Can matrix-layout-independent numerical solvers be
efficient?

Implementing the Moebius State-Level Abstract Functional Interface for ZDDs

K. Lampka, S. Harwarth, M. Siegle*
University of the Federal Armed Forces
Munich, Germany
{kai.lampka,stefan.harwarth,markus.siegle}@unibw.de

ABSTRACT

Symbolic approaches based on decision diagrams have shown to
be well suited for representing very large continuous-time Markov
chains (CTMC), as derived from high-level model descriptions.
Unfortunately, each type of decision diagram requires its own im-
plementation of the numerical solvers for computing the state prob-
abilities of the CTMC. For this reason, some time ago the idea of
separating numerical solution methods from the representation of
the CTMC was proposed [12], suggesting the implementation of a
so-called state-level abstract functional interface (AFI), which de-
fines classes of iterators for accessing the entries of the CTMC tran-
sition rate matrix. In this paper we (a) present an implementation
of the AFI for zero-suppressed multi-terminal binary decision dia-
grams (ZDDs) [18] and (b) empirically investigate the viability of
matrix-layout-independent implementations of numerical solvers.

1. INTRODUCTION

High-level description methods for Markovian models, such as
stochastic Petri nets, stochastic process algebras, among others,
have shown to be powerful formalisms for describing and analyz-
ing concurrent systems. The first step of quantitative analysis of
such models is the generation of a continuous-time Markov chain
(CTMC), where the interleaving semantics of standard high-level
model description methods yields the explicit extraction of all pos-
sible execution sequences of system activities. This may lead to
an exponential blow-up in the number of system states, commonly
known as state space explosion, which may prevent or at least ham-
per the analysis of complex and large systems. Once the CTMC has
been generated, steady-state or transient probabilities can be com-
puted using a numerical algorithm which accesses the entries of the
transition rate matrix.

Many approaches have been developed in order to cope with
state space explosion on the one hand and limited availability of
memory and CPU time on the other hand. In the context of numer-

>ksupported by DFG grants SI 710/2 and SI 710/3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SMCtools *07, October 26, 2007, Nantes, France

Copyright 2007 ICST 978-963-9799-00-4.

ical solvers, techniques for storing and handling large CTMCs can
be grouped into the following four classes:

1. Methods exploiting mass storage and/or distributed hardware
(e.g. [17, 15, 22]).

2. Reduction and symmetry exploitation techniques based on
state lumping (e.g. [27, 28, 16, 1, 11]).

3. Implicit (or Kronecker-operator-based) representation tech-
niques (e.g. [26, 3, 5, 4, 7]).

4. Methods employing decision diagrams [6, 24, 29, 30].

Decision diagrams (DD) enable both, the efficient exploration of
huge CTMCs, and their compact storage. In [18] we introduced
partially shared zero-suppressed multi-terminal binary decision di-
agrams (ZDD for short), and a new method for efficiently deriving
a ZDD-based representation of a high-level model’s CTMC. This
scheme was extended in [19] to the case of high-level performa-
bility models, where we also presented a ZDD-based variant of
the hybrid solution method which had been previously developed
for multi-terminal binary decision diagrams (MTBDDs) by Parker
[25]. Altogether, these innovations enable us to efficiently com-
pute performability measures on commodity computers for CTMCs
with more than, say, 108 states.

Since different techniques employ different data structures for
storing the transition rate matrix (also referred to as the “state-level
object”), a given iterative solution method usually has to be be re-
implemented for each new representation format. Thus, it seems
very useful to employ a generic interface, which separates the con-
cerns of matrix representation on the one hand, and implementation
of numerical solvers on the other hand. In order to make matrix
representation and numerical solvers independent of each other, the
authors of [12] presented the idea of a state-level abstract functional
interface (AFI). For demonstrating the competitiveness of such an
interface, the authors provided an implementation of the AFI within
the Moebius modelling framework [9], where the following matrix
layouts were employed:

1. Flatexplicit storage, where the transition rate matrix is stored
in a straight-forward manner, employing the well-known sparse
matrix technique.

2. Kronecker representation, where the transition rate matrix is
represented implicitly. On each access to a matrix element,
a Kronecker expression needs to be evaluated for a set of
(local) transition rate matrices.

In this paper, we also describe an implementation of the AFI within
the Moebius modelling framework [9], but based on the ZDD data
structure. For carrying out a sound analysis, not only of our AFI
implementation, but for the AFI in general, two typical benchmark
models are analyzed, where different standard solution methods in
combination with different matrix storage formats, ranging from
sparse matrix storage formats over matrix diagrams (MxD) [24] up
to our new type of DD, are employed.

1.1 The Moebius Performability Evaluation Tool

Moebius [9] is a comprehensive software tool for the modelling
and evaluation of discrete-event systems, developed by W.H. Sanders
and his group at the University of Illinois. Moebius supports sev-
eral formalisms for model specification and offers different analysis
methods for the derivation of quantitative performability measures,
in particular numerical analysis of Markov chains and discrete-
event simulation. The present paper concentrates on Moebius’ state-
level abstract functional interface (state-level AFT) [12, 10] through
which the various numerical solvers access the state-level object
that was generated from the high-level model description’.

1.2 Organization

The paper is further organized as follows: Sec. 2 presents de-
tails about our implementation of symbolic matrix representation
and our ZDD-based implementation of the AFI. Empirical results,
obtained from our proprietary ZDD-based solvers, our implementa-
tion of the AFI, as well as its sparse matrix format and MxD-based
implementation [12], are presented in Sec. 3, and Sec. 4 concludes
the paper.

2. THE ZDD-BASED AFI

Our ZDD approach consists of two parts: (1) First we generate
the symbolic representation of a given high-level model’s underly-
ing CTMC (including the symbolic representation of rate and im-
pulse reward functions). (2) Either by making use of the Moebius
solvers, which access the symbolic representations of the CTMC
transition rate matrix via the AFI, or by using our proprietary non-
AFI solvers, we then compute the desired state probabilities.

In the following, we briefly explain how ZDDs are employed for
symbolically representing CTMCs in a compact way. Our semi-
symbolic technique® for efficiently generating symbolic represen-
tations of CTMCs was explained in detail in [19]. The symbolic
handling of reward functions is discussed in [19]. We will also dis-
cuss ZDD-based matrix representation, which is a prerequisite for
understanding the matrix iterators as implemented within the ZDD-
based version of the AFI. These iterators are described in Sec. 2.3.

2.1 ZDD-based representation of activity-la-
belled CTMCs

2.1.1 Preliminaries:

A high-level model M consists of a finite ordered set of discrete
state variables (SVs) s; € S, where each can take values from a
finite subset of the naturals. Each state of the model is thus given
as a vector § € S C NI¥I, where & [i] refers to the current value of

"Moebius’ so-called model-level AFL, which constitutes the inter-
face between the user-level model description and the tool’s inter-
nal data structures, is not of interest for the present paper.

2We call this technique “semi-symbolic”, since it combines explicit
exploration with symbolic composition and symbolic reachability
analysis. The explicit exploration is thereby limited to sequences
of dependent activities, such that in practice only a small fraction
of the transitions needs to be explored.

the ¢’th SV in state 5. When an activity is executed, the model
evolves from one state to another. For each activity [we have a
transition function §; : S — S, the specific implementation of
which depends on the model description method. These transition
functions allow one to map a high-level model M to its underlying
activity-labelled CTMC (aCTMC). If activity labels are removed,
transitions between the same pair of states are aggregated via sum-
mation of the individual rates.

2.1.2 The ZDD data structure:

Zero-suppressed BDDs (z-BDDs) [23] are derivatives of ordered
BDDs for representing sparse sets efficiently. In z-BDDs, one elim-
inates all non-terminal nodes which have the terminal 0-node as
their 1-successor (this is called the zero-suppressing reduction rule).
We allow z-BDDs to have more than two terminal nodes, thereby
obtaining zero-suppressed multi-terminal binary decision diagrams
(2-MTBDDs, or ZDDs for short). ZDDs are a weakly canonical
representation of pseudo-Boolean functions. Standard arithmetic
operators can be performed efficiently on them with the help of a
variant of Bryant’s Apply-algorithm [2]. For simplicity, a com-
plete (formal) definition and details of the algorithms are skipped
here (they will be published in a forthcoming paper [20]), but for
convenience some elements of ZDDs are introduced now.

1. The disjoint sets of non-terminal nodes (Cy7) and terminal
nodes (Kr).

2. A finite (possibly empty) set of Boolean variables V with a
strict total ordering 7. Within an ordered DD environment,
all nodes labelled with the same Boolean variable x; € V
appear at level 7.

3. The function then : Kn7 — Kn7 U K7, which yields the
then or I-child of node n.

4. The function else : Kn7 — Ky7 U K7, which yields the
else or 0-child of node n.

5. The function value : 7 +— ID maps a terminal node to an
element of the finite set ID, where usually D C R ™.

2.1.3 ZDD based representation of aCTMCs:

Let the transitions defining an aCTMC T be given as quadruples
(a,5,1,), where 5,1 € S, the label a is an element of the finite set
of activity labels Act and the rate 1 is an element of D C R*. If
one defines an adequate Boolean encoding function £ : Act x S x
S — IB™V for the transitions, one ends up with a function table of a
pseudo-Boolean function, where the transition rates are considered
as being the function values. A ZDD T is a symbolic representation
of a given aCTMC T if the following holds for all transitions of 7'

fr€@st)=p & (ast,p)eT

(The notation fr denotes the function represented by ZDD T). In
case (a, s,t,u) & T the characteristic function ft evaluates to 0.
Within our model world, we employ the following ordered sets of
Boolean variables:

1. a:=(a1,...,aBy,,,) for encoding the activity labels,

2. §" == (s},...,sp,) for encoding the SV s; in the source
state 5 of a transition,

3.t = (t,...
{ of a transition.

, t%i) for encoding the SV s; in the target state

The s- and t-variables are collected as two ordered tuples, where a
most-significant bit first order is assumed, yielding:

= (S1,...,5m) = (sllBl,...,sl%,...,s%n,...s?) and
= (t1, .. tm) == (tey, .- t1, .-, tH,, .- 7).

In order to keep the DDs small, we employ a variable ordering in
which the Boolean vector 3 appears first. Starting at level Bac: + 1
the Boolean vectors encoding source and target states follow in an
interleaved fashion. This interleaved ordering of s and t variables is
a commonly accepted heuristics for obtaining small DD sizes [13,
14, 29].

As an example, the reader is referred to Fig. 1. Part (i) depicts a
small aCTMC T', where the states consist of two SVs only (s1, 52).
The binary encodings of the transitions is given in Fig. 1.ii. This
function table defines a pseudo-Boolean function, which enables
one to construct the respective ZDD B, as depicted in Fig. 1.iii.

It has been (empirically) found that the ZDD-based represen-
tation is more compact than the representation based on standard
MTBDDs, where a factor of approximately two to three in space
and runtime to the advantage of ZDDs has been observed. This not
only has the positive effect that the construction and manipulation
times for the symbolic representation are reduced, but also memory
space and CPU time required for computing state probabilities are
reduced by about the same factor [18, 19, 21].

€]

L n

2.2 The hybrid approach to computing state
probabilities

2.2.1 Preliminaries

(a) ZDD based representations of matrices: If row and column
indices of a matrix M are encoded in binary form, each real-valued
(2" x 2™) matrix M can be interpreted as a pseudo-Boolean func-
tion, so that fm(E(r,c)) = M(r,c), with |V| = 2n. The connec-
tion to the ZDD based encoding of an aCTMC is as follows: One
abstracts from the Boolean variables encoding the activity labels
(the a-variables), and interprets the Boolean variables collected in
the vectors § and t (cf. Eq. 1) as binary encoded row and column
indices. An example is shown in Fig. 1: Abstracting from the ac-
tivity labels (Fig. 1.iii), one obtains ZDD A which directly encodes
the underlying transition rate matrix as shown in Fig. 1.iv.

(b) Access-pattern to the matrix entries: Since we defined a
“most-significant-bit-first” ordering as well as an interleaved or-
dering of the § and t variables, a depth-first traversal of the ZDDs
realizes a block-wise access-pattern to the elements of the repre-
sented matrix. I.e. the Boolean expansion for variable s; is fu =
sifM + =51 f0, where the respective (sub-)graphs of f%’l} give
the upper or lower half of the matrix M. The subsequent expan-
sion of t; gives one then the individual quadrants of M. Boolean
expansion for the first pair of variables s1, t1 thus yields:

fv = sit1 f1 + sioty flo + osity for + —s1t fop.

The graph rooted in node representing ng is a symbolic representa-

tion of sub-matrix M; ;, with £(z,7) = b. This access scheme can
be applied recursively to each submatrix until one reaches the level
of terminal nodes. For a (4 x 4) matrix M this would give us the
matrix elements m,. . in the following sequence: mo,o, mM0,1, M1,0,
which are the matrix entries of the upper left quadrant of M. The
next elements to follow are mo,2, mo,3, M1,2, m1,3, Which are the
elements of the upper right quadrant, and so on.

As an example, we refer to Fig. 2 (left) which shows a matrix C'
and its ZDD-based representation. In order to illustrate the block-
wise addressing scheme realized by the chosen variable ordering,
the matrix is shown as a table equipped with Boolean variables.

mii,

The valuation —s; —t1, which corresponts to the diagonally hatched
nodes of ZDD C, leads to the sub-ZDD rooted in node n1 at level
so, representing the sub-function f&y(sz, tz2). This means that we
extracted the upper left block-matrix C'(0,0), whose entries are
given by the values of the terminal nodes reachable from n (in-
cluding the O-entries that we chose to ignore so far). A depth-first
traversal with else-edge first delivers the sequence 0, O, p, 0 of
matrix entries.

2.2.2 Extending ZDDks for efficiently computing matrix-

vector products

The symbolic solvers as well as the ZDD-based implementation
of the Moebius AFI considered in this paper employ an approach
in which the generator matrix is represented by a symbolic data
structure and the probability vectors are stored as arrays.

(a) Offset-labelling of ZDD-nodes: If n Boolean variables are
used for state encoding, there are 2" potential states, of which only
a small fraction may be reachable. Allocating entries for unreach-
able states in the vectors would be a waste of memory space and
would severely restrict the applicability of the algorithms (for in-
stance, storing probabilities as doubles, a vector with about 134
million entries already requires 1 GByte of RAM). Therefore a
dense enumeration scheme for the reachable states has to be im-
plemented. This is achieved via the concept of offset-labelling, as
had been first suggested for the MTBDD data structure by [25]. In
an offset-labelled ZDD, each node is equipped with an offset value.
While traversing the ZDD encoding the matrix, in order to extract
a matrix entry, the row and column index in the dense enumeration
scheme can be determined from the offsets, basically by adding
the offsets of those nodes where the then-Edge is taken. In other
words, the offsets are used to map the 5 and t vectors to a pair (r, ¢)
of (densely enumerated) row and column indices.

As an example, one may refer to Fig. 2.iii. On the left the ZDD
of Fig. 1.iii is depicted once again. At the right, one can see the
offset-labelled variant of the same ZDD. This makes it possible to
interpret the ZDD now as a (3 X 3) matrix, where in contrast to
the matrix of Fig. 1.iv the third row and column are masked, since
state 10 is not reachable. As Fig. 2.iii also illustrates, within offset-
labelled ZDDs isomorphic nodes are merged only if they also carry
the same offset. Thus the diagonally hatched node within the origi-
nal ZDD needs to be duplicated, once the offset-labelling is added.

(b) Block-structured hybrid offset-labelled ZDDs: The space ef-
ficiency of symbolic matrix representation comes at the cost of
computational overhead, caused by the recursive traversal of the
ZDD during access to the matrix entries. For that reason, [25]
introduced the idea of replacing the lower levels of the MTBDD
by explicit sparse matrix representations, which works particularly
well for block-structured matrices. In the context of our work, we
call the resulting data structure hybrid offset-labelled ZDD. The
level at which one switches from symbolic representation to sparse
matrix representation, called sparse level, depends on the available
memory space, i.e. there is a typical time/space tradeoff.

The Gauss-Seidel method requires row or column-wise access to
the matrix entries. Unfortunately, this cannot be realized efficiently
with ZDD-based representations, if the interleaved variable order-
ing as described above is chosen. As a compromise, [25] developed
the so-called pseudo-Gauss-Seidel (PGS) iteration scheme. Given
a ZDD which represents the matrix, each inner node at a specific
level corresponds to a block. Pointers to these nodes can be stored,
which means that effectively the top levels or variables of the ZDD
have been removed. The ZDD level at which the root nodes of the
sub-matrices reside is called block level. When removing the up-
per b levels, one partitions the matrix into blocks, not necessarily

(i) Act.-labeles CTMC T’

arrive,\ arrive,\

depart,p depart,p

(iii) ZDD-based representations

(ii) Binary encodings

e
wn
2N

- Lag >
[et [als 0 % 2]s]

o[
ar%,)\ 171)
0,0)

0,1)

—

=N [=N]
oo |O
===

)

) (
) depart,u (
) (

—|o |~

depart,p

I

(iv) Matrix A

(== e R e i an]
SO o

oox
N

Figure 1: aCTMC, its ZDD based representation and underlying transition rate matrix

of equal size, due to unreachable states. This allows one to access
the blocks in a descending or ascending order and thus employ the
Gauss-Seidel iteration scheme among the blocks, where within the
blocks the Jacobi iteration scheme must be used.

Fig. 2.iv shows an example where the offset-labelled ZDD of Fig. 2.iii

is block-structured. In order to achieve a correct indexing of the
matrix entries, one not only has to store references to the root nodes
of each block, but also the initial row and column offset. In terms
of Fig. 2.iv, these pairs are depicted on top of the root nodes.

In total, block-structuring and the hybrid storage format yield a
memory structure in which some levels from the top and some lev-
els from the bottom of the ZDD have been replaced by sparse ma-
trix structures. We call such a memory structure a block-structured
hybrid offset-labelled ZDD. The choice of an adequate sparse level
s and an adequate block level b is an optimization problem. In gen-
eral, increasing b improves convergence of the PGS scheme, and
replacing more ZDD levels by sparse structures improves speed of
access.

2.3 Accessing the transition rate matrix via the
AFI

Analogously to our proprietary ZDD-based solvers described in
[19], our AFI implementation operates on offset-labelled (hybrid)
ZDDs representing the transition rate matrix. However, contrary to
the symbolic solvers, the AFI-based solvers do not have any knowl-
edge about the symbolic data types employed, they simply iterate
over the matrix in an element-wise, row-wise, column-wise or sub-
matrix-wise fashion. The implementation of these different access
patterns will be discussed in greater detail now.

2.3.1 [Iteration over all matrix entries

The allEdges container defined in the AFI returns all matrix en-
tries in an arbitrary order, where the value and the pair of indices
must be delivered. In case of ZDDs, this can be achieved by a hang-
ing recursive depth-first search graph traversal. The matrix entry to
be delivered by the iterator is given by the value of the currently
visited terminal node, as well as the computed row and column
offsets. In details the algorithm work as follows: Upon initializa-
tion, the iterator descends to the first non-0 terminal node by repet-
itively taking the else-edge if it does not lead to terminal 0-node
or the then-edge otherwise. Every time the else-edge is chosen,
the current node and the row and column offset values are pushed
onto a stack so the then-successor can be proceeded later. Conse-

quently, this stack implements the functionality of a program stack,
such that the recursion can be split over the subsequently executed
accesses. When the solver calls for the next matrix element via
the ++-iterator or next-operator, the topmost element is removed
from the stack and the next recursive step is performed until a non-
zero terminal node is reached, where the traversed nodes are once
again pushed onto the stack. An empty stack signals the end of
the graph traversal, causing the iterators to set their end-flag, which
may cause the solvers to start with the next iteration of the solution
method. Since the hanging recursion follows always the else-edge
first, the algorithm implementing the above functionality is denoted
as GetLeftChildFST.

For exemplification one may refer to Fig. 2.v. At the first call
GetLeftChildFST traverses the path with the diagonally hatched
nodes. When leaving node n4 via its then-edge, the routine pops
it from the stack. Since in the next step a terminal node is reached
GetLeftChildFST stops and returns (A, (0, 1)) to the iterator
calling function. Node ng3 is hereby left at the top of the stack,
so that within the next step Get LeftChi1dFST can resume with
traversing its sub-graph.

For hybrid ZDDs the above procedure needs to be slightly adapted:
when reaching the sparse level, one starts iterating over the sparse
matrices, thereby book-keeping row and column offsets accord-

ingly.

2.3.2 Access to matrix rows and columns

As explained above, the interleaved ordering of variables encod-
ing row- and column indices is a commonly accepted heuristics
for obtaining small DD sizes. However, this comes with the draw-
back that graph traversal organized in a depth-first style does not
visit the matrix elements in row or column order (see once again
Fig. 2 (left)). For resolving the collision between ordering and
access scheme, one may extract the currently required column or
row-entries by executing a multiplication between the BDD Z,.
representing the binary encoded column (or row) index and the
ZDD Z) representing the transition rate matrix. I.e. by computing
Zimp = Z. - Zpr and subsequently abstracting over the variables
encoding the row (or column) indices (ZAbstract (Ztmp, S, +))
one obtains a symbolic representation of the column (or row) vector
representing the respective matrix column (or row). The fact that
employed DDs, i.e. especially the ZDD representing the transition
rate matrix (Zar), are offset-labelled, does not affect the operation,

(i) Matrix C
—tq t1
—‘t2| to —‘t2| to
—so [EOEE 0] v | v
R 0 0 |0
1S9 0 0 0 0
1 [Tsy 0 |0 5 | 0

(ii) ZDD-based represen-
tation of matrix C'

(iv) Block-structured
S1 offset-labelled ZDD

(iii) offset-labelled ZDD
representing matrix A of Fig. 1

Figure 2: Block-wise access (left), and extending ZDDs by offsets (right)

we only have to copy the offsets of the nodes of Z s to the nodes in
the resulting DD Z;,y,, so that its traversal yields the correct row
and column indices of the dense enumeration as induced by the
offset labelling scheme.

Encoding and constructing Z. is hereby very efficient, whereas
the multiple execution of Z. - Z s is computationally expensive. As
an alternative one could think of generating and storing the ZDDs
representing the different rows or columns separately. However,
such a strategy is not feasible, it would significantly increase the
number of ZDD nodes for storing the respective symbolic struc-
tures. But most importantly, the storage of the root nodes would in-
duce a non-tolerable memory requirement. Therefore the extraction
of row or column entries as illustrated above is executed on-the-fly,
i.e. by means of a hanging recursive graph-traversal. This severely
complicates the iterator code, since not only the zero-suppressing
reduction rule must be taken into account, but also the branching
is crucial, since one needs to traverse each path until it is evident
that it does not encode the indices of the row or column currently
accessed. In case this is known, the traversing algorithm performs
a rollback to the last valid branching.

The column and row iterator as described above, do not currently
support hybrid offset-labelled ZDDs nor the block-structured vari-
ant, but only pure offset-labelled ZDDs.

2.3.3 Submatrix access to the matrix:

Access to submatrix partitions is implemented with two different
approaches:

(a) Block-structuring with variably sized blocks: The first im-
plementation follows the block-partitioning approach as employed
under the pseudo Gauss-Seidel method. Since each inner node of
the ZDD Z s represents a submatrix, one simply needs to remove
the upper b levels, so that the root nodes of the block matrices all
reside at the same level, commonly denoted as block level. Due to
the fact that the blocks may contain different numbers of reachable
states, the blocks are in general neither quadratic nor of the same
size. For compensating this problem, each root node must be fur-

thermore equipped with an initial row and column offset. Arising
from the different sizes of the blocks, the block-structured access
to the matrix entries can only be used with solvers that make no
special demands on the partitioning.

(b) Block-structuring with specifically sized blocks: In the at-
tempt to allow arbitrary matrix partitioning, i.e. a partitioning where
the blocks must be of a specific size, e.g. all sub-matrices need to be
square matrices of the same size, a second implementation of sub-
matrix access exists. This implementation mainly follows the idea
of the row/column access, i.e. one intends to create a ZDD that en-
codes all states in the requested sub-matrix partition by multiplying
the transition matrix Z s with the symbolic encodings belonging to
the current partition (of reachable states) S;. Let the set of reach-
able states be somehow partitioned (S = S; W ... W S,). Based
on this partitioning, the respective block entries contained in the
overall transition matrix Zys can be extracted as follows:

VS;,Sk € {S1,...,Sn}:

Z?V]Ik = <Z Zgi—ic') . < Z ZF—G) 'Z]M7
TES; JESK

The remarks about memory and time consumption made in the con-
text of the row/column-access scheme also apply in principle to this
access scheme. However, the number of blocks is much smaller
than the number of reachable states, thus a caching of the symbol-
ically represented sub-matrix Zijf seems useful and will signifi-
cantly speed-up the access times.

3. EMPIRICAL EVALUATION

We employed the following solution methods for benchmarking
the implemented AFI-iterators: (a) Jacobi solution method (JAC)
for accessing the matrix entries in an arbitrary order’. (b) Gauss-

3For access in arbitrary order, one could also employ the Power
method for computing steady-state probabilities or the uniformiza-
tion method for computing transient probabilities.

Seidel method (GS) for accessing the matrix entries in a row-wise
manner. (c) Takahashi solution method for accessing the matrix en-
tries in block-wise style. Before we give details about the collected
runtime data, we briefly describe the software structure, employed
benchmark models and platform on which the software was exe-
cuted.

3.1 Preliminaries

3.1.1 Implementation

The software employed for benchmarking the ZDD-based AFI
implementation consists of the following modules:

(a) The ZDD-based framework: This framework is implemented
by us and incorporated into the Moebius modelling tool:

1. A symbolic engine for generating a ZDD-based representa-
tion of the high-level model’s underlying (activity/reward-
labelled) CTMC.

2. Proprietary ZDD-based hybrid solvers for computing steady
state and transient state probabilities, which access the matrix
element directly, i.e. not via the AFI. The run-time data of
these solvers will be headed by the title ZDD no AFI in the
following tables.

3. The ZDD-based implementation of Moebius AFI as described

in the previous section. The run-time data of these ZDD and
AFI-based solvers will be headed by the title ZDD stand (for
standard) in the tables.
For speeding up matrix access we also implemented an op-
timized version, where we removed all s and t variables re-
siding above the sparse level yielding a nested sparse matrix
structure. L.e. similar to the approach of [22], every ZDD-
path from the root node to the sparse matrix structures is
substituted by a pointer. Since the blocks are in general not
of equal sizes, each pointer must be equipped with the ap-
propriate row and column offsets. The run-time data of the
optimized ZDD and AFI-based solvers will be headed by the
title ZDD opt (for optimized). In contrast to [22], we make
use of a linked list and not a sparse matrix storage scheme for
administering the root nodes and initial offsets of the sym-
bolic submatrix representations. This decreases memory re-
quirements clearly, since blocks containing only zeros can be
omitted. The major disadvantage of the optimized approach,
no matter if one uses a sparse matrix format or a linked list, is
the increase in memory consumption, since the pointers (and
their pair of offsets) must be stored for each submatrix.

(b) Components of the Moebius performance evaluation tool:

1. Implementation of the AFI iterating over matrices stored in
sparse-matrix format [12] and an implementation of iterators
working on MxD-based representations of the transitions
matrix [10].

2. The AFI-based numerical solvers for computing steady state
and transient state probabilities as provided by the Moebius
tool.

3.1.2 Benchmark models and platform

For evaluating our ZDD-based implementation of the AFI we
employed two well-known benchmark models, namely the Kanban
model (Kanban) [7] and the Flexible Manufacturing System model
(FMS) [8]. Both models are parameterized by the initial number of
tokens within dedicated places, where in the following these num-
bers are described by parameter N. Depending on N, column 2

and 3 of Tab. 1.B give the number of states (states) and the num-
ber of transitions among them (¢trans). The number of transitions
is equal to the number of non-zero entries of the transition rate ma-
trix, and the number of states indicates its dimension.

All benchmarking experiments were executed on Pentium 4 sys-
tems with a Linux OS, where we employed either 3 GHz or 2.88
GHz machines. Le. the figures of Tab. 1 were produced on a P4
with 3.0 GHz and 1 GByte of RAM, whereas the figures of all
other tables were produced on a P4 with 2.88 GHz and a maximum
of 3 GByte of RAM.

3.2 Jacobi solution method (JAC)

Tab. 1 shows the iteration time and memory consumption when
employing Moebius’ JAC-solver in combination with different data
types and their different AFI-based implementation for iterating
over all matrix entries in an arbitrary order. The upper tables of
Tab. 1.A give the plain iteration times in seconds, whereas the lower
tables contain ratios by norming the AFI-based iteration times to
the iteration times of the proprietary (hybrid) symbolic solver. The
positions filled with ??? refer to cases, where a solution could
not be computed due to memory restrictions. Col. sparse con-
tains the iteration time when the AFI in combination with a sparse
matrix format was employed [12] and column Mx D contains the
figures as produced by the MxD-based AFI implementation as de-
scribed in [10]. Concerning a ZDD-based representation of transi-
tion rate matrices one needs to distinguish between the optimized
version (ZDD opt) and the standard version (ZDD stand). In both
cases we varied the sparse level, so that either 0% or 66% of the
ZDD was converted into sparse matrix format. In the last col-
umn of Tab. 1.A the iteration times of the proprietary ZDD-based
JAC-solvers are given, where we also converted 66% of the offset-
labelled ZDD into sparse matrix format. As one can obtain from
the lower tables (the ones containing the ratios) the use of ZDDs
in combination with the AFI imposes a severe run-time overhead.
However, when also employing hybrid ZDDs this overhead can
be reduced clearly, but nevertheless the imposed runtime overhead
is not ignorable when it comes to practice, e.g. for 1,415 itera-
tions required for computing steady state for the FMS (N := 10)
model one consumes 4.59 h CPU time with the optimized ZDD-
version (s := 0.66), whereas the proprietary ZDD JAC-solvers
only requires 1.29 h. The overhead is not really surprising, since
profiling reveals that 35% of the CPU time is spent for routine
GetLeftChildFST,22% for the routine executing each numeri-
cal iteration step (per form_iter())and 16% for the ++--operator,
which calls Get Left Chi1dFST. The alternate execution of these
methods, which are implemented either within the AFI-based solver
or within the state-level object encapsulating the transition matrix,
imposes additional load on the operating system, which in fact
clearly reduces the performance of the solver.

Tab. 1.B shows the overall memory consumption of the different
solvers, including the memory consumption of the two probabil-
ity vectors as shown in column 4 (iter vecs.), which in case of the
symbolic matrix representations (MxD or ZDD-based) is the most
resource consuming part. By comparing the memory requirements
of the ZDD-based solvers (AFI-based and proprietary), we found
out, that the additional memory overhead of the AFI is negligible.
This is of course obvious if one keeps in mind that probability vec-
tors and sparse matrices of the hybrid ZDDs are the most memory
consuming parts. For investigating this effect, we therefore low-
ered the number of levels converted into sparse matrix format to
33%, which reduces the memory consumption as shown in the last
two columns of Tab. 1.B.

(A) CPU time consumed per iteration (in seconds)

ZDD opt. ZDD stand ZDD
[N sparse [MxD] s:=00]s:=0.66] s:=0.0] s:=0.66 no AFI
(a) Flexible Manufacturing System (FMS)
6 0.2400 T 0.2548 0.6068 0.2120 0.7760 0.2560 0.0560
8 2.1889 | 2.2521 5.5464 1.8801 7.7265 2.4522 0.5184
10 777 | 14.2405 || 34.3484 11.6827 || 47.0149 13.9949 3.2734
Time per 1teration 1n seconds
6 42857 1 4.5500 || T0.8357 377857 || 13.8570 45714
8 4.2222 | 4.3441 10.6984 3.6265 || 14.9036 4.7299
10 7771 4.3504 || 10.4932 3.5690 || 14.3627 4.2753
Ratios, normed to ZDD (no AFI)
(b) Kanban Manufacturing System (Kanban)
5 0.8213 7 2.3669 2.9758 I.T713 4.0815 1.5433 0.2884
6 2777 | 9.9166 || 14.2427 5.5343 || 20.5173 7.4737 1.3533
7 777 | 37.3503 || 56.1271 21.0813 || 78.6449 27.8845 5.4195
Time per 1teration 1n seconds
6 2.8474 7 82067 [[10.3178 4.0610 | 14.1512 5.3509
8 777 | 7.3278 || 10.5246 4.0896 || 15.1611 5.5226
10 777 | 6.8918 || 10.3564 3.8899 || 14.5114 5.1452
Ratios, normed to ZDD (no AFI)
(B) Memory space consumed (in MByte)
ZDD
[N | #states | #trans | iter vecs. || sparse | MxD | s:=0.66 | s :=0.33
(a) FMS
6 0.54E6 | 4.21E7 8.21 87 16 23 20
8 4.46E6 | 3.85E7 68.05 760 109 135 116
10 | 2.54E7 | 2.35E8 387.54 777 595 679 606
(b) Kanban
5 2.55E6 | 2.45E7 38.86 447 70 73 66
6 1.13E7 | 1.16E8 171.83 7?7 284 294 272
7 4.16E7 | 4.50E8 635.45 777 | 1008 1044 979

Table 1: Times per iteration for the AFI-based implementation of the JAC method

3.3 Gauss-Seidel solution method (GS)

Tab. 2 shows the runtime data as collected when solving the FMS
and Kanban model with the Gauss-Seidel method. It is important to
note that in case of the proprietary ZDD-based solvers the pseudo
Gauss-Seidel method, as described in the previous section, was em-
ployed, where the upper 50% of the DD-levels was replaced. The
positions within Tab. 2 filled with xxx refer to cases, where the
computation of a solution was not feasible due to time restrictions.
As expected, the row-wise access to the matrix elements yields in
case of ZDDs a non-tolerable run-time overhead, which makes a
dynamic row-extraction useless in practice. This might also be the
reason, why — as far as we know — the MxD-based version of row-
wise access was never implemented.

The disappointing runtimes in case of the ZDD-based AFI as
given in Tab. 2.A and B mostly stem from the excessive calls to
the routine AF IApplyMult(), which extracts the different rows
(or columns) from the matrix and annotates the nodes of the result-
ing ZDD with the correct offsets. But besides the bad runtimes in
case of the ZDD-based AFI, Tab. 2.A and B also indicate the over-
head imposed by the AFI when standard sparse matrix technology
is employed. As one can read from the tables, the AFI increases
the CPU times by a factor of approximately 3. Similar to what we
observed with the JAC-solver, such an increase is not dramatic, but

from a practical point of view severely reduces the applicability of
the AFI.

In contrast to the allEdges-iterator, the row-iterator as employed
by the GS-based solver does currently not make use of block-structured
and/or hybrid offset-labelled ZDDs (it uses pure offset-labelled ZDDs).
Implementing these features would improve CPU time consump-
tion to a certain extent, but it would certainly not reduce the runtime
by two orders of magnitude.

In contrast to the JAC method, the (pure) GS method does not
require the use of an additional iteration vector, which significantly
reduces the memory requirement of the method. Thus, if memory
limitation is not an issue, one may think of pre-generating sym-
bolic representations for each row, so that the computationally ex-
pensive generation during each numerical iteration is avoided. Al-
ternatively, one may also think of replacing the interleaved order-
ing scheme by a sequential order, where the variables encoding the
rows come first and the variables encoding the column thereafter.
However, we did not implement and investigate such strategies,
since the ZDD-based PGS-method already delivers highly compet-
itive results.

3.4 Takahashi solution method

The method of Takahashi is an iterative aggregation/disaggregation
method for computing the steady-state probability vector of a Markov

sparse 7DD

[N [noAFT T AFI ZDD opt [ZDD stand | no AFI

(A) FMS

6 0.0556 T 0.1608 74.8367 133.7204 0.1368

8 0.5080 | 1.4925 832.0120 | 1,512.2945 0.8693

10 7 777 XXX XXX 5.0279

Time per iteration in seconds

6 0.4064 T T.T754 O7T.4237 O7T.4237

8 0.5844 | 1.7170 || 1,739.7614 | 1,739.7614

10 777 777 XXX XXX

Ratios, normed to ZDD (no AFT)

(B) Kanban

5 0.2545 T 0.7360 298.6627 T15.8367 0.3648

6 77? 77?7 | 1,406.4719 | 3,633.2871 1.7157

7 77? 7? XXX XXX 6.5536

Time per iteration in seconds

5 0.6976 T 2.0175 818.6500 T 1,962.1480

6 77? M7? 819.7623 | 2,117.6617

7 77? 777 XXX XXX

Ratios, normed to ZDD (no AFT)

Table 2: Times per iteration when employing the GS method

chain [32, 31]. The state space is partitioned into K blocks, and in
each iteration an aggregated system of size K is constructed based
on the current approximation of the solution vector. Each outer
iteration of the Takahashi algorithm includes the solution of the ag-
gregated system and the solution of the K systems corresponding
to the individual blocks, i.e. in one iteration K + 1 smaller sized
systems must be solved in order to obtain a new approximation of
the overall solution.

In the implementation under study, the overall matrix is par-
titioned into blocks of predefined size, whereby for each block
a separate ZDD is constructed with the help of the AFI routine
getSubMatrixPartition. During iteration, the individual
blocks are accessed through routine get SubMat rix. Tab. 3 shows
the timing results for the Takahashi method, where the AFI is em-
ployed for accessing the matrix blocks represented as sparse matri-
ces (columns 2 and 3) and as ZDDs (columns 4 and 5). The table
lists the times for partitioning the matrix into blocks, and the times
for one outer Takahashi iteration. The last column (“ratio”) has
now a different meaning than in the previous tables, it denotes the
ratio between the sparse matrix iteration time and the ZDD iteration
time. Looking at both, the absolute times and the ratios, it is ob-
vious that the partitioning into blocks of predefined size, which in
general do not correspond to ZDD subgraphs, causes an immense
overhead. It should be pointed out that, in the current implemen-
tation, the blocks are represented by pure (i.e. non-hybrid) ZDDs.
The iteration times could be improved to some extent by replacing
the lower parts of these block-ZDDs by sparse matrices, thereby
speeding up the access to the matrix elements.

4. CONCLUSION

This paper investigated the pros and cons of a state-level abstract
functional interface (AFI) in the context of Markovian performa-
bility modelling. Such an interface can be used for accessing the
entries of a matrix represented by a symbolic data structure. It sep-
arates numerical solution methods from the underlying data struc-
ture used for matrix representation: A given numerical method ac-
cesses matrix elements through the AFI and therefore does not need
to know any details of the data structure.

ZDD

N sparse matrix ratio
tpa'rt | Liter. | tpart | Liter.

(A) Flexible Manufacturing System

6 0.8121 1.5952 157.3498 14.4299 0.1T06

8 | 10.2246 | 16.5459 || 1,787.4957 | 293.2779 0.0564

(B) Kanban System

(02687]

Table 3: CPU times when employing the Takahashi solution
method

The Moebius state-level AFI had previously been implemented
(at least partially) for the sparse matrix, Kronecker and MxD data
structures. The present paper described a complete implementa-
tion for state-level objects in the ZDD format. We conducted an
empirical assessment which basically resulted in the two following
findings:

1. Even for access pattern which match very well with the state-
level object, the AFI may pose a significant runtime over-
head.

2. Numerical algorithms which require a particular access pat-
tern to the matrix entries will always work through the AFI,
but they will not achieve high performance, unless this pat-
tern conforms with the underlying data structure.

Overall, an AFI makes it easier to introduce new storage formats
for the matrices while reusing existing solution methods. However,
it is clear that numerical algorithms will not achieve high perfor-
mance unless they are somewhat tailored to the underlying data
structure.

Acknowledgements: The authors would like to cordially thank
Bill Sanders and the Moebius developers group from the Univer-
sity of Illinois for making Moebius available to us and for several
fruitful discussions.

S.
(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

REFERENCES

P. Bazan and R. German. Approximate Analysis of
Stochastic Models by Self-Correcting Aggregation. In 2nd
Int. Conf. on Quantitative Evaluation of Systems (QEST’05),
pages 134-144. IEEE Comp. Soc., 2005.

R.E. Bryant. Graph-based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers,
C-35(8):677-691, August 1986.

P. Buchholz. Numerical Solution Methods Based on
Structured Descriptions of Markovian Models. In G. Balbo
and G. Serazzi, editors, Proc. 5th Int. Conf. on Modelling
Techniques and Tools for Computer Performance Evaluation,
pages 242-258. Elsevier Science Publisher B.V., 1992.

P. Buchholz. Structured Analysis Techniques for Large
Markov Chains. In Proc. 1st Workshop on Tools for Solving
Structured Markov Chains, Pisa, 2006. ACM Press, CD
Edition.

P. Buchholz and P. Kemper. Kronecker Based Matrix
Representations for Large Markov Models. In C. Baier,

B. Haverkort, H. Hermanns, J.P. Katoen, and M. Siegle,
editors, Validation of Stochastic Systems — A Guide to
Current Research, pages 256-295. Springer, LNCS 2925,
2004.

G. Ciardo and A. S. Miner. Efficient reachability set
generation and storage using decision diagrams. In Proc. of
20th Int. Conf. on Application and Theory of Petri Nets,
LNCS 16309, pages 6-25. Springer, June 1999.

G. Ciardo and M. Tilgner. On the use of Kronecker operators
for the solution of generalized stochastic Petri nets.
Technical Report 96-35, Institute for Computer Applications
in Science and Engineering, 1996.

G. Ciardo and K. Trivedi. A decomposition approach for
stochastic reward net models. Performance Evaluation,
18(1):37-59, 1993.

D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi,

J. Doyle, W.H. Sanders, and P. Webster. The Moebius
Framework and Its Implementation. /IEEE Transactions on
Software Engineering, 28(10):956-969, 2002.

S. Derisavi. The Moebius State-level Abstract Functional
Interface, 2005. Master Thesis. University of Illinois at
Urbana-Champaign (IL, USA).

S. Derisavi. A Symbolic Algorithm for Optimal Markov
Chain Lumping. In O. Grumberg and M. Huth, editors,
TACAS 2007, pages 139-154. Springer, LNCS 4424, 2007.
S. Derisavi, T. Courtney, P. Kemper, and W. H. Sanders. The
Moebius State-level Abstract Functional Interface. In Proc.
of Performance Tools 2002: 12th Int. Conf. on Modelling
Tools and Techniques for Computer and Communication
System Performance Evaluation, pages 31-50, 2002.

R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for
symbolic model checking in CCS. Distributed Computing,
6(3):155-164, 1993.

M. Fujita and P. McGeer, editors. Formal Methods in System
Design: Special Issue on Multi-terminal Binary Decision
Diagrams, 1997. Vol. 10, No. 2/3.

B.R. Haverkort, A. Bell, and H. Bohnenkamp. On the
Efficient Sequential and Distributed Generation of very
Large Markov Chains from Stochastic Petri Nets. In Proc. of
IEEE Petri Nets and Performance Models, pages 12-21,
1999.

H. Hermanns and M. Ribaudo. Exploiting Symmetries in
Stochastic Process Algebras. In Simulation-Past, Present and

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

Future. 12th European Simulation Multiconference, pages
763-770. SCS International, June 1998.

W.J. Knottenbelt. Parallel Performance Analysis of Large
Markov Models. PhD thesis, University of London, Imperial
College, Dept. of Computing, 1999.

K. Lampka and M. Siegle. Activity-Local State Graph
Generation for High-Level Stochastic Models. In Measuring,
Modelling, and Evaluation of Systems 2006, pages 245-264.
VDE-Verlag, April 2006.

K. Lampka and M. Siegle. Analysis of Markov Reward
Models using Zero-supressed Multi-terminal decision
diagramms. In Proceedings of VALUETOOLS 2006
(CD-edition), October 2006.

K. Lampka, M. Siegle, J. Ossowski, and C. Baier.
Zero-Suppressed Multi-Terminal BDDs: Concept,
Algorithms and Applications. Manuscript in preparation.

K. Lampka, M. Siegle, and M. Walter. An easy-to-use,
efficient tool-chain to analyze the availability of
telecommunication equipment. In Proc. Formal Methods on
Industrial Critical Systems 2006, LNCS 4346, pages 35-50,
2006.

R. Mehmood. Disk-based techniques for efficient solution of
large Markov chains. PhD thesis, University of Birmingham,
University of Birmingham (U.K.), October 2004.

S. Minato. Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems. In Proc. 30th Design Automation
Conference (DAC), pages 272-277, Dallas (Texas), USA,
June 1993. ACM / IEEE.

A. Miner and D. Parker. Symbolic Representations and
Analysis of Large State Spaces. In Validation of Stochastic
Systems, LNCS 2925, pages 296-338. Springer, 2004.

D. Parker. Implementation of Symbolic Model Checking for
Probabilistic Systems. PhD thesis, University of
Birmingham, Birmingham (U.K.), 2002.

Brigitte Plateau. On the stochastic structure of parallelism
and synchronization models for distributed algorithms. In
Proc. SIGMETRICS’S85, pages 147-154. ACM Press, 1985.
W.H. Sanders and J.F. Meyer. Reduced Base Model
Construction Methods for Stochastic Activity Networks.
IEEE Journal on Selected Areas in Communications,
9(1):25-36, January 1991.

M. Siegle. Beschreibung und Analyse von Markovmodellen
mit groffem Zustandsraum. PhD thesis,
Friedrich-Alexander-Universitit Erlangen—Niirnberg,
Erlangen (Germany), 1995.

M. Siegle. Advances in model representation. In Proc. of the
Joint Int. Workshop PAPM-PROBMIV 2001, LNCS 2165,
pages 1-22. Springer, September 2001.

M. Siegle. Behaviour analysis of communication systems:
Compositional modelling, compact representation and
analysis of performability properties. Shaker Verlag,
Aachen, 2002.

W.J. Stewart. Introduction to the numerical solution of
Markov chains. Princeton University Press, 1994.

Y. Takahashi. A Lumping Method for Numerical Calculation
of Stationary Distributions of Markov Chains. Technical
Report B-18, Tokio Institute of Technology, Dpt. of
Information Sciences, June 1975.

