [1].  

For extending a network, a random walk can identify points in 

order to attach new nodes, which are then chosen as independent 

random samples according to the stationary distribution. 

Therefore the required length of a random walk until sufficient 

convergence to steady state has to be evaluated. As a rule of 

thumb, L = 3 ln(|V|) is often used in scalefree networks of size  |V| 

[1][2][13]. 

In P2P networks, which are build as overlays on the Internet, a 

decomposition into disconnected parts has to be avoided, even if   

nodes are entering and leaving the network frequently. The 

BubbleStorm P2P architecture [13] is conceived in order to be 

highly reliable, such that a simultaneous disappearance of up to 

90% of the peers e.g. caused by breakdowns in the underlying 

transport network leave the rest of the network intact. This 

includes a replication scheme for data over subsets of nodes in the 

network (“data bubble”). Therefore each data item can be found 

on many nodes in a P2P network in order to improve the 

reliability and the download performance. The most popular data 

is simultaneously requested from many participants, who would 

experience a bottleneck if a comparable number of source peers 

with copies of the data is not available.   

The search time for content naturally depends on the number of 

replicas of data in the network. In the BubbleStorm approach, the 

size of a “data bubble” is made larger than the square root of the 

network size and the set of nodes included in a data bubble is 

almost a random sample among all network nodes. Thus, visiting 

only a limited portion of the network nodes is sufficient for most 

searches.  

The search by flooding and random walks in P2P networks has 

been compared and evaluated by several simulation studies 

[5][7][8][10], some of which point out the random walks are more 

efficient. The main disadvantage of a single random walk is a long 

delay while travelling through the network. Flooding spreads 

search messages in parallel to all nodes in the neighborhood up to 

some hop distance d. It is often difficult to find an appropriate 

search radius d in order to reach a predefined number of network 



nodes, which contributes to the disadvantage of a large messaging 

overhead of flooding. Combined methods seem promising to 

overcome the disadvantages and to extract the best of both 

approaches [8]. Combined variants include 

 

• several random walks in parallel or branching of a random 

walk into multiple paths, 

• flooding with a predefined budget in order to control the 

number of visited nodes, which is split up among several 

paths to different next hops, 

• or random walks with an additional flooding step for a small 

distance d from the last or from several nodes being 

traversed.    

 

To the authors knowledge, all studies on evaluation of those 

search methods rely on simulation to estimate the performance of 

random walks. Instead we utilize transient analysis, yielding the 

exact probabilistic characteristics of a random walks after each 

step. The computational effort of this method is linear in the 

number of network edges and in the number of steps to be traced. 

Therefore transient analysis is tractable up to the size of popular 

P2P networks like KaZaa and eDonkey with several millions of 

peers. This is at least possible for basic random walk analysis as 

shown in this paper and for several variants, provided that they do 

not require much memory about previous steps of the walk, which 

would increase the required state space and complexity of the 

analysis. Random walks and transient analysis of Markov chains 

are classical concepts of stochastic modeling with main principles 

being introduced in books [6][11] and many research papers 

devoted to special properties, e.g. [14]. 

This paper is organized in three sections starting with Markov 

modeling and steady state considerations for random walks, 

followed by the main part for derivation of the transient analysis 

and finally a comparison of evaluations of the efficiency of 

random walks in seven different types of network topologies. 

 

2.  MARKOV MODEL AND SOME BASIC 

PROPERTIES 
A network graph G = (V, E) is considered with a set V of  nodes 

and a set E of edges. Usually we assume undirected graphs         

(a, b) ∈E ⇔ (b, a) ∈E or otherwise we clearly indicate cases of 

directed graphs. We presume that the graph is connected and  

d(G) ≥ 1 holds for the degree d(G) of the graph, which is defined 

as the minimum number of disjoint paths between an arbitrary 

pair of nodes. 

We follow a random walk through the network as a stepwise 

process, which proceeds from a node to a neighboring node at the 

next hop. A random walk R of length L is denoted by the series    

R = (r0, r1, r2 ,…, rL) of visited nodes, where an edge (rk  – 1 , rk) ∈ E 

is chosen for the k-th hop (1≤ k ≤L). The degree d(a) of a node     

a ∈V is the number of edges attached to the node 

d(a) = |{k | k ∈V, (a, k) ∈ E}| and  dmin = min{d(a) | a∈V} 

denotes the minimum node degree.  

As the basic case, a random walk chooses each edge from node a 

for the next hop with the same probability 

∀ a, k; (a, k) ∈E: pak = Prob(rn + 1 = k | rn = a) = 1 / d(a).      (1) 

Then P = (pak ) denotes the corresponding transition matrix. In this 

way, the random walk in the network is equivalent to a Markov 

process [6], where network nodes correspond to the states of the 

underlying Markov chain and links to transitions between states. 

In general, arbitrary transition probabilities may be considered, 

but for applications in P2P networks the setting (1) seems 

appropriate.  

Since d(G) ≥ 1, the Markov chain is irreducible. When periodical 

cases are excluded, where the number of hops on all paths leading 

from a node in a circle back to the same node are a multiple of 

some period length l ≥ 2, then steady state probabilities p(R)(a) 

exist 

p(R)(a) = limn→∞ Prob(rn = a)                (2) 

and the long term behaviour becomes independent of the starting 

point. For bidirectional links and uniform transition probabilities 

as in equation (1), the steady state probabilities are given by 
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For verification of the steady state solution, equilibrium equations 
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is met. The result can be interpreted in the way, that the 

considered random walks utilize all edges in the network with 

equal probability in the long term. Consequently, the expected 

frequency of visiting a node becomes proportional to the node 

degree.  

The convergence time of a random walk to steady state strongly 

depends on the network topology. Therefore we define the 

probability distribution of the random walk to enter a node at its 

m-th hop 

pm
(R)(a) = Prob(rm = a) 

and a measure of the distance from steady state 
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The convergence to steady state can be expressed on behalf of the 

eigenvalues of the transition matrix P of the random walk. It is 

discussed e.g. in [5][6][11][14] that an irreducible and aperiodic 

matrix P of an undirected graph has 1 as the largest eigenvalue 

and that the second largest eigenvalue λ2 is real and positive. Then 

λ2 is decisive for the convergence to steady state and can be used 

to obtain the following bound on the convergence speed [7]: 

min

24
d

E

m

m

λ
≤∆ . 

A corresponding bound can also be derived for the mean number 

of nodes that have been visited during a random walk of length L 

[7].  

 



 

3. TRANSIENT BEHAVIOUR OF  

    RANDOM WALKS 

When the exploration of a network by random walks of 

predefined length is evaluated using simulation [7][8][10][15] the 

results are subject to confidence levels with long simulation runs 

being required to achieve tight confidence intervals. In addition, 

analytically derived bounds for the network coverage and the 

steady state convergence are valuable to describe the principle 

behaviour, but do not capture a random walk in detail [4][5][7].  

In this paper we follow an alternative classical approach using 

transient analysis, which stepwise determines the probability 

distribution of network nodes that a random walk will enter at its 

m-th hop. When the random walk starts at a specific node s, then 

we have  

p0
(R)(s) = 1   and   ∀a ≠ s:  p0

(R)(a) = 0 

as the initial distribution. In general, any arbitrary initial 

distribution can be considered. The transient analysis iteratively 

computes the distribution of the next hop location. After pm
(R)(a) 

has been determined, the distribution pm+1
(R)(a) for the next step 

can be computed based on the knowledge of pm
(R)(a): 

pm+1
(R)(a) = Σk: (k, a)∈E  pm

(R)(k) pka               (4) 

Using equation (4) for the first hop after starting at node s, we 

obtain  

   p1
(R)(a) = 1 / d(s)   if (s, a) ∈ E    and   p1

(R)(a) = 0  if (s, a) ∉ E.    

If steady state conditions are satisfied, then the iterative 

computation of  p1
(R)(a),   p2

(R)(a), … converges to  p(R)(a). The 

computational complexity for the transient analysis due to 

equation (4) is proportional to the number |E| of edges in the 

network for each hop. Therefore the effort to compute pm
(R)(a) is 

of the order O(m|E|), which makes transient analysis applicable 

for large scale networks. 

Besides the complete distribution of the node location after m 

hops, the probability qL
(R)( t) that a node t has been visited during a 

random walk of length L is the most important measure for the 

performance of random network explorations: 

qL
(R)( t) = Prob(∃ j, 0≤ j ≤ L: rj = t). 

The probabilities  qL
(R)( t) indicate how long it will last until the 

walk has visited half or 90% of the network nodes in order to 

collect information on the structure or content in the network. The 

probabilities qm
(R)(t) are still computed in the hop-by-hop 

approach of equation (4). The only modification required is to 

introduce an absorbing state at node t, which accumulates the 

probabilities of visiting that node during the random walk [6]. 

Therefore the transition equations (1) need to be changed only for 

the transitions from node t, while all others remain valid: 

   ∀ a, k; (a,k) ∈ E:  qak  =  1/d(a)   if a ≠ t;                     (5) 

                     ∀ k; (t,k) ∈ E:  qtk   =  0          if k ≠ t;   qtt  =  1.   

qL
(R)( t) is determined by applying equation (4) to the modified 

transitions: 

qm+1
(R)(a) = Σk: (k, a)∈E  qm

(R)(k) qka .                    (6) 

The random walk defined by equations (5) and (6) has the same 

behaviour at all nodes except for t. Once it has reached t it stays 

there for ever. Consequently, qm
(R)(t) is monotonously increasing 

with m. If steady state preconditions are met, node t will be 

reached sooner or later with probability 1:  

qm
(R)(t) ≤ qm+1

(R)(t);    limm→∞  qm
(R)(t) = 1. 

This limiting behaviour even holds for irreducible and periodical 

random walks. On the other hand, qm
(R)(a) with a ≠ t can be 

interpreted as the probability of the random walk to enter node a 

by the m-th hop without having visited t beforehand. The 

computational effort to compute qm
(R)(a) for all nodes in the 

network is again linear in the number of edges and the length of 

the considered random walk O(m|E|).  

If we want to know the length m of a random walk until the 

probability of having visited node t has reached a predefined level 

α (0 ≤ α ≤ 1), then the computational effort depends on the 

network topology and is increasing with the considered 

probability level α. 

Finally, note that qm
(R)(t) can be computed starting from a specific 

node s ≠ t, where again  

q0
(R)(s) = 1  and  ∀a ≠ s:  q0

(R)(a) = Prob(r0 = a) = 0 

or from an arbitrary initial distribution. In the following 

evaluation section, we always start with a uniform distribution 

over the network nodes, such that 

∀a:  q0
(R)(a) = 1 / |V|. 

 

4. EVALUATION OF NETWORK   

      TOPOLOGIES 

Based on the previously presented transient analysis approach, we 

have evaluated several types of networks and studied the 

influence of the network size for each type. In each case, results 

on the convergence to steady state and on the network coverage 

are shown in two separate figures. At first we present each 

network type with its evaluation results and then give short 

remarks on the comparison of the obtained results.  

All the considered cases exhibit regular structures of the topology, 

whereas most applications of random walks are in unstructured 

P2P or ad hoc networks. Nevertheless, the clearly structured cases 

make it easier to comprehend the different behaviour in the 

convergence to steady state and the suitability of random walks 

for exploring a network. Preconditions of the analysis of the 

steady state convergence are discussed in detail in section 4.1 and 

for the analysis of the network coverage in section 4.2. 

Table 1 summarizes main parameters of the network examples. 

 

Table 1: Main parameters of the network examples 

       

log2|V|log2|V|log2|V||V| log2|V|/2Hyper cube   (|V| =2k )

1|V||V||V|(|V|+1)/2Full mesh 

|V|/222|V| Ring

6(|V|=k3)  63 |V|3-dim. grid, wrapped

2|V| – 11|V| – 1Star

4(|V|=k2) 42 |V|2-dim. grid, wrapped

2|V| – 1 log2|V|– 1(log2|V|–1) ⋅

(|V| +1) + 2

Extension of a binary 

tree            (|V| =2k – 1)

2log2(|V| -1)31|V| – 1Binary Tree (|V| =2k–1)

log2|V|log2|V|log2|V||V| log2|V|

(for |V| =2k)

Chord structure: ring & 

unidirectional pointers

DiameterMax. node 

degree

Min. node 

degree

Number

of edges

Network type

log2|V|log2|V|log2|V||V| log2|V|/2Hyper cube   (|V| =2k )

1|V||V||V|(|V|+1)/2Full mesh 

|V|/222|V| Ring

6(|V|=k3)  63 |V|3-dim. grid, wrapped

2|V| – 11|V| – 1Star

4(|V|=k2) 42 |V|2-dim. grid, wrapped

2|V| – 1 log2|V|– 1(log2|V|–1) ⋅

(|V| +1) + 2

Extension of a binary 

tree            (|V| =2k – 1)

2log2(|V| -1)31|V| – 1Binary Tree (|V| =2k–1)

log2|V|log2|V|log2|V||V| log2|V|

(for |V| =2k)

Chord structure: ring & 

unidirectional pointers

DiameterMax. node 

degree

Min. node 

degree

Number

of edges

Network type

 2/||2 3 V

 2/||2 V

 
 

 



 

 

Ring network 

At first, a ring network is studied, where each of the nodes         

N1, N2, …, NV is connected to a neighbor on both sides:  

  (Nj, Nk) ∈E ⇔ (k = (j+1) mod V or k = (j–1) mod V) 

All node degrees are equal d(Nj) = 2 in this example. 
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Figure 1: Ring network: Convergence to steady state 
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Figure 2: Ring network: Hop count for network coverage 

 

Ring network with pointers 
The third example is a directed graph. All nodes have the same 

degree resembling the structure of the Chord P2P proposal [12] of 

a ring with fingers pointing to nodes whose distance in the ring 

equals a power of 2.. The node degree is K for a network of size 

2K–1 < |V| ≤ 2K. The topology is defined extending the simple ring: 

      ∀ j, k; 1 ≤  j, k ≤ |V| and ∀ l;  1 ≤  l ≤ K: 

       (Nj, Nk) ∈ E  ⇔   k = (j + 2l–1) mod |V|. 

The derivation of steady state probabilities of section 2 is valid 

only in undirected graphs whereas this graph is directed.  

 

 

 

 

 

However, the network is irreducible, aperiodic and owing to the 

symmetrical transition matrix, the steady state distribution is 

uniform  

p(R)(N1) = p(R)(N2) = … = p(R)( NV) = 1 / |V|. 

The transient analysis applies to directed as well as undirected 

graphs. 
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Figure 3: Ring with pointers: Convergence to steady state 
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Figure 4: Ring with pointers: Network coverage 

Binary tree network  

The binary tree structure has |V| = 2K – 1 nodes in total. On a level 

k = 1, …, K there are 2k–1 nodes, where the first level corresponds 

to the root and the last is the leaf level. Then N1, …, N2K – 1 are the 

leaves, N2K – 1 + 1, …, N2K – 1 + 2K – 2  are the nodes on the 

intermediate level K–1 up to N2K – 1 as the root on the first level. 

Each node has one edge to a node on the next higher level except 

for the root and each node has two edges to different nodes on the 

next lower level except for the leaves. The leaves have node 

degree 1, all nodes on intermediate levels have degree 3 and the 

root has degree 2.  

 



1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+00

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

Deviation ∆∆∆∆ from steady state in binary trees 

N
u

m
b

er
 o

f 
h

o
p

s 
in

 t
h

e 
ra

n
d

o
m

 w
a
lk

  
  

.

16 383 nodes; start from a leaf
  1 023 nodes; start from a leaf
     127 nodes; start from a leaf
16 383 nodes; start from root
  1 023 nodes; start from root
     127 nodes; start from root

 

Figure 5: Binary tree: Convergence to steady state 
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Figure 6: Binary tree: Hop count for network coverage 

Binary tree structure with additional links  
In addition, we consider the case of a network with the same level 

structure as for the binary tree network and more links. In 

particular, each non-leaf node has links to all nodes in the subtree 

corresponding to this node. Thus the root is connected to all other 

nodes and has degree 2K – 2 and a node on a level k = 1, …, K–1 

has links to 2 
j–k  distinct nodes on each lower level  j.  

Both second level nodes are connected to 2K–1 – 2 nodes on lower 

levels in their sub-trees and to the root, which establishes degree 

2K–1 – 1, etc. Since all links are bidirectional, a leaf is connected to 

one node on each of the higher levels and has degree K–1. The 

degrees of nodes in the network are spread over almost the entire 

possible range.     
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Figure 7: Extended binary tree: Steady state convergence 
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Figure 8: Extended binary tree: Hop count for coverage 

2-dimensional grid   
In the 2-dimensional grid each node has a degree of 4, assuming 

that edges are wrapping around the ends of the grid in both 

directions. In this way, the network structure becomes 

homogeneous. The network size is assumed to be a square 

number. In order to determine the edges of the network, lets 

denote a node by its coordinates in the grid: 

             ∀ n1, n2; 1 ≤  n1, n2  ≤ ||V :  (n1, n2) ∈ V 

Then      ( (n1, n2), (m1, m2) ) ∈ E  ⇔ 

     (  n1  = m1    and     | n2 – m2| mod ||V  = ±1 )    or 

     (  n2  = m2    and     | n1 – m1| mod ||V  = ±1 ). 

If the network size |V| is an even number, then the random walk is 

periodical and alternates between nodes in two subsets of size 

|V|/2. Then a modified convergence criterion may be applied 

according to equation (7-8) considering the arithmetic mean over 

two hops of the random walk. In the examples, the network size is 

odd and then a stationary distribution exists. 
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Figure 9: 2-dimensional grid: Steady state convergence 
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Figure 10: 2-dimensional gid: Hop count for network coverage 

3-dimensional grid   
The 3-dimensional grid has similar properties as the previous      

2-dimensional case. With edges being wrapped around, the 

network structure is homogeneous and each node has a degree of 

6. The network size is assumed to be a cubic number. In order to 

determine the edges of the network, lets denote a node by its 

coordinates in the grid: 

        ∀ n1, n2, n3;  1 ≤  n1, n2, n3   ≤ 3 ||V :  (n1, n2, n3) ∈ V 

Then  ( (n1, n2, n3), (m1, m2, m3) ) ∈ E  ⇔ 

     (  n1  = m1;  n2  = m2  and  | n3 – m3| mod 3 ||V  = ±1 )    or 

     (  n1  = m1;  n3  = m3  and  | n2 – m2| mod 3 ||V  = ±1 )    or 

     (  n2  = m2;  n3  = m3  and  | n1 – m1| mod 3 ||V  = ±1 ). 

If the network size |V| is an even number, then the random walk is 

periodical and alternates between nodes in two subsets of size 

|V|/2. Then a modified convergence criterion may be applied 

according to equation (7-8) considering the arithmetic mean over 

two hops of the random walk. In the examples, the network size is 

odd and then a stationary distribution exists. 
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Figure 11: 3-dimensional grid: Steady state convergence 
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Figure 12: 3-dimensional gid: Hop count for network coverage 

Hyper-Cube  
As a last example, we consider a hypercube whose network size is 

a power of 2: |V| = 2
k
. This is again a homogeneous network type 

with degree k for all nodes. The hypercube network structure can 

be defined recursively. Let G and H be two hypercubes of size 

|V|/2 = 2
k–1

 with nodes g1, g2, …, g|V|/2 and h1, h2, …, h|V|/2, 

respectively.
)(
1

G
k

E
−

and 
)(
1

H
k

E
−

 are corresponding sets of edges. 

Then a hypercube of size |V| = 2
k
 can be build by all the nodes    

g1, g2, …, g|V|/2 and h1, h2, …, h|V|/2 and edges 
)(
1

G
k

E
−

and 
)(
1

H
k

E
−

in 

G and H and 2
k–1

 additional edges (g1, h1), (g2, h2), …, (g|V|/2, h|V|/2).  

Random walk in a hypercube are again periodical, alternating 

between nodes in two subsets of size |V|/2. The modified 

convergence criterion of equation (7-8) is used based on the 

arithmetic mean of two subsequent hops of the random walk.  
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Figure 13: Hyper-Cube: Steady state convergence 
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Figure 14: Hyper-Cube: Hop count for network coverage  

Note, that in some cases the network structure can be exploited to 

obtain explicit analytical solutions. For example, the random walk 

in the ring network leads to a binomial distribution of the location 

of a random walk after m hops being wrapped around the ring, 

which comes close to a corresponding Gaussian distribution for a 

large number of hops. In the binary tree network, the distribution 

of the current level also follows a binomial structure with 

reflective bounds on both sides. Starting from the root, all nodes 

in the tree or subtree are visited with the same probability.  

We also mention the case of a fully meshed network including a 

circle from each node back to itself. Again, this is not a usual 

structure of a P2P network, but it can be considered as being most 

favourable for random walks, since the uniform steady state 

distribution of the current location is already reached after one 

hop. When a random walk has visited n nodes, then a new node is 

entered in the next step with probability  (|V | – n) / |V |. Therefore 

the mean number E(hk) of hops until the random walk has visited 

k distinct nodes is given by 

.
121

1)(
+−

++
−

+
−

+=
kV

V

V

V

V

V
hE k L

             (7) 

The topology of a star with a central node also leads to a simple 

analysis. Starting from the center, a random walk next visits any 

other node with probability 1/( |V | – 1) and then returns to the 

center. This process is periodical, where the walk stays at the 

center after an even number of steps and at any other node with 

equal probabilities after an odd number of steps. The number of 

hops to visit k+1 distinct nodes in the star network is almost twice 

the expression (7) being observed in the full mesh. 

   

4.1 Steady state analysis 
In each network example, we let the random walk start at a 

specific node and observe the time of convergence to steady state. 

For homogeneous nodes as in the ring, grid and hypercube 

networks, convergence to steady state develops equivalently from 

any arbitrary starting point. In the binary tree network, the 

behaviour is  different for a start from the root as compared to a 

start from a leaf. Iterative application of equation (4) yields the 

distribution pm
(R)(a) of the location after m hops. The steady state 

solution p(R)(a) is known from equation (3) and we use  

∑
∈

| −=∆
Va

RR
mm apap )()(| )()(  

as a measure of the distance from the steady state.  

There are several cases, where the random walk is periodical with 

period length 2. This behaviour is observed for the binary tree, 

alternating between nodes on an even level and nodes on an odd 

level in subsequent hops. Other examples of a random walk to 

alternate between different subsets of network nodes are  

• the simple ring with an even number of nodes 

• both grid networks with an even number of nodes 

• and the hypercube. 

Then a steady state distribution according to equation (2) does not 

exist. Instead, we consider the mean of both distributions in two 

subsequent hops 

,
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)()(
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which converges to )(~lim)(~ )()(
apap

R
mm

R
∞→=  for alternating 

random walks with corresponding distance measure 
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∈

| −=∆
Va

RR
mm apap                    (8) 

Steady state analysis results are shown for each network type and 

for different network sizes in the figures. In all cases, we observe 

a linear convergence, where the distances ∆m reduce by about 

some constant factor with increasing m. The convergence speed 

differs by orders of magnitude, where the ring with pointers and 

the hypercube get below a distance measure of 10-5 within less 

than 120 hops even for a network size up to  |V | = 1 000 000. 

On the other hand, the ring network is still above 0.05 after            

10 000 hops already for |V| = 127 nodes. Moreover, the hop count 

until convergence even increases quadratically with the length of 

the ring. Rings and linear chains have the largest network 

diameter, defined as the longest of the shortest paths between 

arbitrary pairs of network nodes. Small diameters and higher node 

degrees are favourable for the convergence of random walks as 

well as their ability to cover a large portion of the network nodes 

in short time. 

A remarkably large difference is apparent in figure 5 for the 

random walk convergence in a binary tree from different starting 

points at the root or at a leaf. Starting from the root, all nodes at 

the same level are entered afterwards with equal probability in 

each step, which is according to the stationary distribution. Then it 

is sufficient to consider convergence between the complete levels, 

which is fast since there are less than 20 levels up to a network 



size of more than a million nodes. Starting from a leaf, the mean 

time to enter the root is much longer, since the probability to 

choose an edge to the next higher level is only 1/3. Then half of 

the network cannot be reached without traversing the root. 

Therefore the distribution of node locations remains unbalanced 

over a long time, adhering to the subtrees where the starting point 

belongs to. 

 

4.2 Efficiency of random walks for network 

exploration 
In addition to the convergence to steady state, transient analysis 

with an absorbing node is used to see how long a random walk 

must be followed until it has visited a predefined portion of the 

network nodes. 

Therefore we assume a uniform starting distribution in each 

considered case, i.e. ∀ a ∈ V:  p0
(R)(a) = 1 / |V |. 

One figure of each example shows the number of hops required 

until a specific network node has been explored by the random 

walk with 10%, 20%, …, 90%, 95% and 99% probability.  

For the binary tree and its extension, those probabilities differ for 

nodes on each level. We show the results for an arbitrary leaf. The 

other networks are homogeneous, such that the exploration 

process is equivalent for all network nodes and the probability 

levels are equal to the mean portion of the network that has been 

explored for the obtained hop count. 

Again, the random walk is most efficient for the ring with 

pointers, followed by the hypercube, the extended binary tree 

evaluated for leaf nodes, the 3-dimensional and the 2-dimensional 

grid. In case of the binary tree, exploration times by a random 

walk are about ten times higher in the mean. Finally, is it not 

unexpected that the simple ring has the worst performance. 

The dependency of the hop count on the network size is roughly 

linear in most cases, except for a quadratic increase for the ring, as 

has also been observed for convergence in the ring to steady state. 

Since content or other information in P2P networks is usually 

replicated on a number of nodes, is if often sufficient to cover 

only a small part of the network. Especially the most popular data, 

to which most of the searches refer to, is distributed over many 

peers. Therefore results for 10% or less coverage are relevant, 

which are much more promising than the expected time until an 

almost complete coverage. 

Numerical stability of the analysis method is supposed to be 

favourable, since no subtractions are involved. We only checked 

the sum of the probabilities of the result, which showed deviations 

of less than 10-10 in all examples. A verified computation using 

interval arithmetic [14] is considered as an extension of the 

analysis. 

CONCLUSIONS 
Transient analysis is investigated as a standard method to evaluate 

the efficiency of random walks for network exploration, providing 

an exact probabilistic characterization of the hop-by-hop progress. 

The favourable computational complexity makes the method 

scalable for large size network. Therefore the dependency of the 

performance on the network size is evaluated from a hundred to 

100 000 or partly up to a million nodes. Improved random walks 

including some memory e.g. in order to avoid stepping back to the 

previous node or combined with flooding, still can be treated by 

transient analysis as a potential subject for further study.  
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