
A policy iteration algorithm for Markov decision processes
skip-free in one direction

J. Lambert, B. Van Houdt and C. Blondia
University of Antwerp, Department of Mathematics and Computer Science,

Performance Analysis of Telecommunication Systems Research Group,
Middelheimlaan, 1, B-2020 Antwerp - Belgium,

{joke.lambert,benny.vanhoudt,chris.blondia}@ua.ac.be

ABSTRACT
In this paper we present a new algorithm for policy iteration
for Markov decision processes (MDP) skip-free in one direc-
tion. This algorithm, which is based on matrix analytic
methods, is in the same spirit as the algorithm of White
(Stochastic Models, 21:785-797, 2005) which was limited to
matrices that are skip-free in both directions.
Optimization problems that can be solved using Markov de-
cision processes arise in the domain of optical buffers, when
trying to improve loss rates of fibre delay line (FDL) buffers.
Based on the analysis of such an FDL buffer we present a
comparative study between the different techniques avail-
able to solve an MDP. The results illustrate that the ex-
ploitation of the structure of the transition matrices places
us in a position to deal with larger systems, while reducing
the computation times.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes; G.1.6
[Numerical Analysis]: Optimization—Global optimization

General Terms
Policy iteration algorithm, Performance

Keywords
Matrix analytic methods, Markov decision process, skip-free
in one direction, optical buffer, fibre delay lines, loss rate.

1. INTRODUCTION
Markov decision processes [1] date back to the 1950s and

provide a mathematical framework for studying a wide range
of optimization problems. Typically, the optimization prob-
lem is, among others, characterized by a set of states S and
a set of actions A. Each action a ∈ A can be performed
from any state h ∈ S and causes a transition to a new state
h′ ∈ S, at some cost ch(a). As such, we have a transition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMCtools’07, October 26, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

matrix P (a) for each action a ∈ A. The question is now:
which action a ∈ A should we choose when in state h, for
each h ∈ S, such that the long-run average cost is minimal?
In other words, what is the optimal policy which maps S to
A such that the costs are minimized.

Two important iterative approaches that determine the
optimal policy are the policy iteration and the value itera-
tion algorithm. Policy iteration has the advantage that it is
guaranteed to converge in a finite number of steps (typically,
between 3 and 15 iterations [9]), but requires the solution
of a linear system of equations at each iteration. The value
iteration algorithm is faster per iteration as it avoids solv-
ing linear systems, but in general requires significantly more
iterations.

In case the matrices P (a) are structured, policy itera-
tion can potentially also exploit this structure to reduce the
amount of computation time and memory at each iteration.
Within the matrix analytic paradigm, this was first demon-
strated by White [10] in case the matrices P (a) are skip free
in both directions, meaning the state space S is partitioned
into M + 1 sets, labeled S0 to SM , and a transition from a
state h ∈ Si to h′ can only occur if h′ ∈ Si−1 ∪ Si ∪ Si+1.

The result by White will be generalized in this paper by
developing an algorithm for the case where the P (a) matrices
are skip-free in only one direction. Our algorithm bears the
same resemblance with the linear reduction algorithm in [7]
to determine the steady state vector of a Markov chain skip-
free in one direction, as White’s algorithm does with [8].
However, when the chain is only skip-free in one direction,
one can apply a reduction from the right-to-left or left-to-
right which leads to two somewhat different algorithms. We
will explore both possibilities and argue that the right-to-left
approach seems to allow a bigger gain in terms of memory
usage and computation time.

MDPs have a wide range of application areas. Our moti-
vation lies in understanding the behavior of optical buffers,
called fibre delay lines (FDLs) present in future optical com-
munication networks [2], [4], [3] and [6]. Unlike electronic
random-access memory (RAM), FDLs can only delay pack-
ets, called optical bursts (OB), by a discrete set of values. In
a slotted equidistant system typical delay values are 0, D, 2D,
3D, . . . , ND time slots for some integers N and D, where the
main performance measure of such an FDL buffer is its loss
rate.

To improve the loss rate of the equidistant FDL buffer, we
devised a new mechanism in [5] called the preventive drop
mechanism (see Section 4 for details). As demonstrated in
[5], the optimal policy for the preventive drop mechanism

can be determined via a Markov Decision Process. In [5] the
value iteration algorithm was used for this purpose, causing
slow convergence to the optimal policy. Also, when trace-
based input was used for the OB length distribution, some
clustering of this distribution was required to reduce the
computation times (and the size of the state space S). Using
the new approach, we are now in a position to tackle larger
systems, while reducing the computation times. We have
used the new approach to validate the approximation made
in [5] by clustering the OB length distribution.

The paper is structured as follows. A general introduction
on skip-free in one direction Markov chains and on Markov
decision processes is given in Section 2. Section 3 describes
the new policy iteration algorithm for skip-free in one direc-
tion MDPs. The general notion of FDL buffers is introduced
in Section 4 and we show how to capture its behavior by a
Markov decision process. In Section 5 we present a com-
parative study between the different techniques available to
solve an MDP and we elaborate on a numerical example.

2. MARKOV DECISION PROCESSES SKIP-
FREE IN ONE DIRECTION

In this section we will describe the structure of a Markov
Decision process (MDP) skip-free in one direction. To do so,
we start by giving a short introduction on skip-free in one
direction Markov chains.

2.1 Skip-free in one direction Markov chains
A Markov chain skip-free in one direction is a discrete-time

Markov chain defined on a finite state space S = {k | k =
1, . . . K}, i.e., at each time t ≥ 0, X(t) = k ∈ {1, . . . , K}.
The state space S is partitioned into M + 1 sets Si, for
i = 0, . . . , M , where |Si| = bi. Further, the transition prob-
ability matrix P of this chain has a block skip-free (to the
left) structure:

P =

2
666664

A0,0 A0,1 A0,2 . . . A0,M

A1,0 A1,1 A1,2 . . . A1,M

0 A2,1 A2,2 . . . A2,M

...
. . .

. . .
. . .

...
0 0 . . . AM,M−1 AM,M

3
777775 . (1)

The matrix P is of size K × K, where the subblock Ai,k

of size bi × bk holds the transition probabilities between the
states of the set Si and Sk. The stationary probability vector
x = (x0, . . . , xM), where xi has length bi, satisfies:

x = xP xe = 1,

where e is a column vector with all entries equal to one.
Within this paper we will restrict ourselves to the case where
b0 = b1 = . . . = bM = b = K/(M + 1), meaning all sub-
blocks are square and have the same dimension. The ideas
introduced in this paper can be generalized without much
difficulty to the general setting.

2.2 Markov decision process skip-free in one
direction

For each state h, there exists a set A(h) of decisions or
actions. In our case the set A(h) is the same for all h;
hence we simply denote this set as A. Each action incurs an
immediate cost and also affects the probability law for the
next transition. A formal definition of the MDP is given by

the tuple 〈S,A,P, C〉, where S is the set of possible states,
A is the set of possible actions, P : S ×A×S → [0, 1] is the
state transition function specifying the probability P{h′ |
h, a} = ph,h′(a) of observing a transition to state h′ ∈ S
after taking action a ∈ A in state h ∈ S and, finally C :
S ×A → R is a function specifying the cost ch(a) of taking
action a ∈ A at state h ∈ S [9]. Notice, the cost ch(a)
depends on the action a taken in state h, but not on the
state h′ visited (as a result of taking action a in state h).
Thus, if at a decision moment the action a is chosen in state
h, then regardless of the past history of the system, the
following happens: (i) An immediate cost ch(a) is incurred,
(ii) At the next decision moment the system will be in state
h′ with probability ph,h′(a).

The goal of the decision model is to prescribe a policy R
for controlling the system, such that the cost is minimal.
Formally, a policy R is a mapping R : S → A and under a
given policy R, action R(h) is always executed whenever we
visit state h.
For a given policy R we can define the long-run average cost
from state h as follows:

JR(h) = E

"
∞X

t=0

αtcX(t)(R(X(t)))

�����X(0) = h

#
, (2)

where 0 < α < 1 is the discount factor. An optimal policy
Ropt is defined to be a policy which realises the minimum
long-run average cost JR(h) over all policies R and this for
all initial states h ∈ S. It is well-known that the optimal
(minimum) long-run average cost is a solution of

J∗(h) = min
R

JR(h)

= min
a∈A

E [ch(a) + αJ∗(X(1)) | X(0) = h]

= min
a∈A

KX

k=1

ph,k(a)(ch(a) + αJ∗(k))

!
, (3)

for h = 1, . . . , K and where ph,k(a) denotes the transition
probability from state h to state k under action a. With
some abuse of notation, in vector matrix form this becomes

J∗ = min
a

(c(a) + αP (a)J∗), (4)

with the vector J∗ = (J∗(1), J∗(2), . . . , J∗(K)), entry h of
the column vector c(a), denoted as [c(a)]h, equal to ch(a)
and P (a) the transition matrix given that action a is exe-
cuted. Equation (4) is a set of non-lineair equations that in
general cannot be solved directly. For a given policy R, the
associated long-run average cost satisfies the equation (see
[1]):

JR(h) =

KX
k=1

ph,k(R(h))(ch(R(h)) + αJR(k)), (5)

or in vector form

JR = c(a) + αP (a)JR, (6)

where a is determined by the policy R for each component
h ∈ S. The policy iteration algorithm for determining the
optimal long-run average cost J∗ works as follows [1]:

• Step 0: Select an initial policy R0 and set n = 0. This
leads to an initial set of actions R0(h) for h = 1, . . . , K.

• Step 1: We then evaluate the policy Rn by solving (6)
to yield JRn . This step is called policy evaluation.

• Step 2: Afterwards we update the policy to Rn+1 by
using

Rn+1(h) = argmina∈A{ch(a) +

KX
k=1

ph,k(a)JRn(k)},

where the minimum is taken over all actions a ∈ A
for all h ∈ S. Notice, this is equivalent to saying that
Rn+1 minimizes c(R(h))+P (R(h))JRn over all policies
for all h ∈ S. This step is called policy improvement.

• Step 3: The algorithm is stopped, returning the de-
sired policy Ropt = Rn, when Rn = Rn−1, as policy
iteration guarantees convergence to the optimal policy
in a finite number of steps.

A Markov decision process, characterized by the matrices
P (a), for a ∈ A is skip-free in one direction (to the left) if
all the matrices P (a) are skip-free (to the left) and conse-
quently, all transition matrices corresponding to any policy
R are skip-free.

3. MATRIX ANALYTIC TECHNIQUES FOR
POLICY EVALUATION

In this section we only study the policy evaluation step
as it is the most expensive step. We drop all explicit refer-
ences to the policy R under evaluation to make the notations
easier. Thus, we will write c(h) for the cost ch(R(h)) from
state h under the chosen policy R and ph,k denotes the tran-
sition probability ph,k(R(h)) from state h to state k under
the chosen policy, where P is composed of subblocks Am,n

as defined in (1). Let us denote the corresponding long-run
average cost row vector by JT = (JT

0 , JT
1 , . . . , JT

M) where
T denotes the transpose and each Jm is a column vector of
size b. The matrix equation (6) can be written as the set of
equations:

J0 = c0 +

MX
i=0

(αA0,iJi)

Jm = cm +

MX
i=m−1

(αAm,iJi)

JM = cM +

MX
i=M−1

(αAM,iJi), (7)

for m = 1, . . . , M − 1 and where the size b column vector ci

equals (c(ib + 1), . . . , c((i + 1)b))T , for i = 0, . . . , M .
Two different approaches to solve this system of equations

efficiently are discussed next. Both may be regarded as gen-
eralizations of the approach developed by White [10] for the
Quasi-Birth-Death case, where the chain is skip-free in both
directions. Both approaches are also closely related with the
algorithm used to compute the stationary vector of a Markov
chain skip-free in one direction developed by Latouche, Ja-
cobs and Gaver [7], in the same manner as the approach
taken by White relates to the linear reduction algorithm for
the stationary vector of a finite QBD discussed in [8]. The
two approaches differ in the way the lineair reduction is per-
formed: either from right-to-left or from left-to-right.

3.1 A policy evaluation algorithm for MDPs
skip-free in one direction: the right-to-left
approach

Analogue to the lineair reduction method for solving skip-
free in one direction Markov chains [7], we start by defining
the matrices Ām and Θk,m that turn out to be useful to
evaluate the long-run average cost J(h). The matrices Ām

with 0 ≤ m ≤ M and Θk,m with 0 ≤ k < m ≤ M are
recursively determined as follows:

ĀM = αAM,M , (8a)

Ām = α(Am,m + Θm,m+1(I − Ām+1)
−1Am+1,m), (8b)

for m = M − 1, M − 2, . . . , 0 and

Θk,M = αAk,M , (9)

with k = 0, . . . , M − 1 and for m = M − 1, M − 2, . . . , 1 we
set

Θk,m = α(Ak,m + Θk,m+1(I − Ām+1)
−1Am+1,m), (10)

where k = 0, . . . , m− 1. Besides we also define a vector c̄m,
for 0 ≤ m ≤ M as follows:

c̄M = cM (11a)

c̄m = cm +

MX
j=m+1

�
Θm,j(I − Āj)

−1c̄j

�
, (11b)

where m = M − 1, . . . , 0.
Let us now use these matrices and vectors to rewrite equa-
tion (7). Consider the last equation in (7). We can write:

JM = (I − αAM,M)−1(cM + αAM,M−1JM−1)

= (I − ĀM)−1(c̄M + αAM,M−1JM−1).

If we now use this in the m = M − 1 equation from (7), we
have that:

JM−1 = cM−1 +

MX
j=M−2

αAM−1,jJj

= ĀM−1JM−1 + c̄M−1 + αAM−1,M−2JM−2

= (I − ĀM−1)
−1(c̄M−1 + αAM−1,M−2JM−2).

By repeated substitution in the remaining equations of (7)
one eventually establishes that in general:

Jm = (I − Ām)−1(c̄m + αAm,m−1Jm−1), (12)

for m = M, . . . , 1 and

J0 = (I − Ā0)
−1c̄0. (13)

The algorithm to perform a policy evaluation of R thus
works as follows (pseudo code for an efficient implementa-
tion of this algorithm is given in the subsequent paragraph):

• Step 0 : The algorithm proceeds by initialising ĀM ,
Θk,M (for k = 0, . . . , M−1) and c̄M according to equa-
tions (8a), (9) and (11a).

• Step 1 : Then equations (8b), (10) and (11b) can be
used to determine Ām, Θk,m and c̄m, for m = M −
1, . . . , 0 and k = 0, . . . , m− 1 by iterating backwards.

• Step 2 : Afterward equation (13) is used to determine
J0.

• Step 3 : We iteratively derive Jm from Jm−1 using
equation (12) for m = 1, . . . , M .

An efficient implementation:.We can reduce the mem-
ory complexity using two matrices: the b× (M + 1)b matrix
V = [V0 . . . VM] and the b×(M+1) matrix W = [W0 . . . WM]
to store the intermediate and final results, where Vm and
Wm are square matrices and column vectors of size b, re-
spectively. The pseudo code for this implementation is given
in Figure 1. At the end of step 3 W holds the long-run aver-
age cost vectors [J0, J1, . . . , JM]. In Step 2 we only require
the Ak,m matrices one block column at a time. As a con-
sequence this step can be implemented in O(b2M) memory
and O(b3M2) time, which is also the overall performance of
the algorithm.

The Quasi-Birth-Death (QBD) case:.If the matrices P (a)
are skip-free in both directions, then Ak,m = 0 if m >
k + 1 and subsequently Θk,m equals αAk,m for k = m − 1
and zero otherwise. Therefore, Equations (8a), (8b), (11a),
(11b), (12) and (13) are equivalent to Theorem 3.1 in [10]
if we let Jm = JM−m, Ām = αCM−m, c̄m = gM−m and
cm = gM−m,M−m−1 + gM−m,M−m + gM−m,M−m+1 (and

Am,m = A
(M−m)
1 , Am,m+1 = A

(M−m)
2 , Am,m−1 = A

(M−m)
0).

The reason we need to replace m by M − m is due to the
fact that in [10] a left-to-right reduction was used, as is the
case in the following section. For the QBD both directions
result in two sets of equivalent equations, which is no longer
true if the chain is only skip-free in one direction.

3.2 A policy evaluation algorithm for MDPs
skip-free in one direction: the left-to-right
approach

In the previous subsection we used a right-to-left approach
to solve equation (7). It is also possible to work in the
other direction and to start with the first equation. We
define analogue matrices Ā′m with 0 ≤ m ≤ M , Θ′

m,k with
0 ≤ m < k ≤ M and vectors c̄′m with 0 ≤ m ≤ M that are
used to evaluate the long-run average cost. These matrices
are recursively determined as follows:

Ā′0 = αA0,0 (14a)

Ā′m = α(Am,m + Am,m−1(I − Ā′m−1)
−1Θ′

m−1,m), (14b)

for m = 1, . . . , M and

Θ′
0,k = αA0,k, (15)

with k = 1, . . . , M and for m = 1, . . . , M we set

Θ′
m,k = α(Am,k + Am,m−1(I − Ā′m−1)

−1Θ′
m−1,k), (16)

where k = m + 1, . . . , M . Finally we set

c̄′0 = c0 (17a)

c̄′m = cm + αAm,m−1(I − Ā′m−1)
−1c̄′m−1, (17b)

for m = 1, . . . , M .
We can now use these matrices and vectors to rewrite equa-
tion (7). Consider the first equation in (7), which can be

rewritten as

J0 = c0 + αA0,0J0 + α

MX
i=1

A0,iJi

= (I − Ā′0)
−1(c̄′0 +

MX
i=1

Θ′
0,iJi).

Using this in the second equation of (7), we find that:

J1 = c1 + αA1,0J0 + αA1,1J1 + α

MX
i=2

A1,iJi

= Ā′1J1 + c̄′1 +

MX
i=2

Θ′
1,iJi

= (I − Ā′1)
−1(c̄′1 +

MX
i=2

Θ′
1,iJi).

Repeating this argument we find the following result:

Jm = (I − Ā′m)−1(c̄′m +

MX
i=m+1

Θ′
m,iJi), (18)

for m = 0, . . . , M − 1 and

JM = (I − Ā′M)−1c̄′M . (19)

The left-to-right algorithm works as follows:

• Step 0 : The algorithm proceeds by initialising Ā′0, Θ′
0,k

(for k = 1, . . . , M) and c̄′0 according to equations (14a),
(15) and (17a).

• Step 1 : Then equations (14b), (16) and (17b) can be
used to determine Ā′m, Θ′

m,k and c̄′m iteratively for
m = 1, . . . , M and k = m + 1, . . . , M .

• Step 2 : Afterward equation (19) is used to determine
JM .

• Step 3 : Finally we iteratively compute Jm from Jm+1,
. . . , JM using equation (18).

A note on the implementation:.This algorithm is almost
identical to the right-to-left algorithm, however, looking at
equations (11b), (12), (17b) and (18), we see that Jm now
depends on Jm+1 to JM , while c̄′m only depends on c̄′m−1,
while in the right-to-left model it was the other way around.
This seems to make a low memory implementation as men-
tioned in the previous section problematic as there seems to
be no way to avoid the need to store all the Θ′

m,k matrices.

The Quasi-Birth-Death (QBD) case:.If the chain P is
skip-free in both directions, then Am,k = 0 if k > m+1 and
subsequently Θ′

m,k equals αAm,k for k = m + 1 and zero
otherwise. Therefore, Equations (14a) to (17b) are equiva-
lent to Theorem 3.1 in [10] if we let Ā′m = αCm, c̄′m = gm

and cm = gm,m−1 + gm,m + gm,m+1 (and Am,m = A
(m)
1 ,

Am,m+1 = A
(m)
0 and Am,m−1 = A

(m)
2).

• Step 0: Compute ĀM , Θk,M (k = 0, . . . , M − 1) and c̄M and set:

V = [Θ0,M . . . ΘM−1,M (I − ĀM)−1]

W = [Θ0,M (I − ĀM)−1c̄M . . . ΘM−1,M (I − ĀM)−1c̄M (I − ĀM)−1c̄M].

• Step 1: Iteratively replace Vm to V0 and Wm to W0, by V ′
m to V ′

0 and W ′
m to W ′

0, for m = M − 1, . . . , 0:

V ′
m equals (I − Ām)−1 via Ām = α(Am,m + VmVm+1Am+1,m)

V ′
k equals Θk,m via V ′

k = α(Ak,m + VkVm+1Am+1,m)
W ′

m equals (I − Ām)−1c̄m via W ′
m = V ′

m(cm + Wm)

W ′
k equals

PM
j=m Θk,j(I − Āj)

−1c̄j via W ′
k = Wk + V ′

kW ′
m,

for k = m− 1, m− 2, . . . , 0. End of this step:

V = [(I − Ā0)
−1 (I − Ā1)

−1 . . . (I − ĀM)−1]

W = [(I − Ā0)
−1c̄0 (I − Ā1)

−1c̄1 . . . (I − ĀM)−1c̄M].

• Step 2: W0 = J0.

• Step 3: For m = 1, . . . , M replace Wm by Jm = Wm + VmαAm,m−1Wm−1 as defined in (12).

Figure 1: An efficient implementation for the policy evaluation algorithm: the right-to-left approach

3.3 A low memory policy iteration algorithm
for MDPs skip-free in one direction

As we mentioned earlier, the right-to-left algorithm al-
lows us to implement the policy evaluation step in O(b2M)
memory and O(b3M2) time. The policy improvement step
can also be performed using O(b2M) memory by construct-
ing P (a) block row per block row for the computation of
P (a)JRn , leading to an overall memory and time complex-
ity of O(b2M) and O(b3M2) per iteration. For small values
of M , however, it might be possible to store the transition
matrices P (a) as a whole, avoiding the need to rebuild the
transition matrices needed at each step, causing some reduc-
tion in the computation time.

We shall refer to the algorithm with a O(b2M) memory
requirement, as the modified policy iteration algorithm. For
a comparison in execution times of both variants see Section
5.1, where we focused on the right-to-left reduction variant
only.

4. FIBRE DELAY LINES
In Section 5 we will make a comparison between the classic

value iteration algorithm [9], the policy iteration algorithm
by White after reblocking the system such that it becomes
skip-free in both directions [10] and the new policy iteration
algorithm as introduced in Section 3. First, let us briefly
introduce the general notion of FDL buffers.

As in [5], we study a single outgoing wavelength in a Wave-
length-division Multiplexing system and assume contention
for it is resolved by means of a Fibre Delay Line (FDL)
buffer, which can delay, if necessary, data packets, called
optical bursts (OBs), until the channel becomes available
again. Unlike conventional electronic buffers, however, it
cannot delay bursts for an arbitrary period of time, but
it can only realize a discrete set of N delay values. Tra-
ditionally, there are two possibilities for the delay values
a1 ≤ a2 ≤ . . . ≤ aN : either all delay fibres have the same
length, i.e., ai = T with i = 1, 2, . . . , N , or the values are
equidistant, i.e., ai = iD with i = 1, . . . , N , where D is

termed the buffer granularity. It should be clear that a dis-
crete set of delays may give cause to voids on the outgoing
channel ([4], [2]) as one cannot always delay a packet by
the appropriate amount. We do not attempt to fill these
voids with other OBs as this requires a lot of intelligence
and would alter the order of the OBs.

Define the scheduling horizon at time t as the earliest time
t′ > t by which all OBs present at time t will have left the
system and denote it by H̄. When the k−th burst sees a
scheduling horizon H̄k upon arrival, with ai < H̄k ≤ ai+1

for some 0 ≤ i ≤ N (and with a0 = 0 and aN+1 = ∞),
it will have to be delayed by ai+1 time units (if i < N ,
otherwise it is dropped), possibly creating a void on the
outgoing channel (unless H̄k = ai+1). Figure 2 shows the
evolution of the scheduling horizon and the corresponding
voids if ai = iD for all i.

D D

Hk

Hk+1

�k

k
th

arrival

(k+1)
st

arrival

Bk

void

�

Figure 2: Evolution of the scheduling horizon H̄
from one arrival to the next. lk is the length of
the k−th OB and τk the burst inter-arrival time

The length of the longest delay line corresponds to the
maximum achievable delay aN , therefore if an OB sees a
scheduling horizon larger than aN upon arrival, the burst is
dropped (that is, lost).

4.1 Traffic scenario
The study in [5] made use of packet traces collected by

the NLANR (National Laboratory for Applied Network Re-
search). More specifically, we have used IP packet traces
coming from the following two links: AIX (a measurement
point that sits at the interconnection point of NASA Ames
and the MAE-West interconnection of Metropolitan Fiber
Systems) and COS (Colorado State University). The cu-
mulative distributions of the packet sizes of the considered
traces are depicted in Figure 3. For the comparison be-
tween the different approaches, we speed up the optimiza-
tion process by clustering the packet sizes in the following
way: all IP packets with a size less than or equal to 100
bytes are regarded as size 2 packets, all packets with a size
between 101+(i−3)50 and 150+(i−3)50 bytes are consid-
ered size i (with i = 3, . . . , 30) packets. Figure 4 shows the
resulting packet length distributions of the clustered traces.
This clustered distribution is used as the OB length distribu-
tion when comparing the different strategies. For simplicity
we restrict ourselves to geometric inter-arrival times and we
use an FDL buffer with N = 10 FDLs.

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet size (bytes)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

AIX

COS

Figure 3: The complete IP packet length distribu-
tion from COS and AIX

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet sizes

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

AIX

COS

Figure 4: The clustered IP packet length distribu-
tion from COS and AIX

For the OB arrival process we limit our description to
the Bernoulli process with parameter p (for a more general

discussion, see [5]). We define Bs = pP [L = s], for 0 <
s ≤ Lmax (where L denotes the OB length distribution and
Lmax denotes the maximum packet size) and B0 = 1 − p
(thus b = 1 and M = aN + Lmax − 1). With some abuse of
notation, let H̄n be the value of the scheduling horizon at
time slot n as opposed to the value of the horizon as seen
by the n-th arrival. Then, (H̄n)n≥0 forms a discrete-time
Markov chain (MC) with a finite transition matrix P :

P =

2
666664

A0,0 A0,1 A0,2 . . . A0,M−1 A0,M

A1,0 A1,1 A1,2 . . . A1,M−1 A1,M

0 A2,1 A2,2 . . . A2,M−1 A2,M

...
. . .

. . .
. . .

...
...

0 0 0 . . . AM,M−1 AM,M

3
777775 , (20)

where Ah,h′ is determined as follows:

A0,h′ =

8<
:

(1− p) + pP [L = 1] h′ = 0
pP [L = h′ + 1] 0 < h′ ≤ Lmax − 1
0 otherwise,

and

Ah,h′ =

8>><
>>:

1− p h′ = h− 1
pP [L = h′ − ai + 1] ai−1 < h ≤ ai ≤ h′ ≤

Lmax + ai − 1, 1 ≤ i ≤ N
0 otherwise,

for 0 < h ≤ aN and

Ah,h′ =

�
1 h′ = h− 1
0 otherwise,

for aN < h ≤ M . Hence, the transition matrix for this
setup is skip-free in one direction with b = 1 (see (1)). A
common FDL setup exists in taking equidistant delay values
with the granularity parameter D equal to Lmax−1 [2]. This
will be the basic scenario during the numerical explorations
in Section 5.

4.2 Preventive drop mechanism
Let us now explain how the preventive drop mechanism

might improve the loss rate of an FDL buffer. In this sec-
tion, we limit ourselves to the case of Bernoulli arrivals
and an equidistant delay line structure (i.e., ai = iD for
i = 1, . . . , N). The underlying idea is that as voids on the
outgoing fibre diminish the capacity of the system, it might
be worthwhile to drop optical bursts that cause large voids
even though there is still buffer capacity at hand. Intu-
itively, such a preventive drop approach seems especially
useful when the system is heavily loaded as there are plenty
of other bursts, possibly causing smaller voids, available that
may take advantage of the remaining buffer capacity. Hence
one “bad” burst, who causes a large void, might be dropped
in order to accept multiple “good” bursts. To perform this
analysis we made use of a Markov Decision Process. For rea-
sons of completeness we will briefly describe the preventive
drop algorithm for equidistant FDL buffers.

We define the set of actions A = {a1, . . . , an} with 0 =
q(a1) < q(a2) < . . . < q(an) = 1. Here q(a) denotes the
probability that a new OB is dropped under action a given
that we are in a state h > 0. In state h = 0, OBs are always
accepted meaning the transitions are identical for all actions

ai:

p0,h′(a) =

8<
:

(1− p) + pP [L = 1] h′ = 0
pP [L = h′ + 1] h′ > 0
0 otherwise.

For 0 < h ≤ ND we find

ph,h′(a) =

8<
:

(1− p) + pq(a) h′ = h− 1
p(1− q(a))P [L = LD(h′)] LD(h′) ≥ 1
0 otherwise,

where LD(h′) = h′−Ddh/De+1. For h > ND, all OBs are
dropped, implying

ph,h′(a) =

�
1 h′ = h− 1
0 otherwise.

The cost function is defined such that the long-run average
costs coincide with the average number of losses per slot.
This is realized by setting ch(a) as

ch(a) =

8<
:

0 h = 0
pq(a) h = 1, . . . , ND
p h = ND + 1, . . . , ND + Lmax − 1.

Thus, minimizing the long-run average cost (with α suffi-
ciently close to 1), corresponds to minimizing the OB loss
rate. Various numerical experiments, not reported here,
have indicated that every action Ropt(h) part of the optimal
policy Ropt is either action a1 or an, meaning that we either
prematurely drop all the bursts that observe a scheduling
horizon h or none. In other words, the lowest loss rate is
realized by either dropping all bursts that make use of the
k-th delay line and cause a void of size v (i.e., h = kD − v
with k > 0), or by accepting all bursts of this type. This
observation allows a significant reduction in the system op-
timization time, because it now suffices to consider just two
actions per state of the MDP process.

In [5] we solved the MDP problem using the value iteration
algorithm, explained in detail in [9]. Obviously, we can also
use the new policy iteration algorithm as described in Sec-
tion 3. Moreover, a third option is to reblock the transition
matrix P such that it becomes skip-free in both directions
and to apply White’s algorithm [10]. A comparison between
these three approaches is given in the next section.

5. COMPARISON BETWEEN THE DIFFER-
ENT TECHNIQUES TO SOLVE AN MDP

5.1 Comparison Results
In this section we will use the traffic scenario as described

in Section 4. As D = Lmax−1 is chosen for this experiment,
we can reblock the transition matrix P (20) such that it
becomes skip-free in both directions as shown in Eq. (21),

where A
(0)
1 is a scalar, A

(0)
0 , resp. A

(1)
2 , is a vector of size

1×D, resp. D × 1 and the other matrices A
(m)
n are of size

D×D. As a result, we can make use of the policy iteration
algorithm of White [10].

Figure 5 shows the execution times as a function of the
number of FDLs, with a load ρ = 0.9. From this figure we
can conclude that the policy iteration algorithms offer a sig-
nificant computational reduction compared to the value it-
eration algorithm, especially if the number of FDLs is large.
For a small number of FDLs both policy iteration algorithms

are efficient, but as the number of FDLs increases the re-
blocking approach becomes inferior. We also see that the
modified policy iteration algorithm is outperformed by the
policy iteration algorithm that stores the P (a) matrices, due
to the repeated recomputation of the (block) columns of the
transition matrix. Similar results are observed in Figure 6
that shows the execution times as a function of the load in
case there are N = 10 FDLs.

0 5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

10
2

10
3

C
P

U
 ti

m
e

(s
ec

)

Number of FDLs

Modfied Policy−iteration
Policy−iteration
Policy−iteration with reblocking
Value−iteration

Figure 5: Execution times for the different strategies
that can be used to solve an MDP as a function of
the number of FDLs

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

−1

10
0

10
1

10
2

Load

C
P

U
 ti

m
e

(s
ec

)

Modified Policy−iteration
Policy−iteration
Policy−iteration with reblocking
Value−iteration

Figure 6: Execution times for the different strategies
that can be used to solve an MDP as a function of
the load

5.2 Results for the entire packet trace
For large values of N or Lmax one requires a lot of memory

to store the entire transition matrices P (a). As described
in Section 3.3 we do not need to store these matrices when
using the modified policy iteration algorithm. Therefore, we
can apply the preventive drop algorithm on the system using
the complete AIX and COS traces instead of the clustered
traces (the slots size is now 1 byte instead of 50 bytes).
Although the value iteration algorithm does not require the
storage of P (0) or P (1) as a whole, we still require clustering
due to the long execution times (see Figure 5). Apart from
the equidistant FDL buffer with D = Lmax − 1 and the

P =

2
666666666664

A
(0)
1 A

(0)
0 0 0 . . . 0 0 0 0

A
(1)
2 A

(1)
1 A

(1)
0 0 . . . 0 0 0 0

0 A
(2)
2 A

(2)
1 A

(2)
0 . . . 0 0 0 0

...
. . .

. . .
. . .

...
...

...
...

0 0 0 0 . . . A
(N−1)
2 A

(N−1)
1 A

(N−1)
0 0

0 0 0 0 . . . 0 A
(N)
2 A

(N)
1 A

(N)
0

0 0 0 0 . . . 0 0 A
(N+1)
2 A

(N+1)
1

3
777777777775

. (21)

equidistant FDL buffer with the optimal preventive drop
algorithm, we also plot the results for an equidistant FDL
buffer with an optimal granularity D in the range [2, Lmax−
1]. Further, we also apply the preventive drop algorithm
on this optimally chosen granularity. Notice, to determine
the optimal D, we cannot rely on the MDP formulation,
but simply solve the system for each value of D. A detailed
discussion of these results is given in [5].

Our interest goes to the comparison between the results
based on the clustered traces (Figure 9 and Figure 10) and
those based on the complete traces (Figure 7 and Figure 8).
We observe that the clustered traces lead to some underes-
timation of the loss probabilities, however, the conclusions
drawn from both curves with respect to the usefulness of the
preventive drop mechanism are identical, which confirms our
intuition that the clustered trace sufficed to get a good un-
derstanding of the system behavior.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load

Lo
ss

 P
ro

ba
bi

lit
ie

s

Basic equidistant delay values
Preventive drop on basic equidistant
Optimal equidistant delay values
Preventive drop on optimal equidistant

Figure 7: Comparison of the loss probabilities ob-
tained with different methods for the complete IP
packet trace (AIX)

Acknowledgment
B. Van Houdt is a post-doctoral Fellow of the FWO-Flanders.

6. REFERENCES
[1] D. Bertsekas. Dynamic Programming and Optimal

Control. Athena Scientific, 2nd ed. edition, 2001.

[2] F. Callegati. Optical buffers for variable length packet
switching. IEEE Communications Letters, 4:292–294,
2002.

[3] B. Van Houdt, K. Laevens, J. Lambert, C. Blondia,
and H. Bruneel. Channel utilization and loss rate in a

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load

Lo
ss

 P
ro

ba
bi

lit
ie

s

Basic equidistant delay values
Preventive drop on basic equidistant
Optimal equidistant delay values
Preventive drop on optimal equidistant

Figure 8: Comparison of the loss probabilities ob-
tained with different methods for the complete IP
packet trace (COS)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load

Lo
ss

 P
ro

ba
bi

lit
ie

s

Basic equidistant delay values
Preventive drop on basic equidistant
Optimal equidistant delay values
Preventive drop on optimal equidistant

Figure 9: Comparison of the loss probabilities ob-
tained with different methods for the clustered IP
packet trace (AIX)

single-wavelength fibre delay line (FDL) buffer. In
Proceedings of IEEE Globecom 2004, paper OC05-07,
Dallas USA, November 2004.

[4] K. Laevens and H. Bruneel. Analysis of a single
wavelength optical buffer. In Proceedings of Infocom,
San Francisco, April 2003.

[5] J. Lambert, B. Van Houdt, and C. Blondia.
Single-wavelength optical buffers: non-equidistant
structures and preventive drop mechanisms. In
Proceedings of the 2005 Networking and Electronic

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load

Lo
ss

 P
ro

ba
bi

lit
ie

s

Basic equidistant delay values
Preventive drop on basic equidistant
Optimal equidistant delay values
Preventive drop on optimal equidistant

Figure 10: Comparison of the loss probabilities ob-
tained with different methods for the clustered IP
packet trace (COS)

Commerce Research Conference (NAEC 2005), pages
545–555, Riva del Garda, 2005.

[6] J. Lambert, B. Van Houdt, and C. Blondia. A
preventive conversion mechanism for conflict
resolution in optical burst switched networks. In
Proceedings of 10th Conference on Optical Network
Design and Modelling (ONDM 2006), Copenhagen,
2006.

[7] G. Latouche, P.A. Jacobs, and D.P. Gaver. Finite
markov chain models skip-free in one direction. Naval
Research Logistics Quarterly, 31:571–588, 1984.

[8] G. Latouche and V. Ramaswami. Introduction to
Matrix Analytic Methods and stochastic modeling.
SIAM, Philadelphia, 1999.

[9] H. C. Tijms. Stochastic Modelling and Analysis, A
Computational Approach. Wiley, 1986.

[10] L.B. White. A new policy evaluation algorithm for
markov decision processes with quasi birth-death
structure. Stochastic Models, 21:785–797, 2005.

