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Abstract

Lightweight cryptographic primitives are essential for securing pervasive embedded devices like RFID tags,

smart cards, and wireless sensor nodes. In this paper, we present a lightweight stream cipher WG-8, which is

tailored from the well-known Welch-Gong (WG) stream cipher family, for resource-constrained devices. WG-8

inherits the good randomness and cryptographic properties of the WG stream cipher family and is resistant to

the most common attacks against stream ciphers. The software implementations of the WG-8 stream cipher on

two popular low-power microcontrollers as well as the extensive comparison with other lightweight cryptography

implementations highlight that in the context of securing lightweight embedded applications WG-8 has favorable

performance and low energy consumption.
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1. Introduction

The Internet of Things (IoT) is an emerging computing

and communication paradigm in which smart devices

(e.g., RFID tags, smart cards, wireless sensor nodes, etc.)

are linked through both wired and wireless networks to

the Internet. Those smart devices interact and cooperate

with each other to conduct complicated tasks such as

sensing the environment, interpreting the data, and

responding to events. While the IoT provides new and

exciting experience for end users, it also opens up new

avenues to hackers and organized crime. Recent attacks

to a wide range of smart devices [14, 41] have emphasized

that without adequate security the IoT will only become

pervasive nightmare.

The challenges for deploying security solutions

for smart devices are threefold: 1) The overhead

(i.e., the gate count in hardware or the memory

footprint in software) of security solutions should

∗Corresponding author. x5fan@uwaterloo.ca

be minimal due to the low-cost nature of smart

devices; 2) The power consumption of security

solutions should be minimal due to the low-power

characteristic of smart devices; and 3) The performance

of security solutions should be reasonable to support

applications and end-user requirements. To address the

aforementioned challenges for securing smart devices, a

new research direction called lightweight cryptography

has been established which focuses on designing novel

cryptographic algorithms and protocols tailored for

implementation in resource-constrained environments.

A host of lightweight symmetric ciphers that

particularly target for resource-constrained smart

devices have been proposed in the past few years. Early

work focuses on optimizing hardware implementations

of standardized block ciphers such as AES [18], IDEA

[26] and XTEA [23]. Later on, researchers have shown

how to modify a classical block cipher like DES [25]

for lightweight applications. Recent proposals deal with

new low-cost designs, including lightweight block ciphers
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PRESENT [5], KATAN/KTANTAN [6], PRINTcipher [24],

LED [21], and Piccolo [38], lightweight stream ciphers

Grain [22], Trivium [7], and MICKEY [3], as well as a

lightweight hybrid cipher Hummingbird/Hummingbird-2

[16, 17]. A good research survey about recently published

lightweight cryptographic implementations can be found

in [15].

In this paper we present the stream cipher WG-8,

which is a lightweight variant of the well-known WG

stream cipher family [31] as submitted to the eSTREAM

project. WG-8 inherits good randomness properties of

the WG stream cipher family such as period, balance,

ideal two-level autocorrelation, ideal tuple distribution,

and exact linear complexity. Moreover, WG-8 is able to

resist the most common attacks against stream ciphers

including algebraic attack, correlation attack, differential

attack, cube attack, distinguish attack, discrete fourier

transform attack, and time-memory-data tradeoff attack,

thereby providing adequate security for lightweight

embedded applications.

We also propose several techniques for efficient imple-

mentation of the stream cipher WG-8 on two low-

power microcontrollers, including an 8-bit microcon-

troller ATmega128L from Atmel and a 16-bit microcon-

troller MSP430 from Texas Instruments. Our experimen-

tal results show that WG-8 can achieve high throughput

of 185.5 Kbits/s and 95.9 Kbits/s on the above two

microcontrollers with energy efficiency of 458 nJ/bit

and 125 nJ/bit, respectively. When compared to other

lightweight cryptography implementations in the litera-

ture, the throughput of the WG-8 is about 2 ∼ 15 times

higher and the energy consumption is around 2 ∼ 220

times smaller than those of most previous ciphers.

The remainder of this paper is organized as follows.

Section 2 gives a description of the lightweight stream

cipher WG-8. Subsequently, in Section 3 we analyze

the security of the WG-8 against the most common

attacks to stream ciphers. Section 4 describes efficient

techniques for implementing the WG-8 stream cipher on

low-power microcontrollers and reports our experimental

results and comparisons with previous work. In Section 5,

we briefly review recent progress on efficient hardware

implementation of the WG-8 stream cipher. Finally,

Section 6 concludes this contribution.

2. The Lightweight Stream Cipher WG-8

2.1. Preliminaries

We define the terms and notations that will be used

to describe the lightweight stream cipher WG-8 and its

architecture as well as to characterize its randomness and

cryptographic properties.

• F2 = {0, 1}, the Galois field with two elements 0

and 1.

• p(x) = x8 + x4 + x3 + x2 + 1, a primitive polyno-

mial of degree 8 over F2.

• F28 , the extension field of F2 defined by the

primitive polynomial p(x) with 28 elements. Each

element in F28 is represented as an 8-bit binary

vector. Let ω be a primitive element of F28 such

that p(ω) = 0.

• Tr(x) = x+ x2 + x2
2

+ · · ·+ x2
7

, the trace func-

tion from F28 7→ F2.

• l(x) = x20 + x9 + x8 + x7 + x4 + x3 + x2 + x+ ω,

the feedback polynomial of LFSR (which is also a

primitive polynomial over F28).

• q(x) = x+ x2
3+1 + x2

6+23+1 + x2
6−23+1 +

x2
6+23−1, a permutation polynomial over F28 .

• WGP-8(xd) = q(xd + 1) + 1, the WG-8 permuta-

tion with decimation d from F28 7→ F28 , where d

is coprime to 28 − 1.

• WGT-8(xd) = Tr(WGP-8(xd)) = Tr(x9 + x37 +

x53 + x63 + x127), the WG-8 transformation with

decimation d from F28 → F2, where d is coprime

to 28 − 1.

• Polynomial basis (PB) of F28 : A polynomial basis of

F28 over F2 is a basis of the form {1, ω, ω2, · · · , ω7}.

• Normal basis (NB) of F28 : A normal basis of F28

over F2 is a basis of the form {θ, θ2, · · · , θ27}, where

θ = ω5 (i.e., a normal element) is used in this work.

• Autocorrelation: The autocorrelation of a binary

sequence with period T is defined as the difference

between the agreements and disagreements when

the symbol 0 maps to 1 and 1 maps to −1. If all
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the out-of-phase autocorrelation is equal to −1,

then the sequence is said to have ideal two-level

autocorrelation.

• Linear span (LS): The linear span or linear

complexity of a binary sequence is defined as

the length of the smallest linear feedback shift

register (LFSR) which generates the entire binary

sequence.

• Nonlinearity: The nonlinearity of a function f is

defined as the minimum distance from f to any

affine function with the same number of variables.

• Algebraic immunity (AI): The algebraic immunity

of a function f is defined as the minimum degree

of an annihilator Boolean function g such that g

is equivalent to either f or the complement of f

(i.e., fg = 0 or (f + 1)g = 0). In the ideal case, the

algebraic immunity of a function f is equal to the

degree of f , thus making it immune to algebraic

attacks.

• ⊕, the bitwise addition operator (i.e., XOR).

• ⊗, the multiplication operator over F28 .

2.2. The Description of the Stream Cipher WG-8

WG-8 is a lightweight variant of the well-known Welch-

Gong (WG) stream cipher family with 80-bit secret key

and 80-bit initial vector (IV), which can be regarded

as a nonlinear filter generator over finite field F28 .

The stream cipher WG-8 consists of a 20-stage LFSR

with the feedback polynomial l(x) followed by a WG-

8 transformation module with decimation d = 19, and

operates in two phases, namely an initialization phase

and a running phase.

Initialization Phase. The key/IV initialization phase of

the stream cipher WG-8 is shown in Figure 1.

S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16S17S18S19
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Figure 1. The Initialization Phase of the Stream Cipher
WG-8

Let the 80-bit secret key be K = (K79, . . . ,K0)2,

the 80-bit IV be IV = (IV79, . . . , IV0)2, and the

internal state of the LFSR be S0, . . . , S19 ∈ F28 ,

where Si = (Si,7, . . . , Si,0)2 for i = 0, . . . , 19. The key

and IV initialization process is conducted as follows:

S2i = (K8i+3, . . . ,K8i, IV8i+3, . . . , IV8i)2 and S2i+1 =

(K8i+7, . . . ,K8i+4, IV8i+7, . . . , IV8i+4)2 for i = 0, . . . , 9.

Once the LFSR is loaded with the key and IV, the

apparatus runs for 40 clock cycles. During each clock

cycle, the 8-bit internal state S19 passes through the

nonlinear WG-8 permutation with decimation d = 19

(i.e., the WGP-8(x19) module) and the output is used as

the feedback to update the internal state of the LFSR.

The LFSR update follows the recursive relation:

Sk+20 = (ω ⊗ Sk)⊕ Sk+1 ⊕ Sk+2 ⊕ Sk+3 ⊕ Sk+4⊕
Sk+7 ⊕ Sk+8 ⊕ Sk+9 ⊕WGP-8(S19

k+19), 0 ≤ k < 40.

After the key/IV initialization phase, the stream cipher

WG-8 goes into the running phase and 1-bit keystream

is generated after each clock cycle.

Running Phase. The running phase of the stream

cipher WG-8 is illustrated in Figure 2. During the

running phase, the 8-bit internal state S19 passes through

the nonlinear WG-8 transformation with decimation d =

19 (i.e., the WGT-8(x19) module) and the output is the

keystream. Note that the only feedback in the running

phase is within the LFSR and the recursive relation for

updating the LFSR is given below:

Sk+20 = (ω ⊗ Sk)⊕ Sk+1 ⊕ Sk+2 ⊕ Sk+3 ⊕ Sk+4⊕
Sk+7 ⊕ Sk+8 ⊕ Sk+9, k ≥ 40.

The WG-8 transformation module WGT-8(x19) comprises

of two sub-modules: a WG-8 permutation module

WGP-8(x19) followed by a trace computation module

Tr(·). While the WGP-8(x19) module permutes elements

over F28 , the Tr(·) module compresses an 8-bit input to

1-bit keystream.

2.3. Randomness Properties of the WG-8

Keystream

The keystream generated by the stream cipher WG-8 has

the following desired randomness properties [8]:
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Figure 2. The Running Phase of the Stream Cipher WG-8

1. The keystream has a period of 2160 − 1.

2. The keystream is balanced, i.e., the number of 0’s

is only one less than the number of 1’s in one period

of the keystream.

3. The keystream is an ideal two-level autocorrelation

sequence.

4. The keystream has an ideal t-tuple (1 ≤ t ≤ 20)

distribution, i.e., every possible output t-tuple

is equally likely to occur in one period of the

keystream.

5. The linear span of the keystream can be

determined exactly, which is 233.32.

3. Cryptanalysis of the Stream Cipher

WG-8

In this section, we analyze the security of the stream

cipher WG-8 under the context of lightweight embedded

applications. Note that for security applications (e.g.,

encryption, authentication, etc.) with smart devices the

communication sessions are typically short (i.e., a few

rounds among communication entities) and the length of

transmitted messages is generally quite limited (i.e., tens

to hundreds of bytes) in each communication session, due

to the constrained power and communication bandwidth

of smart devices. As a result, it is extremely difficult, if

not impossible, for an adversary collecting consecutive

and long enough keystream to conduct cryptanalysis in

practice for a well-designed lightweight stream cipher.

The design of the stream cipher WG-8 keeps in mind

the real-world embedded security applications and the

appropriate selection of system parameters enables WG-

8 to thwart various cryptanalytic attacks in practice, as

detailed in the following subsections.

3.1. Algebraic Attack

The algebraic attack is a powerful attack against

LFSR based filtering sequence generators [11]. The

goal of the algebraic attack is to form a lower

degree multivariate equation by multiplying the filtering

function by a low-degree multivariate polynomial. This

gives an overdefined system of nonlinear equations for

sufficiently many keystreams, which can be solved to

recover the internal state of the LFSR. The algebraic

immunity of the WGT-8(x19) is equal to 4. According to

the algebraic attack, the time complexity and the data

complexity for recovering the internal state of the LFSR

are about 7
64 ·

(
160
4

)log2 7
= 266.0037 and

(
160
4

)
= 224.65,

respectively. For applying the fast algebraic attacks [10]

to the stream cipher WG-8, one needs to respectively find

two multivariate polynomials g and h of degree e and

d (e < d) such that f · g = h. For the WGT-8(x19) and

e = 1, there does not exist a multivariate polynomial h

in 8 variables with degree less than 7. Hence, in order to

launch the fast algebraic attack one needs to obtain more

keystream bits with a higher complexity. For lightweight

embedded applications, it is hard for an attacker to

obtain about 224.65 keystream bits. Even if the attacker

can get those many bits for a fixed key and IV, he

needs to perform the operations with the time complexity

266.0037, which completely defeats this attack.

3.2. Correlation Attack

In the correlation attack, the objective of an attacker

is either to find the correlation between a keystream

and an output sequence of an LFSR or to find the

correlation among the keystreams [9, 28, 39]. The stream

cipher WG-8 is secure against the correlation among

the keystreams as it produces keystreams with 2-level

autocorrelation. We now consider the fast correlation

attack in which the keystream of the stream cipher is

considered as a distorted version of the LFSR output. In

the fast correlation attack, the linear approximation of

WGT-8(x19) can be used to derive a generator matrix of a

linear code that can be decoded by a maximum likelihood

decoding (MLD) algorithm. Letting f(x) be a linear

function in 8 variables, we have Pr(WGT-8(x19)(x) =

f(x)) = (28−108)
28 = 0.578125. Applying the results of

[9] for t = 3, the amount of keystream (denoted by
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N) required for the attack to be successful is given

by N ≈ (k · 12 · ln 2)
1
3 · ε−2 · 2 160−k

3 and the decoding

complexity is given by Cdec = 2k · k · 2 ln 2
(2ε)6 , where ε =

(Pr(WGT-8(x19) = f(x))− 0.5) = 0.078125 and k is the

number of LFSR internal state bits recovered. If we

choose a small value of k (e.g., k = 7), the number of

bits required to launch the attack is about 260.31, which

is not possible in practice. Similarly, if we choose a large

value of k (e.g., k = 80), the number of bits required to

mount the attack is about 237.15. However, the decoding

complexity of the attack is approximately 2102.68, which

is worse than the exhaustive search. Hence, the stream

cipher WG-8 is secure against the fast correlation attack.

3.3. Differential Attack

The initialization phase in the first design of the WG

stream cipher was vulnerable to the chosen IV attack

[43], where an attacker can distinguish several output

bits by building a distinguisher based on the differential

cryptanalysis. This weakness has been fixed in the

later design by placing the WG permutation module at

the last position of the LFSR [31]. For the proposed

stream cipher WG-8, the differential distribution of the

WGP-8(x19) is 8-uniform, which provides a maximum

2−5 possibility for differential characteristic. During the

initialization phase the WGP-8(x19) is applied for 40

times. Thus, after the initialization phase, it would be

quite hard for an attacker to distinguish the output

keystream since the differentials become complex and

contain most key/IV bits.

3.4. Cube Attack

Cube attack [13] is a generic key-recovery attack that

can be applied to any cryptosystem, provided that the

attacker can obtain a bit of information that can be

represented by a low-degree decomposition multivariate

polynomial in Algebraic Normal Form (ANF) of the

secret and public variables of the target cryptosystem.

Note that the nonlinearity of WGP-8(x19) is 92 and the

algebraic degrees of the component functions of WGP-

8(x19) are 7. Moreover, the ANF representations of 8

component functions contain 133, 113, 146, 124, 137, 109,

122, and 120 terms, respectively, and only the ANF of

the second component contains 7 linear terms and other

terms are of degree greater than or equal to 2. In the

WG-8 stream cipher, after 40 rounds of the initialization

phase, the degree of the output polynomial can be very

high. As a result, it would be hard for an attacker to

collect low-degree relations among the secret key bits.

3.5. Distinguishing Attack

Recently, a distinguishing attack has been proposed

against the stream cipher WG-7 [32]. Due to the small

number of tap positions in the LFSR of the WG-7, the

characteristic polynomial of the LFSR allows an attacker

to build a distinguisher for distinguishing a keystream

generated by WG-7 from a truly random keystream.

For the WG-8 cipher, the characteristic polynomial of

the LFSR consists of 8 tap positions and a similar

distinguisher as in [32] can be built as

F (Si, ..., Si+4, Si+7, ..., Si+9) = WGT-8(ω ⊗ Si⊕
Si+1 ⊕ Si+2 ⊕ Si+3 ⊕ Si+4 ⊕ Si+7 ⊕ Si+8 ⊕ Si+9)⊕
WGT-8(Si)⊕WGT-8(Si+1)⊕WGT-8(Si+2)⊕
WGT-8(Si+3)⊕WGT-8(Si+4)⊕WGT-8(Si+7)⊕
WGT-8(Si+8)⊕WGT-8(Si+9),

which is a Boolean function in 64 variables. For the

distinguisher F , the probability Pr(F (x) = 0) = 1
2 ± ε,

where x = (a0, ..., a7), ai ∈ F28 . Note that the value of ε

will be quite small due to a huge number of variables in

the distinguisher, which requires an attacker to obtain

more keystream bits for distinguishing the keystream.

However, the computation of the exact value of ε is

infeasible in this case because the number of possible

values of x is 264. Hence the WG-8 stream cipher is

resistant to the distinguishing attack. Note that this

type of distinguishing attacks can also be extended to

the case in which a distinguisher can be built using a

linear relation of a remote term of the LFSR, say Sτ for

not large τ , and the sequences addressed in a subset of

tap positions of the LFSR, denoted by I = {i1, · · · , it} ⊂
{0, 1, · · · , 19}. In other words, a distinguisher could

be built using the linear relation Sτ = Si1 + · · ·+ Sit .

Since this property is controlled by the characteristic

polynomial of the LFSR, it can be easily teared done

by a proper selection of the characteristic polynomial

of the LFSR. For our selection of the characteristic
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polynomial l(x), there is no remote term Sτ for 20 ≤
τ ≤ 234 for which the size of set I is less than 5. Thus,

the WG-8 stream cipher is also resistant to this general

distinguishing attack.

3.6. Discrete Fourier Transform Attack

The Discrete Fourier Transform (DFT) attack is a

new type of attack to recover the internal state of

a filtering generator, which was first proposed by

Rønjom and Helleseth in [36] and extended to attacking

filtering generators over F2n by Gong et al. in [20].

For mounting the DFT attack against the WG-8 stream

cipher, an attacker needs to obtain 233.32 (i.e., the

linear complexity) consecutive keystream bits. Hence,

the online complexity of this attack for recovering the

internal state is 233.32, after an offline computation

with complexity 248.49. For typical lightweight embedded

applications like RFID systems, a reader and a tag only

exchange 32-bit random numbers in each communication

session. Hence, an attacker can never obtain 233.32

consecutive keystream bits.

3.7. Time-Memory-Data Tradeoff Attack

The Time-Memory-Data (TMD) tradeoff attack [4] is

a generic cryptanalytic attack that is applicable to

any stream cipher, especially those with low sampling

resistance. The complexity of the TMD tradeoff attack

is O(2
n
2 ), where n is the size of the internal state. For the

WG-8 stream cipher, the size of the internal state is 160-

bit and thus the complexity of launching a TMD attack

is at least 280. Moreover, the sampling resistance of the

WG-8 stream cipher is high due to the usage of the WGT-

8(x19) as the filtering function. The ANF representation

of the WGT-8(x19) contains 109 terms, among which only

four terms are linear and other terms have degree greater

than 2 and less than 8. Hence, only by fixing 7 out of 8

variables can one obtain a linear equation.

3.8. Related-key Attack

A related-key attack is a cryptanalytic attack that can

also be applied to a stream cipher and allows to launch

a key-recovery attack. In [12], Ding et al. proposed a

key-recovery attack in the related key settings on WG-8

stream cipher by exploiting the slide property of WG-

8 stream cipher. The key-recovery attack has a time

complexity of 253.32 and needs 252 chosen IVs. From the

DFT attack on WG-8 stream cipher, it can be observed

that the DFT attack has an online time complexity of

233.32 and data complexity of 233.32, which are much

lower than the complexities of Ding et al.’s key-recovery

attack. We believe that the key-recovery attack by Ding

et al. is not a real threat on our WG-8 stream cipher.

3.9. Mihaljević et al.’s Attack

In [30], Mihaljević et al. proposed an internal state

recovery attack on Grain-v1 by exploiting the normality

of the filtering function of Grain-v1. Their cryptanalysis

exploits three facts: a) the bias towards a subset of the

internal states; b) recovering some partial key bits; and c)

adaptation of the TMD tradeoff approach to use the bias

of the internal state. We note that the bias of the internal

states is detected by using the normality of the filtering

function. Since an LFSR that generates an m-sequence

is used to update the internal state of WG-8 stream

cipher, no such bias on the internal state exists in the

internal state. Moreover, the normality of WGT-8(x19) is

3. Therefore, Mihaljević et al.’s attack cannot be applied

to the WG-8 stream cipher.

4. Efficient Software Implementation of the

Stream Cipher WG-8

In this section, we address efficient software implementa-

tion of the WG-8 cipher on low-power microcontrollers.

For each platform we provide three implementation

variants that deal with trade-offs among speed, code size,

and energy consumption.

4.1. Implementation of the WG-8 Permutation

Module WGP-8(x19)

The most complicated WGP-8(x19) module can be

implemented using three different methods: a) a 256-byte

direct look-up table; b) a 34-byte coset leader based look-

up table; or c) tower field (TF) arithmetic.

Directly Look-up Table (DLT) Approach. Depending

on the bases used, one can precompute the WG-8
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permutation with decimation d = 19 by

WGP-8(x19) = q(x19 + 1) + 1

for all elements x ∈ F28 . Hence, a 256-byte look-up table

TWGP-8 can be generated to compute WGP-8(x19).

Coset Leader Based Look-up Table (CLT) Approach.

This approach assumes that a normal basis is used to

represent elements in F28 and uses the essential property

of the WG-8 permutation with decimation d below:

WGP-8
(

(x2
i

)d
)

= q
(

(x2
i

)d + 1
)

+ 1

= q
(

(xd)2
i

+ 1
)

+ 1 =
(
q(xd + 1)

)2i
+ 1

=
(
q(xd + 1) + 1

)2i
=
(
WGP-8(xd)

)2i
(1)

for x ∈ F28 and i = 0, 1, . . . , 7. According to the

Equation (1), if we know the WG-8 permutation

WGP-8(xd) for an element x ∈ F28 , we can easily obtain

the WG-8 permutation WGP-8((x2
i

)d) for the entire

conset {x2, x22 , . . . , x27} of x by cyclically shifting

WGP-8(xd) to the right by i positions, provided that

a normal basis is employed to represent finite field

elements. The complete cosets and coset leaders of F28

(in hexadecimal notation) are shown in Table 1. We note

that under the normal basis representation the elements

in F28 have been grouped into 34 different cosets except

for 0 and 1. Since WGP-8(0) = 0x00 and WGP-8(1) =

0xFF, we only need to generate a 34-byte look-up

table TCo-WGP-8 for storing the WG-8 permutation results

for each coset leader. Here we present the following

Algorithm 1 that uses the table TCo-WGP-8 to compute

WGP-8(xd) for any x ∈ F28 .

Tower Field Arithmetic (TFA) Based Approach. The

software implementation of the WGP-8(x19) module

involves the arithmetic (i.e., addition, multiplication, and

exponentiation) over finite field F28 . Although we can

directly implement all the operations over F28 , it is well

known that using the isomorphic tower constructions of

F28 might save the memory consumption. Therefore, we

investigate the tower construction F(24)2 in this work.

Tower Construction F(24)2 and Its Arithmetic.

To obtain the tower construction F(24)2 , we first

construct F24 by using an irreducible polynomial e(X)

Algorithm 1 Coset Leader Based Look-up Table
Approach

Input: x ∈ F28 , a decimation d, a look-up table
TCo-WGP-8

Output: WGP-8(xd)

1: if x = 0x00 or x = 0xFF then
2: return x
3: end if
4: Find the coset leader xc of x by cyclically shifting x

to the right by i positions, where 0 ≤ i ≤ 7 (i.e., xc is
the smallest odd integer in the coset containing x.)

5: Find the position j of xc in the table TCo-WGP-8

6: a← TCo-WGP-8[j]
7: return a≪ i

of degree 4 over F2, and then construct F(24)2 by using

a certain irreducible polynomial f(X) of degree 2 over

F24 . In our tower construction, we use e(X) = X4 +

X3 + 1 with its polynomial basis {1, α, α2, α3} for F24

and f(X) = X2 +X + α with its normal basis {β, β16}
for F(24)2 , where α = ω119 ∈ F24 and β = ω7 ∈ F(24)2 are

zeros of the polynomials e(X) and f(X), respectively.

Arithmetic operations in F24 . The arithmetic in F24

is conducted with the aid of a 4× 4 exponentiation table

Texp and a 4× 4 logarithm table Tlog. While the table

Texp stores exponentiation αi, i = 0, 1, . . . , 14, the table

Tlog keeps the exponent i for each αi, i = 0, 1, . . . , 14.

Let A = a0 + a1α+ a2α
2 + a3α

3 and B = b0 + b1α+

b2α
2 + b3α

3 be two non-zero elements in F24 , where

ai, bi ∈ F2, i = 0, 1, 2, 3. We can perform the arithmetic

in F24 as follows:

AB = Texp[(Tlog[(a0, a1, a2, a3)]+

Tlog[(b0, b1, b2, b3)]) mod 15],

A2 = Texp[(Tlog[(a0, a1, a2, a3)]� 1) mod 15],

αA = Texp[(Tlog[(a0, a1, a2, a3)] + 1) mod 15].

Arithmetic operations in F(24)2 . Let A = a0β +

a1β
16 and B = b0β + b1β

16, where a0, a1, b0, b1 ∈ F24 . A

multiplication AB in F(24)2 is computed as follows:

AB = (a0β + a1β
16)(b0β + b1β

16)

= (cα⊕ a0b0)β + (cα⊕ a1b1)β16,
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Table 1. The Cosets and Coset Leaders of F28

Coset Leader Coset Coset Leader Coset

0x00 – – – – – – – 0x27 0x4E 0x9C 0x39 0x72 0xE4 0xC9 0x93

0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x40 0x2B 0x56 0xAC 0x59 0xB2 0x65 0xCA 0x95

0x03 0x06 0x0C 0x18 0x30 0x60 0xC0 0x81 0x2D 0x5A 0xB4 0x69 0xD2 0xA5 0x4B 0x96

0x05 0x0A 0x14 0x28 0x50 0xA0 0x41 0x82 0x2F 0x5E 0xBC 0x79 0xF2 0xE5 0xCB 0x97

0x07 0x0E 0x1C 0x38 0x70 0xE0 0xC1 0x83 0x33 0x66 0xCC 0x99 – – – –

0x09 0x12 0x24 0x48 0x90 0x21 0x42 0x84 0x35 0x6A 0xD4 0xA9 0x53 0xA6 0x4D 0x9A

0x0B 0x16 0x2C 0x58 0xB0 0x61 0xC2 0x85 0x37 0x6E 0xDC 0xB9 0x73 0xE6 0xCD 0x9B

0x0D 0x1A 0x34 0x68 0xD0 0xA1 0x43 0x86 0x3B 0x76 0xEC 0xD9 0xB3 0x67 0xCE 0x9D

0x0F 0x1E 0x3C 0x78 0xF0 0xE1 0xC3 0x87 0x3D 0x74 0xF4 0xE9 0xD3 0xA7 0x4F 0x9E

0x11 0x22 0x44 0x88 – – – – 0x3F 0x7E 0xFC 0xF9 0xF3 0xE7 0xCF 0x9F

0x13 0x26 0x4C 0x98 0x31 0x62 0xC4 0x89 0x55 0xAA – – – – – –

0x15 0x2A 0x54 0xA8 0x51 0xA2 0x45 0x8A 0x57 0xAE 0x5D 0xBA 0x75 0xEA 0xD5 0xAB

0x17 0x2E 0x5C 0xB8 0x71 0xE2 0xC5 0x8B 0x5B 0xB6 0x6D 0xDA 0xB5 0x6B 0xD6 0xAD

0x19 0x23 0x64 0xC8 0x91 0x23 0x46 0x8C 0x5F 0xBE 0x7D 0xFA 0xF5 0xEB 0xD7 0xAF

0x1B 0x36 0x6C 0xD8 0xB1 0x63 0xC6 0x8D 0x6F 0xDE 0xBD 0x7B 0xF6 0xED 0xDB 0xB7

0x1D 0x3A 0x74 0xE8 0xD1 0xA3 0x47 0x8E 0x77 0xEE 0xDD 0xBB – – – –

0x1F 0x3E 0x7C 0xF8 0xF1 0xE3 0xC7 0x8F 0x7F 0xFE 0xFD 0xFB 0xF7 0xEF 0xDF 0xBF

0x25 0x4A 0x94 0x29 0x52 0xA4 0x49 0x92 0xFF – – – – – – –

where c = (a0 ⊕ a1)(b0 ⊕ b1). For a non-zero element A ∈
F(24)2 , the squaring of A is calculated as follows:

A2 = (a0β + a1β
16)2

= [(a0 ⊕ a1)2α⊕ a20]β + [(a0 ⊕ a1)2α⊕ a21]β16.

The Frobenius mapping of A with respect to F24 , which

is the 16th power operation, is computed as follows:

A24 = (a0β + a1β
16)16 = a0β

16 + a1β
256 = a1β + a0β

16.

Implementation of WGP-8(x19) Module. For an

element x ∈ F28 , the WGP-8(x19) can be computed as

follows:

WGP-8(x19) = q(x19 + 1) + 1

= y + y2
3+1 + y2

6

(y2
3+1 + y2

3−1) + y2
3(23−1)+1 + 1,

where y = x19 + 1 = x2
4 · x2 · x+ 1. Note that for the

tower construction F(24)2 , 1 can be denoted by the vector

(1, 0, 0, 0, 1, 0, 0, 0). Therefore, the addition with 1 under

the TF representation is equivalent to XORing with a

constant 0x88.

4.2. Implementation of the Trace Computation

Module Tr(·)

Depending on the bases chosen, the trace of an element

x ∈ F28 can be computed as shown in Table 2.

4.3. Implementation of the Multiplication by ω

Module

The multiplication by ω module can be implemented

using either finite field arithmetic or an 8× 8 look-up

table.

Multiplication by ω Using Finite Field Arithmetic.

We consider the following three cases when the

PB, NB, and TF are used to represent finite field

elements, respectively. With the PB representation, the

multiplication of an element x ∈ F28 by ω can be

computed as follows:

x · ω = x0ω + x1ω
2 + · · ·+ x6ω

7 + x7ω
8

= x7 + x0ω + (x1 ⊕ x7)ω2 + (x2 ⊕ x7)ω3+

(x3 ⊕ x7)ω4 + x4ω
5 + x5ω

6 + x6ω
7. (2)

Therefore, the result of x · ω is represented as an 8-bit

vector (x7, x0, x1 ⊕ x7, x2 ⊕ x7, x3 ⊕ x7, x4, x5, x6) with

respect the PB.
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Table 2. Trace Computation of an Element x ∈ F28 Using Different Bases

Basis Element Representation Tr(x)

Polynomial Basis (PB) x0 + x1ω + · · ·+ x7ω
7 x5

Normal Basis (NB) x0θ + x1θ
2 + · · ·+ x7θ

27
⊕7

i=0 xi

Tower Field (TF)
(x0 + x1α+ x2α

2 + x3α
3)β+

x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7
(x4 + x5α+ x6α

2 + x7α
3)β16

With the NB representation, the multiplication of an

element x ∈ F28 by ω can be calculated as follows:

x · ω = (x0θ + x1θ
2 + · · ·+ x6θ

26 + x7θ
27) · ω

= M · (x0, x1, · · · , x6, x7)T , (3)

where the matrix M is given below:

M =



1 1 1 0 1 0 1 1

0 0 0 0 1 1 1 0

1 0 1 0 1 0 0 1

1 0 1 1 1 0 0 0

0 0 1 0 1 1 1 0

0 1 1 0 0 1 1 1

1 0 1 1 1 1 0 0

0 1 1 0 1 0 1 1


.

With the TF representation, the multiplication of an

element x ∈ F28 by ω can be calculated as follows:

x · ω = [(x0 + x1α+ x2α
2 + x3α

3)β+

(x4 + x5α+ x6α
2 + x7α

3)β16] · ω
= M′ · (x0, x1, · · · , x6, x7)T , (4)

where the matrix M′ is given below:

M′ =



1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0

1 0 1 0 0 1 1 0

0 1 1 0 0 0 1 0

1 0 0 1 0 1 1 1

1 1 0 0 0 0 1 1

0 1 1 0 0 0 0 1

0 0 1 0 1 1 1 1


.

Multiplication by ω Using Look-Up Tables. Based on

the Equations (2)–(4), one can generate 256-byte look-up

tables with respect to the chosen bases.

4.4. Implementation Platforms and Development

Tools

In this section, we briefly describe two low-power

microcontrollers for implementing the WG-8 stream

cipher as well as the corresponding development tools.

8-Bit Microcontroller ATmega128L and Develop-

ment Tool. The low-power 8-bit microcontroller

ATmega128L [1] from Atmel is based on the AVR

enhanced RISC architecture with 128 Kbytes of In-

System Self-Programmable Flash, 4 Kbytes EEPROM

and 8 Kbytes Internal SRAM. It is equipped with 133

highly-optimized instructions and most of them can be

executed within one clock cycle. Moreover, the clock

frequency of the ATmega128L can run from 0 to 8 MHz

and the power supplies can go from 2.7 to 5.5 V. We

use the latest integrated development environment Atmel

Studio 6.0 [2] from Atmel for implementing and testing

the performance of the WG-8 on the target platform.

16-Bit Microcontroller MSP430F1611 and Develop-

ment Tool. The 16-bit microcontroller MSP430F1611

[40] from Texas Instruments has a traditional von-

Neumann architecture with 48 Kbytes Flash memory

and 10 Kbytes RAM. All special function registers,

peripherals, RAM and Flash/ROM share the same

address space. The clock frequency of the MSP430F1611

ranges from 0 to 8 MHz and the power supplies can

go from 1.8 to 3.6 V. The MSP430F1611 features 27

instructions and 7 different addressing modes that pro-

vide great flexibility in data manipulation. To implement

and simulate the WG-8 on the target platform, we use

the CrossWorks for MSP430 Version 2.1 from Rowley

Associates [37].
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4.5. Experimental Results and Comparisons

In this section, we report our experimental results for

implementing the stream cipher WG-8 on the low-power

microcontrollers ATmega128L and MSP430F1611 and

compare our results with other lightweight-cryptography

implementations on the same or similar platforms. We

focus on three major performance criteria for implement-

ing cryptographic primitives on resource-constrained

environments, namely throughput, code size, and energy

consumption (i.e., energy/bit). Table 3 compares our

implementation results with previous work in terms

of the aforementioned three performance criteria. Note

that we estimate the per bit energy consumptions by

the formula: energy/bit = Supply Voltage×Current×Cycles
Clock Frequency×Number of Bits ,

which is based on the typical current consumption of a

low-power microcontroller for the given clock frequency

and supply voltage.

From Table 3, we note that on 8-bit ATmega

microcontrollers the throughput of WG-8 is about 2 ∼ 15

times higher than that of stream ciphers Grain, Trivium,

Salsa20, and WG-7, block ciphers PRESENT-80 and

XTEA as well as the hybrid cipher Hummingbird, whereas

the energy consumption of WG-8 is around 2 ∼ 220

times smaller than that of those ciphers. Moreover, WG-

8 has the comparable throughput and energy efficiency

with the hybrid cipher Hummingbird-2 (optimized with

assembly language). On the 8-bit platform, WG-8 is less

efficient than AES in terms of throughput and energy

consumption. The main reason is that WG-8 is a bit-

oriented stream cipher whereas AES is a block cipher

with block size 128-bit. Furthermore, the code size of

WG-8 is medium and the SRAM usage of WG-8 is small

among all the lightweight implementations.

On 16-bit MSP430 microcontrollers, the throughput

of WG-8 is about 1 ∼ 20 times higher than that of the

stream cipher WG-7 as well as block ciphers PRINTcipher-

48, AES, PRESENT-80, and KLEIN-64, whereas the

energy efficiency is comparable with that of those

ciphers. While WG-8 has similar throughput and energy

efficiency as the hybrid cipher Hummingbird, it is

less efficient when compared to the Hummingbird-2

cipher. The main reason comes from the optimization

with the assembly language in the speed-optimized

Hummingbird-2 implementation. Furthermore, the code

size of WG-8 is about 2 ∼ 7 times smaller than block

ciphers PRINTcipher-48, AES, PRESENT-80, and KLEIN-

64 as well as the hybrid cipher Hummingbird-2, and is

comparable with the Hummingbird cipher. Regarding to

the SRAM usage, the stream cipher WG-8 is superior to

other block cipher and stream ciphers.

In addition, for the three implementation variants,

we note that on both 8-bit and 16-bit platforms the

DLT method is consistently better than both CLT and

TFA methods with respect to throughput and energy

consumption. The reason lies in the efficient memory

access for look-up tables on both microcontrollers.

5. Efficient Hardware Implementation of the

Stream Cipher WG-8

Efficient hardware implementation of the WG-8 stream

cipher on both FPGA and ASIC platforms has been

extensively investigated in [42]. One look-up table based

and three tower field based hardware architectures

were proposed and compared to each other in terms

of throughput, area, and power consumption. The

experimental results show that a direct look-up table

based hardware architecture can achieve a maximum

throughput of 190 Mbps (resp. 500 Mbps) and require

137 slices (resp. 1786 Gate Equivalents (GEs)) on a

Xilinx Spartan-3 FPGA (resp. 65nm CMOS ASIC)

platform, at the cost of the dynamic power consumption

of 0.005 W (resp. 0.983 mW). Moreover, the look-up

table based method is optimal with respect to the defined

performance metrics when compared to the tower field

based approaches. For certain performance metrics, the

WG-8 hardware core compares well with the lightweight

stream ciphers Grain [22], Trivium [7], and MICKEY [3].

6. Conclusion

In this paper, we present a lightweight stream cipher WG-

8 targeted for resource-constrained devices like RFID

tags, smart cards, and wireless sensor nodes, which

inherits all the good randomness and cryptographic

properties of the well-known WG stream cipher family.

A detailed cryptanalysis shows that WG-8 is resistant

to the most common attacks against stream ciphers.

Moreover, the software implementations on low-power

microcontrollers demonstrate the high performance and
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Table 3. Performance Comparison of Lightweight-Cryptography Implementations on Low-Power Microcontrollers

Low-Power Cryptographic Clock Freq. Opt. Goal/ Memory Usage Setup Throughput Energy/Bit

Microcontroller Primitive [MHz] Method [byte] [cycle] [Kbits/sec] [nJ]

Flash SRAM

ATmega

AES [33]

8 MHz

RAM 1, 912 176 789 475.6 179

Speed 1, 912 256 747 513.8 165

PRESENT-80 [35]
Size 1, 474 32 – 0.99 85, 819

Speed 2, 398 528 – 66.7 1, 274

Hummingbird [16]
Size 1, 308 – 14, 735 34.9 2, 433

Speed 10, 918 – 8, 182 91.5 929

Hummingbird-2 [17]
RAM 3, 600 114 2, 970 171.8 495

Speed 3, 200 1, 500 1, 800 258.6 329

XTEA [34] Speed 820 – – 51.7 1, 645

Grain[34] Speed 778 20 107, 336 12.9 6, 556

Trivium[34] Speed 424 36 775, 726 12.0 7, 066

Salsa20[29] Speed 3, 842 258 318 83.7 101, 564

WG-7[27] Size 938 – 20, 917 34.0 2, 497

WG-8

TFA 2,450 20 99,702 3.58 23,739

CLT 2,238 148 10,683 31.7 2,683

DLT 1,984 20 1,379 185.5 458

MSP430

PRINTcipher-48 [19]

8 MHz

Speed 6, 424 48 – 4.5 153

AES [19] Speed 10, 898 218 – 78.0 154

PRESENT-80 [19] Speed 6, 424 288 – 19.4 619

KLEIN-64 [19] Speed 6, 424 288 – 65.0 185

Hummingbird [16]
Size 1, 064 – 9, 667 53.0 226

Speed 1, 360 – 4, 824 104.9 114

Hummingbird-2 [17]
Size 770 50 5, 984 84.2 143

Speed 3, 648 114 1, 361 356.5 34

WG-7[27] Size 1, 050 – 18, 379 21.0 572

WG-8

TFA 2,110 20 127,944 2.44 4,926

CLT 2,628 148 15,265 10.8 1,107

DLT 1,558 20 3,604 95.9 125

low energy consumption of the WG-8 stream cipher,

when compared to most of previous block ciphers and

stream ciphers. Therefore, the stream cipher WG-8 is a

competitive candidate for securing a wide range of smart

devices and embedded applications.
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