
1

Mobile Cloud Application Models Facilitated by the
CPA†

Michael J. O’Sullivan* and Dan Grigoras

Department of Computer Science, Western Gateway Building, University College Cork, Cork, Ireland

Abstract

This paper describes implementations of three mobile cloud applications, file synchronisation, intensive data processing,
and group-based collaboration, using the Context Aware Mobile Cloud Services middleware, and the Cloud Personal
Assistant. Both are part of the same mobile cloud project, actively developed and currently at the second version. We
describe recent changes to the middleware, along with our experimental results of the three application models. We
discuss challenges faced during the development of the middleware and their implications. The paper includes
performance analysis of the CPA support for applications in respect to existing solutions where appropriate, and
highlights the advantages of these applications with use-cases.

Keywords: mobile cloud, applications, services, user experience

*Corresponding author. Email: m.osullivan@cs.ucc.ie

1. Introduction

Mobile cloud computing is a paradigm that strives to deliver
demanding and complex new applications to mobile devices
from the cloud. Such applications cannot execute on mobile
devices because of the limited resources available, such as
battery capacity, processing power, and storage. By moving
the execution of complex tasks from the mobile device and
into the cloud, demanding applications can be executed on
the infrastructure; results of task execution can be delivered
to the mobile device when complete. Mobile cloud
computing can also be considered as the use of cloud-based
applications and services from mobile devices, which
provide beneficial functionality and information to the user
of the device. Cloud services and applications deliver
functionality to mobile devices either through an application
(“app”) installed on the device, or through the installed web

†This paper is an extension of [28]. We introduce our group-based
collaboration application model. Section 3.3 was added to introduce the
model, section 4.3 was added to discuss the implementation, and section 5.3
was added to discuss our implementation result. The abstract, introduction,
and conclusions have been updated to reflect the added model accordingly.

browser. The use of cloud resources from mobile devices
has resulted in new computing models being made available
to mobile users.

Various applications synchronise user files across each
mobile device owned so that they are accessible from each
of them. Changes to a file on one device can be reflected on
all other devices. Dropbox [1] is one example of this model:
cloud storage is provided to store the user’s files, and each
mobile device can retrieve the files from Dropbox using an
installed app. Similar services include Google Drive [2] and
Microsoft SkyDrive [3]. Another example is Apple iCloud
[4], which pushes content purchased from the iTunes store
onto each of the user’s “iDevices”, or, additionally, the user
can play media files from the cloud, without storing them on
the mobile device. Many users also have social networking
accounts such as Facebook [5] and Twitter [6], and upload
media files to these services as a form of cloud storage. One
resulting benefit is that the limited storage space on the
mobile device is saved. However, all of these services work
in isolation. If a user has accounts with several of these
providers, all files must be synchronised and maintained
separately. The user must upload files from the mobile
device to each service individually using different
applications, which costs time, money, and energy.

Received on 10 October 2014, accepted on 04 January 2014, published on 17 February 2015

Copyright © 2015 Michael J. O’Sullivan and Dan Grigoras, licensed to ICST. This is an open access article distributed under the
terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/sis.2.4.e6

EAI Endorsed Transactions
on Scalable Information Systems Research Article

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Michael J. O’Sullivan and Dan Grigoras

2

The mobile cloud can also be seen as a platform for
demanding computations. Mobile applications with
computations that cannot be performed on a mobile device
due to their resource requirements can be offloaded onto the
cloud for execution, with results returned to the mobile
device. Examples of this approach include cloudlets [7],
which use virtual machines running on local infrastructure
near the mobile device to execute user applications; virtual
machine output is displayed on the mobile device.
Application partitioning [8] uses a graph model to break-up
a mobile application into components; these are distributed
to nearby computing nodes for execution. Code offload
techniques [9, 10] execute object-oriented application code
in the cloud. The results of the execution, such as any
modified state of objects, are returned to the mobile
application.

Execution of computationally long-running and resource-
intensive operations, such as large dataset processing and
mathematical calculations, can also execute on the cloud,
with results returned to the mobile device. As a result,
applications do not utilise excess battery power and
processing capacity of the mobile device. The application is
also not at risk of interruptions, such as being killed in low-
memory scenarios or accidental shutdowns.

In many enterprises such as in the office environment of a
business, academic institution, or hospital, collaboration of
members of different departments or teams is crucial in
order to complete work made up of several different tasks.
Due to time constraints of daily schedules, or in cases where
team members are located in various locations worldwide, it
can be difficult to come together for meetings to
assign/oversee work. However, all users have their mobile
devices with them to communicate back to the team. There
are web-based and mobile applications available for task or
project management, but these often involve users having to
find time to manage and set their own work and task
progress within these solutions.

We have implemented these services and scenarios as
additional application models of our mobile cloud
middleware solution. Our active work is on a project known
as the Cloud Personal Assistant (CPA), which we introduced
in a previous work [11]. It forms the backbone of the mobile
cloud middleware we are developing, known as Context
Aware Mobile Cloud Services (CAMCS), also introduced in
a previous work [12]. Each user of CAMCS is provided with
their own instance of a CPA, which can perform tasks
assigned to it by the user. The CPA of a user completes
tasks by making use of mobile cloud services. These tasks
are described using a thin client application installed on the
user’s mobile device, before being sent to CAMCS, which
forwards them to the CPA of the user. In our current work
with CAMCS, we have examined how to use a CPA to
enhance two of the application models we have described -
synchronisation of files and data intensive processing. We
have also examined how the CPA can be used to complete
group-based tasks.

This paper provides several contributions. First, we
present the implementation of a file synchronisation
application model among service providers using the CPA.

The aim of this model is to remove the shortcomings of the
traditional applications, which work in isolation. By utilising
the CPA for uploading user files to cloud storage, our results
show evident time savings when compared with using
individual apps, along with corresponding energy savings.

Secondly, we present our implementation of an intensive
data processing application model with the CPA, on an
XML dataset. We compare execution time of cloud-based
data processing with the CPA, against local processing on
the mobile device, and present benefits provided by the
CPA. Our results show faster or comparable processing
performance on the cloud infrastructure when compared
with local execution.

Finally, we present a group-based collaborative
functionality model that has been added to CAMCS, which
supports groups that CPAs can join upon request by their
users. Once joined to a group, milestones, which make up
group tasks, can be assigned automatically to the CPAs of
group members based on their role within a group, requiring
no manual intervention aside from the task creation. This
can bring benefits to the mobile enterprise where arranging
meetings of people can be difficult due to the natural
mobility and displacement of staff.

For each application model, we discuss the appropriate
implementation challenges, and lessons learned.

The remainder of this paper is structured as follows.
Section Two describes the aim of the CAMCS middleware
and the CPA along with its current development state.
Section Three describes our implementation of the file
synchronisation, data processing, and group-based
collaboration application models with the CPA. Section
Four presents the implementation challenges faced. Section
Five contains the results of our experimental
implementations. Section Six includes the related work, and
the conclusions are presented in Section Seven.

2. CAMCS and the CPA

The CAMCS middleware is a mobile cloud solution hosted
on cloud servers. Cloud-based servers provide computing
resources for consumers, which include hardware resources
(CPU time, memory, storage, networking capacity),
developer resources (application platforms, tools and APIs),
and software resources (user software with graphical user
interfaces, normally accessed through a web browser). For
mobile cloud, we leverage the resources offered in the cloud
so that resources not available on the mobile device can be
used from cloud servers - in other words, the cloud
resources are delivered to the mobile device as services.
This normally requires the mobile device to have a
continuous, high-quality network connection to these cloud
servers.

We now briefly describe CAMCS and the CPA from our
previous works. The CAMCS development aim is to provide
an integrated user experience for mobile cloud applications.
Such an experience requires that the difficulties of running
mobile cloud solutions, such as time/energy costs, and
network disconnections to name a few, have lessened

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Mobile Cloud Application Models Facilitated by the CPA

3

significance on the user experience of mobile cloud
applications. In addition, the use of the software is seamless
for the end-user (part of the general public with no IT
experience), and it intelligently responds to the state of the
user and the mobile device. The thin client application,
which is installed on a mobile device to communicate with
CAMCS, embraces this philosophy, whereas other
approaches to mobile cloud do not consider the user
experience in their solution. The user experience aspect of
CAMCS is very important for the implementation of the file
synchronisation and data processing models; the difficulties
discussed in implementing mobile cloud solutions have a
detrimental impact on both.

The CPA is the backbone of CAMCS. It is an active
assistant that performs tasks for the user with mobile cloud
services, and represents the user and their tasks in the cloud.
The CPA uses a discovery service to find cloud services for
performing tasks set by the user. Once a user uploads a task
from the thin client on the mobile device, discovery takes
place to find an appropriate service. Once found, the CPA
contacts the service with user-provided parameters, and
waits for the result from the service. When the result is
produced, the CPA stores it until the user is ready to receive
it on their mobile device. If the user became disconnected
during this time, the execution and result of the task are
safely unaffected in the cloud. As the task execution has
been completely offloaded, the mobile device is free for
other work - see Figure 1.

Since the publication of our previous works, the CAMCS
and CPA have undergone further development. The CPA is
now a component of the CAMCS middleware; in our
previous work the CPA was a standalone middleware [11].
The discovery service is no longer built into the CPA - it is
now a component of CAMCS, provided to CPAs. The
discovery service will take input from a context processor
component [12], which is also part of CAMCS, with the aim
of using context to enhance the quality and functionality of
services discovered, by finding services relevant to the
user’s current situation.
The most significant architectural change from our first
version is the replacement of a MySQL database for storing
information with MongoDB, a NoSQL database. MongoDB
uses a document store for data - all information is stored in
individual documents. This makes querying for data an
easier task. The data itself is stored in JavaScript Object
Notation (JSON) format. To contrast with the first version
of the CPA, there were separate MySQL database tables for
user information (name, email address, password), CPA
information (references to current and previous tasks), and
task information (name, WSDL file location, result). To
provide this information to our Java-based CAMCS
middleware, cross-referencing using ID numbers or join
queries across multiple tables was required to bring related
information into the result set.

3. Application Models

We now introduce the three application models described in

Figure 1. The mobile cloud provides computing
services to mobile clients. Here, mobile devices 1 and
2 have their own instances of a CPA within the
CAMCS middleware, which work with mobile cloud
services to complete tasks, and deliver the results to
the mobile devices.

this paper, which have been implemented as new features of
CAMCS with the CPA, along with their advantages
compared with existing solutions.

3.1 File Storage/Synchronisation

The first application model added to the CPA allows the
user to send files from their mobile device to different cloud
service providers. The widespread use of mobile devices as
enablers for users to store and share files/content on cloud-
based and social networks was the primary motivation for
this feature. On the mobile thin client, the user can add their
details (username/password) for different service provider
accounts. File synchronisation involves several steps:

(i) Service Provider Authorisation for CAMCS

This involves selecting from a list of supported service
providers, and authenticating with the selected provider, to
give CAMCS access to the account.

(ii) Service OAuth Key Storage with CAMCS

Once the user has authenticated on the mobile device, the
authentication keys used to access the accounts on the users
behalf are sent from the thin client to CAMCS in the cloud.

(iii) File Selection for Upload

A user can upload a file from the mobile device by using
the Android share feature, where the thin client is listed as a
share option. This allows the user to select which of the
provider accounts they have added to CAMCS that they
intend to upload the files to. The user can select file storage

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Michael J. O’Sullivan and Dan Grigoras

4

providers such as Dropbox or Google Drive for any type of
file. If at least one of the selected files is an image or video,
it will also provide the option to upload to Facebook -
Facebook only supports upload of image and video files.

(iv) File Upload to CPA and Service Providers

After the user has selected the accounts to upload to, the
files are sent to CAMCS in the cloud, using a RESTful web
service. Once CAMCS receives the files, they are passed to
the user’s CPA, which will then send the files to the selected
accounts - see Figure 2.

The advantage of such a feature is that if, for example,
the user, possibly a company representative, wants to upload
files such as promotional material to multiple social
networks such as Facebook and Google+ to reach all
possible consumers, they no longer have to spend resources
such as time, money, and energy on their mobile devices,
uploading to each service provider one-by-one. Previous
solutions in this regard upload files to each provider
individually from the mobile device, using up the described
resources during the upload to each provider. Taking
advantage of this feature offered by CAMCS, users only
have to upload the file once to the CPA, which takes care of
sending the files to the different providers; the resources are
only used once for a single upload operation. If the user has
client software for the providers on their desktop PC’s,
laptops, or mobile devices, the files will be synchronised to
them via a push operation. As a result, the current
implementation does not feature a download
synchronisation to the mobile device as files may be
duplicated, wasting more resources. Evaluation, along with
the implementation for this application will be discussed in
the next section.

3.2 Data Processing

One fundamental aspect of the CPA is that it can carry out
work for the user asynchronously. The user can specify the
details of some task to be completed on the thin client, at
which point the mobile device disconnects from CAMCS,
and the work continues, with the results saved for when the
user is ready to receive them.

One area where this may be particularly useful is
intensive data processing, especially if it is expected to take
a large amount of time. As mobile devices have increased
the mobility of office/lab staff, having access to such an
application while on the move can be helpful, and the cloud
approach can work with large and complex datasets that a
mobile device may not be able to efficiently process.

In our previous work [11], we implemented a solution
where the CPA would perform database queries on
relational databases running on Amazon RDS. The CPA
would wait for the query to be executed and save the result
set for the user. This was difficult to implement, due to the
nature of the different types the query could take, and the
simplicity of the form-based user interface not being
intuitive for the novice end-user to specify what was
required. For this work, another direction was taken; rather

Figure 2. Rather than wasting resources uploading a
file twice to two different services individually (device
A), the user uploads the file once to the CPA (device
B), which then sends the file to each of the user’s
service accounts.

than taking data from relational databases and setting up the
required authentication and connections, we decided to
perform some processing on scientific data. A scientist
could set a task to carry out some data processing on sets of
experimental results, and get the result later.

In the absence of scientific datasets and software
programs for various fields, XML datasets were used. The
Computer Science and Engineering Department of the
University of Washington offers freely available datasets on
their website [13]. These range from data on protein
sequences, to data from NASA on star systems. Many of
these datasets were large in size; one dataset called Mondial,
which contains information on different countries around the
world, compiled from the CIA world factbook, was chosen
because of its smaller size. We developed a RESTful web
service, as a separate application deployment from CAMCS
that could carry out statistical calculations on this data. To
enable this, the Apache Commons Math library [14] was
included in this service.

The flow of this work is as follows:

(i) Offload of Data Processing Task to CAMCS

The thin client is used to specify the location of the XML
data by URL, and to specify the type of processing that is
required from a list (in this case, statistical). The data is sent
to CAMCS, which hands them over to the user’s CPA,
where the task data is examined.

(ii) Data Processing Begins at Service

If the user has requested statistical calculations, the CPA
contacts our cloud statistical service, passing it the URL to
the XML dataset. At this point in time, the CPA already
knows the services available (no service discovery takes
place). The data processing information is passed to the
calculation service. A CAMCS call-back URL that the
calculation service can use to send the result back to the
CPA is also passed. The service carries out the processing
on the data (it calculates statistics such as the mean and
mode

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Mobile Cloud Application Models Facilitated by the CPA

5

on population data for all cities in the countries part of the
dataset).

(iii) Data Processing Result Call-Back to CAMCS

When finished, the service will call-back to CAMCS with
the result data, which the user can fetch on their mobile
device using the thin client, when they are ready. CAMCS
finally marks the user’s data processing task as complete -
see Figure 3.

Another feature is that the CPA can provide real-time
status updates on the progress of the data processing. The
mobile thin client contains a record of the offloaded
processing task, and when they open it, the CPA feeds status
updates to the thin client.

Of note is a difference between how we implemented our
statistics web service compared to the database service in
our previous work. The statistics service is a RESTful web
service. In our previous work, the RDS service was a
SOAP-based web service. One of the difficulties
encountered with the SOAP-based RDS service, was that for
long running quires, the Apache CXF software used at the
CPA to contact the web service, would time out while
waiting for the result. Apache CXF includes an
asynchronous call mechanism to overcome this. However,
the REST-based approach, even though it is easier to use
over HTTP than SOAP, does not feature an asynchronous
web service call. To avoid time outs, we implemented the
call-back feature.

Advantages to this approach include the useful aspect that
the web service will have libraries available to it that may
not be present on the mobile device. As mentioned
previously, we used the Apache Commons Math [14] library
to calculate the statistics. Other scientific libraries available
include JScience [15], which were also included but were
not used. It would not be trivial to calculate such statistics if
done on the mobile device without these libraries.

Other advantages include the fact that the user does not
need to wait for a specific piece of client software to
complete the data processing, which may be prone to
interruptions. The user can set the task with the CPA using
the thin client and go on to do other work, or leave the office
for the night and turn off the local equipment, which may
have otherwise been left on and used for the processing task.
The user can check in with the CPA on the go with the thin
client for progress updates when required.

There are difficulties and limitations in this approach that
will be evaluated in the next section.

3.3 Group-Based Collaboration

As described in Section 2, the fundamental premise of
CAMCS is that users will offload tasks they require to be
completed from the thin client running on the mobile device
to their CPA running within CAMCS. CAMCS will then
assist the CPA in discovering appropriate cloud services,
capable of executing the task. Another desirable goal is that
CPAs should be able to communicate and work together. By

Figure 3. The user sends the data processing details,
including the URL of the XML dataset, to the CPA. The
CPA then contacts the cloud data processing service
with the details, which begins the processing. The
result is sent back to the CPA. The user can also
receive progress updates.

doing so, a CPA can share data and discovered cloud
services with the CPAs of other users. This will be
beneficial for CPAs where users have similar interests, or
who work on related tasks. A group of friends may have
CPAs which work together to suggest activities of mutual
enjoyment to their users. Shared interests that the CPAs are
aware of will drive this functionality. To support
collaboration, the notion of groups, has been added to
CAMCS. This will allow CPAs collaborating together to
complete shared tasks to the benefit of their users. Any
CAMCS user can create a group, and other users are then
able to join these groups. Several components are modified
or introduced for this model:

(i) Group Tasks and Milestones

To support the concept of a task that can be shared among
the CPAs of the group members, we introduced a new type
of task, a “group” task. We now therefore have a distinction
between an “individual” task, and a “group” task. Individual
tasks correspond to the original single-user tasks. A group
task is made up of many milestones. Currently, a milestone
is an individual task. A milestone can be assigned to a CPA
within the group, who will then be responsible for executing
the milestone individually – see Figure 4.

(ii) CPA Roles

CPAs joined to groups are assigned different roles. The
CPA of the creator of a group becomes the group leader.
Whenever a user joins their CPA to a group, the CPA is
assigned a role. The leader defines the roles required within
a group; these can correlate with the roles of the individuals
who own the CPAs and their context (more information is
given on this in the results section, where we describe an
example use-case). Milestones also have a required role for
completion. Therefore, each milestone is assigned to a CPA
which meets the required role within the group.

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Michael J. O’Sullivan and Dan Grigoras

6

Figure 4. A group within the CAMCS middleware
receives a group task. The group task has several
milestones, two of which, have been assigned to two
different CPAs. Details of each are sent to the user’s
mobile devices.

(iii) Milestone Pre-Requisites and Execution

Each milestone has a deadline for completion, along with
pre-requisite milestones, which must be completed before a
given milestone can begin execution. When a milestone has
completed, it sends a message to the group to inform it that
it has completed, and any milestones waiting on its
completion, can now be assigned to a CPA within the group
and begin execution.

Regarding milestone execution, this can be as simple as
corresponding to an activity that the user who owns the CPA
responsible for the milestone completion should carry out.
Additionally, the CPA, like with individual tasks, can use
cloud services to complete the milestone. In regards to a
setting such as an academic institution, or a business
enterprise, these services could exist in the form of internal
private cloud services, that work on and with existing
company infrastructures, such as databases, file
storage/sharing, or workflow jobs.

The advantage of such a model provided by CAMCS to
CPAs, is that it allows users to have tasks scheduled for
them depending on their role within the group. This will
allow users the flexibility to carry on working, without
having to arrange to meet in person or by video
conferencing to assign tasks or check on task progress; this
can be difficult depending on where in the world users are
working from, or daily timetables/schedules. Many existing
web-based project management tools exist, but our approach
will result in task data optimised to the user’s role, and will
be delivered directly to the users’ mobile through their
CPAs. It does not require user intervention, aside from
initial task creation.

If required, and of benefit, the CPA can inform the user
through the thin client of the progress of a milestone. Also,
if the milestone requires the use of cloud services, the CPA

can also interact with the user, by requesting additional
information. For example, consider a group task requiring
the gathering of reports on common causes of calls to a
technical support group from the telephone operators. The
CPA working on the milestone of an individual operator
may ask their owner if it should include calls that required
the operator to visit the troubled employee in the office. It
might also ask the user which time-range it should gather
data for, or should it exclude calls that were passed to
another operator.

This will be of great benefit to companies and groups
who require mobile enterprise for organising and
coordinating work among employees who may be scattered
in various locations worldwide, or who may be out-of-office
visiting clients. Such employees will have access to their
CPA and group milestones through the thin client on their
mobile device.

4. Implementation Challenges and
Evaluation

During implementation of the application models, several
challenges and difficulties to the approaches that have been
discussed were identified, as well as areas for improvement
in API design for mobile devices. We now evaluate the
work with respect to these issues for each application model.

4.1. File Synchronisation

OAuth Authentication

In order to access the accounts of the different cloud service
providers, the user must authorise CAMCS to access their
service account by first authenticating themselves, and
granting permission for the required operations. For all of
the service providers we worked with for CAMCS, OAuth
[16] is the security access scheme employed. At
development time, Facebook and Google used OAuth
version 2, and Twitter and Dropbox used OAuth version 1
(by the time this paper was written, Twitter provided OAuth
2 support). In both versions of OAuth, the application
requesting access to the user account with the service
provider is given access credentials in the form of an access
token/key/secret. With OAuth 1, a second access
token/key/secret, sometimes called a “value”, is also
provided. When an application requires access to the user’s
account, they present the access token (and the value in the
case of OAuth 1) with the request, and if the credentials are
valid, the application is granted access. The main benefit of
this approach is that the application that wishes to use the
service provider on behalf of the user does not need to know
and store the user’s username and password for that service.

The flow of authentication and gaining an access key for
most applications is as follows. The developer has to
register their application with the service provider, and
obtain an application key. CAMCS was registered with each
of the service providers used in this work, and a key was

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Mobile Cloud Application Models Facilitated by the CPA

7

obtained in each case. When the user wishes to allow
CAMCS and their CPA access to their service provider
account, in Android, they are redirected from the mobile
application to the website of the service provider through a
WebView, presenting the application key. The user logs in
with his/her own username and password. The user is then
given a choice to grant access to the application for various
operations (sometimes called “scopes”). Once the user has
granted access, the mobile application is called back with
the access key (and the value in the case of OAuth 1). These
are then stored on the mobile device for future use.

The difficulty for CAMCS is that the mobile device does
not require or use the access credentials. The CPA operating
in the cloud is the entity that will be working with the
service providers; therefore the CPA needs to be provided
with the access credentials.

If CAMCS were a web application accessed from the
desktop PC browser, the web application would receive the
call-back and store the credentials. In this case, the
credentials would be sent straight to the CPA. This however
would not be optimal for the user experience. Asking the
user to leave the mobile thin client, and open a
corresponding website with a browser for CAMCS to
perform the authentication would defeat the purpose of
being a mobile thin client application.

To overcome this, we implemented a RESTful web
service on CAMCS. When the user has authenticated with
the service provider on the thin client, the access credentials
are sent from the thin client to CAMCS to be stored with
their user account. The CPA can then access the credentials
stored with the user’s account details on CAMCS, to carry
out operations with the service providers - see Figure 5.

Service Provider APIs

This difficulty also relates to authentication with the service
providers.

To implement the authentication flow, the Spring
Android project was used, which uses components of the
Spring Social project. They simplify the work required for
authentication with service providers. The developers of
Spring Social have only implemented official support for
Facebook and Twitter authentications using OAuth. There
are several community driven projects for other providers,
such as Dropbox and Google. None of these community
driven projects have been ported to the mobile platform, and
their implementation remains solely focused for use with
Spring Social on web applications. These could be ported to
be compatible with the Spring Android components, but this
requires some development effort.

Rather than doing this, we decided to use the Android
APIs available from Dropbox and Google. This involves
downloading JAR files from the different service providers,
packaging the thin client with them, and using them in the
code to carry out the authentication flows. Ultimately, we
ended up having several JAR files; those for Spring
Android, Spring Social, Spring Social Facebook, Spring
Social Twitter, Dropbox, and Google Play services. The file
sizes of these start to build up quickly. Moreover, all of

Figure 5. To get the access credentials to where they
are needed with the CPA, the user must authenticate
for each service on the mobile device (normally
through a WebView). The keys are then sent to
CAMCS using a RESTful web service. The CPA can
then access each service on the user’s behalf.

these services transfer data in JSON format, but these JAR
files often contain different versions of JSON parsers, which
all do the same thing, taking up even more space while
doing so. One cannot set each of the APIs to use a single
JSON parser of choice and remove the rest - see Figure 6.
All of the service providers authenticate using OAuth
tokens, but each provider seems to implement the
authentication flow differently, rather than using some
standard. Spring Social aims at resolving this, but as
described, only supports Facebook and Twitter, relying on
community projects for other implementations, which have
not been readily ported to Spring Android.

To authenticate with Google, we use Google Play
Services. This contains an AccountManager, which is
supposed to again provide common features for getting
access tokens, but, like Spring, requires community built
authenticator modules for the different providers. Aside
from the expected need for different interfaces for the
differing features of the different service providers, it would
be much easier for developers, for the common task of
authentication, if there was a standard API that would work
for all out-of-the-box, since they all use OAuth
authentication. In addition, if the user of CAMCS wanted to
add another provider not already supported that uses OAuth,
our mobile thin client would need to be modified to support
each new provider’s different implementation of the
authentication flow, so extension becomes difficult. If a
standard API existed, the user could add new service
provider accounts without the need to modify the mobile
thin client. The different APIs take time to learn and
implement, and increase the size of the applications
deployed to mobile devices because of the required JAR
files.

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Michael J. O’Sullivan and Dan Grigoras

8

Figure 6. Screenshot from the Eclipse IDE of the
required JAR files for the Android thin client for each
service provider. Duplicated functionality can be seen;
jackson JAR files are for JSON parsing, the json-
simple JAR is required by another file but contains the
same parsing functionality as Jackson.

Synchronisation from Service to Device

The current implementation does not implement a download
mechanism to synchronise files from the various cloud
services to the mobile devices. Many service providers
already implement a push mechanism; this will
automatically send a file uploaded to the provider, down to
all the other devices that use a native application. On the
mobile device, this would be a waste of resources if files
were downloaded more than once both from the CPA and
the native application.

If this were to be implemented, it would require a means
for the CPA to be aware of when the user uploaded a file to
the service from other sources, such as a web browser. This
could be achieved by polling, but this introduces extra
traffic to the service provider, which would be wasteful if no
new files or updates have been added to the service provider
since the last poll. A better solution would be an event
notification API, which could alert interested parties, such
as the CPA, when a new file has been added or of any
update to existing files. This requires the service provider to
implement such an API. As an example, Dropbox provides
the sync API, which allows notifications to be sent after
events such as new files being added occur. However, the
API currently only exists for native Android and iOS
implementations; the ability needed here is to inform a third
party on the user’s behalf, in this case the CPA, so that it is
aware of the file state at the service providers.

4.2. Data Processing

Service Extensibility

The main question facing the development of the data
processing is how to expand its operation, and make it easier
to invoke. As it stands, our statistics service will only work

with an XML dataset that shares the same schema as that of
the Mondial XML dataset we developed it against (or any
specific dataset we specifically develop a service for). The
statistical service we developed for the Mondial dataset has
to parse the XML dataset, and expects to find certain tags
and attributes that can be used for calculations. While there
may be other datasets representing similar data (for
example, ethnic population data on European countries) that
uses the same markup, it is still a fragile service.

It may be prudent if a scientist who has data to process
could easily specify their own calculations that they are
interested in performing to a service, so that it could readily
work with different XML schemas. These could be uploaded
to the CPA from the mobile device and be sent to the
processing service. The calculations would have to specify
what data to work with, and what calculations should be
performed on it. Ideally, the user should be able to express
the desired calculation on the thin client interface. This may
be achievable with cooperation from those who develop
software specifically for data processing of large formatted
data. If this were not the case, as it is now, a different
service would have to be developed for each different XML
schema, limiting the scale of the data processing service.

Discovery of Data Processing Services

Currently, the data processing service runs in another web
application, separated from CAMCS. This is because
different service providers will provide their own services
for processing different types of data; it is not something
that the CPA can do itself at present. In this situation,
services that can perform different processing on data need
to be known to CAMCS. A service must be able to describe
exactly what it does, what data it expects, and how it will
return the results. In addition, CAMCS needs to be able to
compare the dataset and instructions passed by the user,
with these external services to find what service will match
the request.

At the moment, locations and types of services are
hardcoded onto CAMCS, so that it knows where to find a
specific set of services that carry out specific calculations on
defined datasets. Clearly, a discovery solution would be of
use here, which is part of our future work. In addition to
describing common service attributes such as message
formats and endpoints, the required data for the calculations
(such as specifying which mathematical calculations to
perform on which specific data in the XML document) must
also be described as part of the discovery process.

4.3 Group-Based Collaboration

The implementation challenges faced in regards to CPAs
collaborating together are mainly drawn from how CPAs
can communicate with each other, how they can share data
or tasks, and how the milestones are structured and assigned
to the CPAs. For managing collaboration and
communication between CPAs, the Collaboration Manager
was introduced.

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Mobile Cloud Application Models Facilitated by the CPA

9

Collaboration Manager

If CPAs are to collaborate, they need to become aware of the
existence of other CPAs. While any CPA could be made
aware of any other CPA, possibly based on a real-life
“friends” model, for the purposes of this work, we have
restricted this existence to groups. Only CPAs in the same
group can communicate with each other. However, as a
group may contain many CPAs, it is not practical for each
CPA in a group to know about every other CPA in a group
either. For this purpose, we have introduced the
Collaboration Manager.

The Collaboration Manager facilitates communication
between two CPAs. Each group has an instance of a
collaboration manager. A CPA knows which groups it is a
member of; therefore it knows how to find the collaboration
manager for a given group. If a CPA needs to discover
another CPA based on a role or similar milestone, they
consult the collaboration manager. In our current
implementation however, each milestone is assigned to each
CPA individually and they are solely responsible for
executing it. As a result, a CPA does not need to consult
directly with another CPA for milestone completion.

Currently, the collaboration manager is used for
milestone assignment to CPAs. When the group leader starts
a new group task, the collaboration manager will assign the
first milestone to a CPA who has a matching role within the
group. When a CPA is given a milestone, it records which
group the milestone belongs to. When it has completed the
task, possibly using cloud services, or their user has
completed the physical work, the CPA calls back to the
collaboration manager, to indicate the milestone is complete.
At this time, if appropriate (see next subsection), the
collaboration manager will assign the next milestone to be
completed to a CPA with a corresponding role. It should be
noted, that for a group task, several milestones can be
assigned to CPAs and be in a state of execution at one time;
when we state that the collaboration manager assigns the
next milestone, this applies to the next milestone that had to
wait until the current milestone was completed. Assignment
of a milestone will start execution.

Milestone Structure

As milestones may have deadlines and pre-requisites
required before they can start execution, careful
consideration had to be given as to how milestones are
structured.

A group task can be thought of as a graphical
representation of a tree, G = (V, E), where G represents the
task, V is the set of milestones that make up the task, and E
is the set of pre-requisites of milestones. One milestone is
designated the first milestone. Each milestone may have one
or more child milestones in the graph (the first milestone
must have at least one child milestone), or possibly no child
milestone. Each milestone (except the first) may have
multiple parent milestones in the graph – see Figure 7. Each
parent milestone is a pre-requite milestone in the graph
(represented by an edge in E), and all pre-requisites must be

Figure 7. A graph G = (V, E) representing a tree of
milestones for a group task, where V is the set of
milestones and E is the set of milestone pre-requisites.
1 is the first milestone; it has two child milestones, 2
and 3. 2 and 3 have 1 as a pre-requisite parent
milestone. All pre-requisite milestones must be
completed before a milestone can start; before 5 can
start, 3 and 4 must be completed. Milestones such as
2 and 3 can execute in parallel when 1 has completed.

completed before the current milestone can be assigned to a
CPA and executed.

The difficulty in implementing this in code stems from
the MongoDB database embedded document structure. If all
milestones have object references to each other milestone,
we would have many cyclic references. As a result, each
milestone, as an instance of an individual task, is given a
task ID, and each milestone stores the IDs of their pre-
requite milestones. Each milestone also stores the IDs of
each child milestone that should be started once it has been
completed. This resembles a double-linked-list structure.

The collaboration manager uses all this information when
assigning tasks to CPAs. Given a complete milestone, it will
check each of the pre-requisite milestones for completion,
and if all are completed, it will assign all the child
milestones that should be started once the current milestone
has completed.

Milestone results, as with other task results in CAMCS
after being completed, are pushed to the mobile device of
the user with Google Cloud Messaging. When the milestone
has completed, the milestone uses the group ID to contact
the collaboration manager; if it was a physical milestone that
the user has completed in person, the mobile thin client is
used to contact the collaboration manager of the group to
inform the group of milestone completion.

5. Results

Experiments were performed to evaluate the timing
performance of both the file synchronisation and the data
processing functionality of CAMCS, which are now
presented. An office-environment based group task use-case

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Michael J. O’Sullivan and Dan Grigoras

10

was used to demonstrate the group-based collaboration
functionality.

5.1 File Synchronisation

To evaluate the file synchronisation performance, over five
different runs, the time to upload a PNG image file of size
112KB was measured - see Table 1.

Specifically, we measured: the time taken to upload the
image to the CPA from the mobile device, and the time for
the CPA to upload the image to Facebook and Dropbox. The
mobile device used was a Samsung Galaxy S3, connected to
the Vodafone Ireland operator. The mobile – CPA upload
took place on a HSDPA+ cellular network connection. The
CAMCS middleware was running on an Apache Tomcat
version six servlet container on the cloud server. The cloud
server is located within University College Cork, Ireland,
and features a 1.7GHz CPU and 2GB RAM. The timing data
was collected from logging statements placed in the code.
The upload of the image file to Dropbox and Facebook from
the CPA took place in sequential order. If we had utilised
threads to do this concurrently, the total time would have
been smaller, the mobile to CPA communication time plus
the maximum of the server upload times.

To compare this with the performance of uploading with
the individual Android apps, we measured over five runs the
time to upload the same image with the native Facebook and
Dropbox Apps with the HSDPA+ connection. This timing
data was obtained with a stopwatch, from the time the
upload (or equivalent) button was pressed on each app, to
the time when the notification that the upload was
completed appeared. The timing is less accurate as a result,
but the greater duration is still clear - see Table 2. Clearly it
takes even more time, and as a result, energy and money,
since the user has to upload the image twice using two
different apps, whereas with the CPA the user only has to do
this once.

In Table 1, the only time the user has to spend waiting on
their mobile device to finish upload are the times for the
Mobile – CPA communication in column two. Therefore,
the total time for the images to reach the service providers
from the mobile device in column 5 is not the total time the
user has to spend waiting for upload on their mobile device.
Contrast this with the total result in Table 2. The user has to
manually upload with the applications for each individual
provider, so the total time in the fourth column is the total
time the user must spend waiting for uploads to complete,
greater in all cases than the wait time with the CPA model.

5.2 Data Processing

The data processing service was deployed in the same
Apache Tomcat six servlet container and cloud server as
CAMCS. The XML parser used was XMLPULL [17]. For a
comparison test, we implemented a small Android
application with a service, which would carry out the same
XML parsing as the server. The Android XML parser is the
aforementioned XMLPULL parser we used on the server, so

Table 1. The time in seconds over 5 runs to upload a
112KB image from the mobile device to the CPA, and
subsequently from the CPA to Facebook and Dropbox.

Run Mobile –
CPA (s)

Facebook
(s)

Dropbox
(s)

Total (s)

1 2.255 2.749 1.621 6.625
2 4.395 3.25 1.523 9.168
3 1.935 2.011 1.533 5.479
4 2.63 2.094 2.671 7.395
5 1.25 2.106 1.584 4.94

Table 2. The time in seconds over 5 runs to upload a
112KB image to Facebook and Android using the
individual native apps.

Run Facebook
App (s)

Dropbox
App (s)

Total
(s)

1 15.0 4.1 20.1
2 5.1 2.6 7.7
3 6.9 3.7 10.6
4 7.0 3.3 10.3
5 6.9 5.2 12.1

the comparison is fair in this regard of implementation. For
the cloud service, we used the XPP3/MXP1 implementation
[18] of the XMLPULL parser, as we believe this to be the
same implementation found on the Android platform, due to
the same package structure (the other implementations have
a different package structure to the version found on
Android).

Before the tests were run, Tomcat was restarted. We
measured the time with logging statements in the code to
fetch the XML file, the time to parse the XML, and finally,
the total time over five runs – see Table 3. The total time
includes the time for preparing the XML parser, converting
the XML file to a String for the parser, and the calculation
of the statistics. The majority of the time is spent on
conversion of the XML to a String. The parse time decreases
with each parse after the first. Another test was carried out
by restarting the server again, and the same trend of
decreasing parse time was repeated after an initial longer
time for the first run. The larger the dataset in size, the larger
the number of XML nodes that will need to be parsed,
which will take up more of the limited memory if done on
the mobile device. This will also take more time, and more
energy from the battery.

As previously described, we implemented a small
Android application to carry out the same XML parse as the
cloud data processing service for comparison purposes. This
ran a service thread, which executed the same Java code
found on the cloud service on the same XML dataset - see
Table 4. The results show that the XML fetch over the
cellular network connection took longer than the cloud
service, as one would expect due to the poorer quality
connection. The XML parse consistently took around half a
second, and did not show the same decreasing time trend as

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Mobile Cloud Application Models Facilitated by the CPA

11

Table 3. The XML fetch and parse times in seconds
over 5 runs for the data processing cloud service along
with the total time.

Run XML Fetch
(s)

Parse (s) Total (s)

1 0.969 1.114 4.585
2 0.387 0.676 3.777
3 0.604 0.43 4.119
4 0.384 0.084 3.37
5 0.359 0.038 2.354

Table 4. The XML fetch and parse times in seconds
over 5 runs for the data processing Android test
application along with the total time.

Run XML Fetch
(s)

Parse (s) Total (s)

1 0.88 0.505 6.11
2 0.74 0.425 7.6
3 3.53 0.44 12.365
4 2.09 0.43 11.315
5 2.815 0.435 11.735

the cloud service. Surprisingly, this means that the first two
runs of the parse on the cloud server were actually slower
than the mobile device. We believe this to be an
implementation detail of either the Java Virtual Machine
running on the cloud server, or the Tomcat servlet container.

Both implementations use a Java InputStream for the
fetch. The bytes from the stream are then read and converted
into a String for the parser input. However, when the
Android client fetched the XML dataset, it also brought
along formatting characters, specifically, newline characters
(\n) and whitespace. This interfered with the tokeniser of the
XML parser, and they had to be removed from the String
(using a String replace method) before the XML string was
passed to the parser. This removal operation took around
four seconds each time, and is the biggest contributor to the
total time on the Android device. As a result, the total time
was always longer on the Android test application, even for
the two runs where the parsing operation was quicker than
the cloud service. This removal process did not need to be
performed on the cloud service; no newline or whitespace
characters were fetched in the InputStream.

Once the work is complete, the call-back is made to
CAMCS, which forwards the result to the user’s CPA. The
CPA then uses Google Cloud Messaging to inform the user
that the result is ready, and they can then view the result in
the thin client application.

With the cloud service, the mobile user does not need to
upload data from the mobile device over the network
connection once the data URL is specified. No energy is
used up on the mobile device for the parse, and the parse is
unaffected by interruptions on the device. The device is also
free to complete other work.

5.3 Group-Based Collaboration

To evaluate the group-based task application model of
CAMCS, we decided to model groups based on teams and
departments within a company which can use mobile
enterprise to assign and coordinate tasks and corresponding
milestones within their teams. Departments may include the
IT department, sales, quality assurance, or management.
Each department in a company will have members who are
responsible for different kinds of work. In the sales group
for example, there may exist a secretary who prepares sales
reports from company orders in databases, and a sales
representative who takes orders from customers and places
them into the system.

Consider a group task. The lead member of the sales team
may require a document prepared which details the sales for
the past year. This will require two milestones: (1) the sales
representative must gather the required sales data from their
database, and (2) the secretary must then prepare the report
using this data. For this task, it could be completed in two
ways. Either the sales representative could gather the data by
his/herself, and then physically hand it to the secretary to
type the report. Or, the collaboration manager for the group
could assign the sales database task to the CPA of the sales
representative, who has a role in the group as a
SALES_REP. The CPA can then use a private cloud service
within the company to extract the required information for
the sales from the database. Once this milestone has been
completed, the collaboration manager will be notified, and
will assign the report preparation task to the secretary’s
CPA, which has the SECRETARY role. This CPA can then
use a document preparation service to prepare the report
with a given format and template, when provided with the
data.

In our tests, the collaboration manager has been
implemented, and successfully assigned given milestones
for such group tasks. In our previous work [11], we
developed and evaluated some sample services for database
operations that could be deployed to the private cloud of a
company. Our implementation also has other enabled
features: by considering the deadline, the CPA reminds the
user through the thin client of work they must complete for
any approaching deadlines. A CPA, which represents a user
who is currently busy with a set maximum number of tasks,
will also look for another CPA within the group who has a
role that supports completion of the milestone.

6. Related Work

Few middleware’s exist offering mobile cloud services. One
example is a middleware by Wang and Deters [19] that aims
to optimise the consumption of web services from mobile
devices. This involves the conversion of requests from
RESTful JSON-based, to XML SOAP-based for contacting
SOAP services. As JSON is a more lightweight format, it is
easier for the mobile client to consume. The mobile
communicates with the middleware using JSON. XML-
based SOAP responses are converted to JSON before being

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Michael J. O’Sullivan and Dan Grigoras

12

sent to the mobile device. The work also tries to combine
services by a mashup mechanism, feeding the result of one
service as an input to another. The user must know
something about the SOAP/REST nature of the service
beforehand, and know where to find the WSDL file. Our
system will be based on service discovery so the
technicalities of the service are hidden (service type, WSDL
locations).

Another work by Flores et al [20] provides a middleware,
which can plug in adapters to make requests to different web
services. The request for a service is sent to the cloud
middleware, which will then substitute an appropriate
adapter to make the service call. It is not known how the
developer of a mobile application calls the middleware and
specifies their request. The approach is limited by the
adapter solution, where different adapters may have to be
developed for each service. As our approach aims to use a
discovery service, we believe our approach to be more
scalable, and we will provide an interface for mobile app
developers to request services from CAMCS. Akherf et al
[21] developed a mobile cloud middleware, which they state
will eventually support both data processing and storage
applications, but at the moment, only focuses on adapting
web services to consumption by mobile devices, similar to
CAMCS, and the other middleware projects described here.

In comparing our work with these mobile cloud
middleware projects, CAMCS aims to provide a range of
services to the user that take advantage of cloud-based
infrastructure and services, rather than just a middleware for
a single purpose. CAMCS will be extensible so extra
functionality can be plugged in, as we have done with the
application models presented in this paper. In common with
these works, we adopt RESTful architecture to provide
mobile cloud services to mobile devices, by means of the
CPA in the case of CAMCS. In work by Christensen [22], it
is proposed that RESTful architectures are a practical means
to deliver applications and services to mobile devices, when
considering data exchange requirements and constraints.

In terms of file synchronisation, most mobile applications
for this purpose, such as Dropbox [1], Google Drive [2], and
Microsoft SkyDrive [3], all work in isolation, and do not
provide support for uploading to multiple services. Our
approach has no such limitation, as CAMCS works with
multiple services, and as described, this approach will save
time, money, and energy by uploading files to the CPA
once, rather than uploading to each service provider
separately.

Research in the area of mobile cloud for storage purposes
mainly examines methods and protocols for secure and
privacy-preserving data and file storage in the cloud. Awad
et al [23] proposed an encryption scheme for storing files in
the cloud from mobile devices; this scheme also permits for
a confidential fuzzy-based keyword search of stored content
by the user. In work by Zhou and Huang [24], what is
known as a Privacy Preserving Cipher Policy Attribute-
Based Encryption method is developed to protect data
gathered from sensing devices within smartphones. As part
of their solution, they also develop an Attribute Based Data
Storage system, as an access control mechanism to the

sensing data stored in the cloud. Their solution has a focus
on moving the complexity of encryption and decryption
operations from the mobile device and into the cloud, for
energy efficiency. Ren et al [25] developed several schemes
for providing secure storage of files from mobile devices on
cloud servers, where there may exist one or more distributed
cloud servers, that may or may not be trusted. In our work,
we rely on the existing security mechanisms of the third
party cloud storage providers.

In regards to data processing, some cloud-based solutions
to data processing are available. Chen et al [26] developed a
“k out of n computing” solution to perform both data
processing and storage with remote services for mobile
cloud, with a view to achieving energy efficiency and
reliability objectives. In particular, their framework can
adapt to network topology changes. Huang et al [27]
developed a secure data processing framework for the
mobile cloud, known as MobiCloud, to provide processing
on data collected from mobile devices, such as location data.
They develop a proof-of-concept application called
FocusDrive, to disable and enable text messaging facilities
on the mobile devices of young drivers while on the move,
based on the speed of the device, the location of the device,
and traffic conditions at the user’s location.

For group collaboration, there are several web-based
project management websites and mobile applications which
support productivity with task lists and goal planning, but
we are not aware of any cloud-based middleware which can
support group-based task assignment and collaboration for
mobile devices.

7. Conclusions

In this paper, we presented how the Context Aware Mobile
Cloud Services (CAMCS) middleware, with the Cloud
Personal Assistant (CPA) can be used to implement three
mobile cloud applications models, namely file
synchronisation, data processing, and group-based task
collaboration. We presented the current development state of
CAMCS, along with some of the changes to support these
applications. The implementation of these applications, and
benefits of the CPA approach with CAMCS, was described.
We then went on to evaluate and discuss the challenges
faced while implementing these functionalities. For the file
synchronisation, these include OAuth security
implementation issues and heterogeneous APIs for different
service providers. For data processing, they include
scalability and calculation specifications. For group-based
collaboration, this includes how each CPA can be aware of
each other and how tasks are structured and assigned.

We presented timing results for file synchronisation and
data processing. For the file synchronisation, the timing
results showed fast performance over the cellular network.
When contrasted with uploading files individually using
native Android apps, the time-savings were evident.

For the data processing application, the time to fetch and
parse XML datasets on the server was also quick, with
results comparable to or faster than the same parsing

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Mobile Cloud Application Models Facilitated by the CPA

13

operation on our Android testing application.
For the group-based collaboration, we modelled groups

on departments within a company, where department
members would work together to complete group tasks.
User CPAs joined these groups and were assigned tasks
based on their roles within the groups, corresponding to the
role of the user within the department.

We highlighted how effective CAMCS can be as an
enabler of these three applications, compared to existing
approaches. For file synchronisation, the CPA can save
resources such as time, energy, and money, by quickly
performing the synchronisation with different service
providers; resources need not be wasted uploading files
multiple times to different service providers from the mobile
device. For data processing, heavy processing work can be
offloaded to the CPA, so as not to use up the hardware
resources of the mobile device. This can eliminate the need
for dedicated software running on the mobile or desktop that
needs to be left running for long periods of time, with
progress updates available on the move. Network
disconnections or dead batteries will not interrupt the
application after the initial data upload to the CPA. For
group-based collaboration, the collaboration manager of the
groups can assign tasks to the CPAs of users within groups,
based on their role within the group. These tasks are
delivered directly to the mobile device, and do not require
each user to logon and manage their work on existing
project management software. Once the task has been
created, the CPAs and the group collaboration can take-over
this work asynchronously without user intervention. This
will support the needs of the mobile enterprise, which need
to be able to assign and coordinate task milestones to their
employees wherever they are located, if arranging meetings
is difficult.

In our future work we will continue with implementation
of the CAMCS middleware and the CPA, which will
involve adding context processing, and subsequently service
discovery. We will also be exploring how CAMCS and the
CPA can be used to facilitate real-time applications that may
have low-latency requirements. In addition, we will be
looking at the development and implementation of cloud-
based services; both public services for individual tasks, and
private cloud services, which could be used for completing
milestones for group tasks. We intend to extend the
functionality of the groups so that CPAs can exchange files
and data with each other, and we will be looking at what
other features these groups can offer to enterprises.

The challenges we highlighted in this paper such as
authentication, API design, and lack of data standards for
processing, will be of crucial importance going forward as
mobile cloud development increases, and mobile client
software adopts the paradigm.

Acknowledgment

The PhD research of Michael J. O’Sullivan is funded by the
Embark Initiative of the Irish Research Council. The authors

wish to thank the anonymous reviewers for their suggestions
on improving the quality of the paper.

References

[1] Dropbox. https://www.dropbox.com/.
[2] Google Drive. https://drive.google.com/.
[3] Microsoft SkyDrive. https://skydrive.live.com/.
[4] Apple iCloud. https://www.icloud.com/.
[5] Facebook. http://www.facebook.com/.
[6] Twitter. https://twitter.com/.
[7] SATYANARAYANAN, M., BAHL, P., CACERES, R.,

DAVIES, N. (2009) The Case for VM-Based Cloudlets in
Mobile Computing. IEEE Pervasive Computing 8(4), 14-23.

[8] GIURGIU, I., RIVA, O., JURIC, D., KRIVULEV, I.,
ALONSO, G. (2009) Calling the cloud: Enabling mobile
phones as interfaces to cloud applications. Middleware, 83-
102.

[9] CUERVO, E., BALASUBRAMANIAN, A., CHO, D. -K.,
WOLMAN, A., SAROIU, S., CHANDRA, R., ET AL.
(2010) MAUI: making smartphones last longer with code
offload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, San
Francisco, California, USA, June 15-18 (ACM), 49-62.

[10] CHUN, B. -G., IHM, S., MANIATIS, P., NAIK, M., PATTI,
A. (2011) CloneCloud: elastic execution between mobile
device and cloud. In Proceedings of the Sixth Conference on
Computer Systems, Salzburg, Austria, April 10-13 (ACM),
301-314.

[11] O’SULLIVAN, M. J. and GRIGORAS, D. (2013) The Cloud
Personal Assistant for Providing Services to Mobile Clients.
In Proceedings of IEEE 7th International Symposium on
Service Oriented System Engineering (SOSE), Redwood City,
California, USA, March 25-28 (IEEE), 478-485.

[12] O’SULLIVAN, M. J. and GRIGORAS, D. (2013) User
Experience of Mobile Cloud Applications – Current State and
Future Directions. In Proceedings of the 12th International
Symposium on Parallel and Distributed Computing (ISPDC),
Bucharest, Romania, 27-30 June (IEEE), 85-92.

[13] XMLData Repository, Department of Computer Science and
Engineering, University of Washington.
http://www.cs.washington.edu/research/xmldatasets.

[14] Apache Commons Math Library.
http://commons.apache.org/proper/commons-math/.

[15] JScience Library. http://jscience.org/.
[16] OAuth. http://oauth.net/.
[17] XMLPULL Parser. http://www.xmlpull.org/index.shtml.
[18] XPP3/MXP1 XMLPULL Parser Implementation.

http://www.extreme.indiana.edu/xgws/xsoap/xpp/mxp1/.
[19] WANG, Q. and DETERS, R. (2009) SOA's Last Mile-

Connecting Smartphones to the Service Cloud. In
Proceedings Of The 2009 IEEE International Conference on
Cloud Computing (CLOUD ‘09), Bangalore, India, 21-25
September (IEEE), 80-87.

[20] FLORES, H., SRIRAMA, S. N., PANIAGUA, C. (2011) A
generic middleware framework for handling process intensive
hybrid cloud services from mobiles. In Proceedings of the 9th
International Conference on Advances in Mobile Computing
and Multimedia, Ho Chi Minh City, Vietnam, 5-7 December
(ACM), 87-94.

[21] AKHERFI, K., HARROUD, H., GERNDT, M. (2014) A
Mobile Cloud Middleware to Support Mobility and Cloud
Interoperability. In Proceedings of International Conference

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

Michael J. O’Sullivan and Dan Grigoras

14

on Multimedia Computing and Systems (ICMCS), Marrakech,
Morocco, 14-16 April (IEEE), 1189-1194.

[22] CHRISTENSEN, H. (2009) Using RESTful web-services and
cloud computing to create next generation mobile
applications. In Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming
Systems Languages and Applications (OOPSLA '09),
Orlando, Florida, USA, 25-29 October (ACM), 627-634.

[23] AWAD, A., MATTHEWS, A., LEE, B. (2014) Secure cloud
storage and search scheme for mobile devices. In
Proceedings of the 17th IEEE Mediterranean Electrotechnical
Conference (MELECON), Beirut, Lebanon, 13-16 April
(IEEE), 144-150.

[24] ZHOU, Z. and HUANG, D. (2012) Efficient and secure data
storage operations for mobile cloud computing. In
Proceedings of the 8th International Conference on Network
and Service Management (CNSM) and 2012 Workshop on
Systems Virtualization Management (SVM), Las Vegas,
Nevada, USA, 22-26 October (IEEE), 37-45.

[25] REN, W., YU, L., GAO, R., XIONG, F. (2011) Lightweight
and compromise resilient storage outsourcing with distributed
secure accessibility in mobile cloud computing. Tsinghua
Science and Technology 16(5), 520-528.

[26] CHEN, C. -A., WON, M., STOLERU, R., XIE, G. G., (2014)
Energy-Efficient Fault-Tolerant Data Storage & Processing in
Mobile Cloud. IEEE Transactions on Cloud Computing
PP(99), 1.

[27] HUANG, D., ZHOU, Z., XU, L., XING, T., ZHONG, Y.
(2011) Secure data processing framework for mobile cloud
computing. In Proceedings of IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS),
Shanghai, People’s Republic of China, 10-15 April (IEEE),
614-618.

[28] O’SULLIVAN, M. J. and GRIGORAS, D. (2013)
Application Models Facilitated by the CPA. In Proceedings
of the 6th International Conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications
(MOBILWARE), Bologna, Italy, 11-12 November (IEEE),
120-128.

EAI Endorsed Transactions on
Scalable Information Systems

01-02 2015 | Volume 2 | Issue 4 | e6

