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Abstract

This article presents an approach to Autonomy Requirements Engineering (ARE) that targets the integration
and promotion of autonomy in software-intensive systems by providing a mechanism and methodology for
elicitation and expression of autonomy requirements. ARE relies on goal-oriented requirements engineering to
elicit and define system goals, and uses the generic autonomy requirements model to derive and define assistive
and, eventually, alternative objectives. The system may pursue these “self-* objectives” in the presence of
factors threatening the achievement of the initial system goals. Once identified, the autonomy requirements
are specified with KnowLang, a formal language dedicated to knowledge representation and reasoning. To
demonstrate both the ARE’s and KnowLang’s ability to handle autonomy requirements for self-adaptive
systems, the approach is applied to Science Clouds, a self-adaptive cloud platform.
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1. Introduction
There are many advantages to self-adaptation. Among
the most promising are the fact that self-adaptation
enables software-intensive systems to become more
versatile, flexible, resilient, dependable, robust, energy-
efficient, recoverable, customizable, configurable, and
self-optimizing by adapting to changing operational
contexts, environments or system characteristics.
Although very promising, the paradigm brings a lot of
challenges.

Among the many challenges software engineers must
overcome are those related to elicitation and expression
of autonomy requirements. Nowadays, requirements
engineering for autonomous and self-adaptive systems
appears to be a wide open research area with no
definitive solution yet. The major problem is that the
integration and promotion of autonomy in software-
intensive systems is an extremely challenging task.

This article draws upon my experience with the
Autonomy Requirements Engineering (ARE) [1, 2]
approach to present its ability to handle autonomy
requirements for self-adaptive systems. The ARE
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approach has been developed by Lero, the Irish
Software Engineering Research Center, within the
mandate of a joint project with ESA, the European
Space Agency. The approach is intended to help
engineers tackle the integration and promotion of
autonomy in software-intensive systems. ARE combines
special generic autonomy requirements (GAR) with goal-
oriented requirements engineering (GORE) [3]. Using
this approach, software engineers can determine what
autonomic features to develop for a particular system
as well as what artifacts that process might generate
(e.g., goals models, requirements specification, etc.). To
model and formalize the elicited requirements, ARE
relies on KnowLang [4], a formal language dedicated
to knowledge representation and reasoning for self-
adaptive systems.

Both ARE and KnowLang have been used in a few
projects to capture the autonomy requirements of
self-adaptive systems. Some proof-of-concept examples
are related to the ESA BepiColombo Mission [5–7]
and the ASCENS Project’s [8] case studies on Swarm
Robotics [9], eMobility [10], and Science Clouds [11].
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2. ARE - Autonomy Requirements Engineering

2.1. Understanding ARE

The first step in developing any new software-intensive
system is to determine the system’s functional and
non-functional requirements. The former requirements
define what the system will actually do, while
the latter requirements refer to its qualities, such
as performance, along with any constraints under
which the system must operate. Despite differences in
application domain and functionality, all autonomous
systems extend upstream the regular software-intensive
systems with special self-managing objectives (self-*
objectives). Basically, the self-* objectives provide the
system’s ability to automatically discover, diagnose, and
cope with various problems. This ability depends on
the system’s degree of autonomicity, quality and quantity
of knowledge, awareness and monitoring capabilities, and
quality characteristics such as adaptability, dynamicity,
robustness, resilience, and mobility. Basically, this is
the basis of the ARE approach [1, 2, 5–7]: autonomy
requirements are detected as self-objectives backed
up by different capabilities and quality characteristics
outlined by the GAR model.

The ARE approach starts with the creation of a
goals model that represents system objectives and their
interrelationships. For this, we use GORE where ARE
goals are generally modeled with intrinsic features
such as type, actor, and target, with links to other
goals and constraints in the requirements model. Goals
models might be organized in different ways copying
with the system specifics and engineers’ understanding
about the system goals. Thus, we may have 1)
hierarchical structures where goals reside different
levels of granularity; 2) concurrent structures where
goals are considered as concurrent; etc. At this stage,
the goals models are not formal and we use natural
language along with UML-like diagrams to record them.

The next step in the ARE approach is to work on
each one of the system goals along with the elicited
environmental constraints to come up with the self-
* objectives providing the autonomy requirements
for this particular system’s behavior. In this phase,
we apply the GAR model to a system goal to
derive autonomy requirements in the form of goal’s
supportive and alternative self-* objectives along with
the necessary capabilities and quality characteristics. In
the first part of this phase, we record the GAR model in
natural language. In the second part though, we use a
formal notation to express this model in a more precise
way. Note that, this model carries more details about
the autonomy requirements, and can be further used
for different analysis activities, including requirements
validation and verification.

2.2. System Goals and Goals Models
Goals have long been recognized to be essential
components involved in the requirements engineering
(RE) process [12]. To elicit system goals, typically,
the system under consideration is analyzed in its
organizational, operational and technical settings.
Problems are pointed out and opportunities are
identified. High-level goals are then identified and
refined to address such problems and meet the
opportunities. Requirements are then elaborated to
meet those goals.

Goal identification is not necessarily an easy task
[13–15]. Sometimes goals can be explicitly stated
by stakeholders or in preliminary material available
to requirements engineers. Often though, they are
implicit so that goal elicitation has to be undertaken.
The preliminary analysis of the current system along
with the operational environment is an important
source for goal identification. Such analysis usually
results in a list of problems and deficiencies that can
be formulated precisely. Negating those formulations
yields a first list of goals to be achieved by the
system-to-be. In my experience, goals can also be
identified systematically by searching for intentional
keywords in the preliminary documents provided.
Once a preliminary set of goals and goal-related
constraints is obtained and validated with stakeholders,
many other goals can be identified by refinement and by
abstraction, just by asking HOW and WHY questions
about the goals/constraints already available [16].
Other goals are identified by resolving conflicts among
goals or obstacles to goal achievement. Further, such
goals might be eventually defined as self-* objectives.

Goals are generally modeled by intrinsic features such
as their type and attributes, and by their links to
other goals and to other elements of a requirements
model. Goals can be hierarchically organized and
prioritized where high-level goals (e.g., main system
objectives) might comprise related, low-level, sub-goals
that can be organized to provide different alternatives
of achieving the high-level goals. In ARE, goals are
registered in plain text with characteristics like actors,
targets and rationale. Moreover, inter-goal relationships
are captured by goals models putting together all goals
along with associated constraints. ARE’s goals models
are presented in UML-like diagrams. Goals models can
assist us in capturing autonomy requirements in several
ways [2, 5–7]:

1. An ARE goals model might provide the starting
point for capturing autonomy requirements by
analyzing the environment for the system-to-be
and by identifying the problems that exist in this
environment as well as the needs that the system
under development has to address to accomplish
its goals.
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2. ARE goals models might be used to provide
a means to represent alternative ways where
the objectives of the system can be met and
analyze and rank these alternatives with respect
to quality concerns and other constraints, e.g.,
environmental constraints:

(a) This allows for exploration and analysis of
alternative system behaviors at design time.

(b) If the alternatives that are initially delivered
with the system perform well, there is no
need for complex interactions on autonomy
behavior among autonomy components.

(c) Not all the alternatives can be identified
at design time. In an open and dynamic
environment, new and better alternatives
may present themselves and some of the
identified and implemented alternatives may
become impractical.

(d) In certain situations, new alternatives will
have to be discovered and implemented by
the system at runtime. However, the process
of discovery, analysis, and implementation
of new alternatives at runtime is complex
and error-prone. By exploring the space
of alternatives at design time, we are
minimizing the need for that difficult task.

3. ARE goals models might provide the traceability
mechanism from design to requirements. When
a change in requirements is detected at runtime,
goal models can be used to re-evaluate the
system behavior alternatives with respect to the
new requirements and to determine if system
reconfiguration is needed:

(a) If a change in requirements affects a
particular goal in the model, it is possible
to see how this goal is decomposed and
which parts of the system implementing the
functionality needed to achieve that goal are
in turn affected.

(b) By analyzing a goals model, it is possible
to identify how a failure to achieve some
particular goal affects the overall objective of
the system.

(c) Highly variable goals models can be used
to visualize the currently selected system
configuration along with its alternatives
and to communicate suggested configuration
changes to users in high-level terms.

4. ARE goals models provide a unifying intentional
view of the system by relating goals assigned to
individual parts of the system (usually expressed

as actors and targets of a goal) to high-level system
objectives and quality concerns:

(a) High-level objectives or quality concerns
serve as the common knowledge shared
among the autonomous system’s parts (or
components) to achieve the global system
optimization. In this way, the system can
avoid the pitfalls of missing the globally
optimal configuration due to only relying on
local optimizations.

(b) Goals models might be used to identify part
of the knowledge requirements, e.g., actors
or targets.

Moreover, goals models might be used to manage con-
flicts among multiple goals including self-* objectives.
Note that by resolving conflicts among goals or obsta-
cles to goal achievement, new goals (or self-* objectives)
may emerge.

2.3. Self-* Objectives and Autonomy-Assistive
Requirements
Basically, the GAR (generic autonomy requirements)
model follows the principle that despite their differ-
ences in terms of application domain and functionality,
all autonomous systems are capable of autonomous
behavior driven by one or more self-management objec-
tives [2] that drive the development process of such
systems. ARE uses goals models as a basis helping to
derive self-* objectives per a system goal by applying a
model for generic autonomy requirements to any system
goal [2, 6]. The self-* objectives represent assistive and
eventually alternative goals (or objectives) the system
may pursue in the presence of factors threatening the
achievement of the initial system goals. The diagram
presented in Figure 1 depicts the process of deriving
the self-* objectives from a goals model of the system-
to-be. Basically, a context-specific GAR model provides
some initial self-* objectives, which should be further
analyzed and refined in the context of the specific
system goal to see their applicability. As shown in
Figure 1, in addition to the derived self-* objectives, the
ARE process also produces autonomy assistive require-
ments. These requirements (also defined as adaptation-
assistive attributes) are initially defined by the GAR
model [1, 2, 5] and are intended to support the achieve-
ments of the self-* objectives. The autonomy assistive
requirements outlined by GAR might be defined as
following:

• Knowledge - basically data requirements that need
to be structured to allow efficient reasoning.

• Awareness - a sort of functional requirements
where knowledge is used as an input along with
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Figure 1. The ARE Process of Deriving Self-* Objectives per System Goal

events and/or sensor signals to derive particular
system states.

• Resilience and robustness - a sort of soft-goals.
For example, such requirements can be defined
as “robustness: system is robust to communica-
tion latency” and “resilience: system is resilient
to hardware failures, node disappearances, or
appearances”. These requirements can be spec-
ified as soft goals leading the system towards
“reducing and copying with communication latency”
and “keeping system’s performance optimal”. A soft
goal is satisfied rather than achieved. Note that
specifying soft goals is not an easy task. The
problem is that there is no clear-cut satisfaction
condition for a soft goal. Soft goals are related to
the notion of satisfaction. Unlike regular goals,
soft goals can seldom be accomplished or satis-
fied. For soft goals, eventually, we need to find
solutions that are “good enough” where soft goals
are satisfied to a sufficient degree. Thus, when
specifying robustness and resilience autonomy
requirements we need to set the desired degree of
satisfaction, e.g., by using probabilities.

• Monitoring, mobility, dynamicity and adaptability
- might also be defined as soft-goals, but with
relatively high degree of satisfaction. These three
types of autonomy requirements represent impor-
tant quality requirements that the system in ques-
tion needs to meet to provide conditions mak-
ing autonomicity possible. Thus, their degree of
satisfaction should be relatively high. Eventually,
adaptability requirements might be treated as
hard goals because they determine what parts of
the system in question can be adapted (not how).

2.4. Autonomy Needs and Requirements Chunks
To record autonomy requirements, ARE relies on
both natural language and formal notation. A natural
language description of a self-* objective has the
following format [6]:

• Name of Self-* Objective: Rationale of this self-*
objective.

– Assisting system goals: List of system goals
assisted by this self-* objective.

– Actors: Actors participating in the realization
of this self-* objective.

– Targets: Targets of this self-* objective.

Note that this description is abstract and does not
say how the self-* objective is going to be achieved.
Basically, as recorded the self-* objectives define the
“autonomy needs” of the system. How these needs
are going to be met is provided by more detailed
description of the self-* objectives recorded as ARE
Requirements Chunks and/or specified formally.

In general, a more detailed description in a natural
language may precede the formal specification of
the elicited autonomy requirements. Such description
might be written as a scenario describing both the
conditions and sequence of actions needed to be
performed in order to achieve the self-* objective in
question.

Note that a self-objective could be associated with
multiple scenarios. The combination of a self-* objective
and a scenario forms an ARE Requirements Chunk (see
Figure 2). A requirements chunk can be recorded in a
natural language as following:
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ARE Requirements Chunk

• Name of Self-* Objective: Rationale of this self-*
objective.

– Assisting system goals: List of system goals
assisted by this self-* objective.

– Actors: Actors participating in the realization
of this self-* objective.

– Targets: Targets of this self-* objective.

• Scenario: Description of a scenario how this self-
* objective can be met by performing the system’s
functionality.

Figure 2. Requirements Chunk - Goal & Scenario

Requirements chunks associate each goal with sce-
narios where the goal-scenario pairs can be assembled
together through composition, alternative and refinement
relationships (see Figure 2). The first two lead to AND
and OR structures of requirements chunks, whereas
the last leads to the organization of the collection of
requirements chunks as a hierarchy of chunks of differ-
ent granularity. AND relationships among requirements
chunks link complementary chunks in the sense that
everyone requires others to define a completely func-
tioning scenario covering a main goal. Requirements
chunks linked through OR relationships represent alter-
native ways of fulfilling the same goal. Requirements
chunks linked through a refinement relationship are at
different levels of abstraction. Internally, the scenarios
might introduce additional variability via conditional
requirements derived from the GAR’s requirements such
as monitoring, adaptability, dynamicity, resilience, and
robustness.

2.5. Formal Specification
ARE relies on KnowLang [4] for the formal specification
of the elicited autonomy requirements. We use
KnowLang to record these requirements as knowledge
representation in a Knowledge Base (KB) comprising
a variety of knowledge structures, e.g., ontologies,
facts, rules, and constraints. The self-* objectives are
specified with special policies associated with goals,
special situations, actions (eventually identified as
system capabilities), metrics, etc. Thus, the self-*
objectives are represented as policies describing at an
abstract level what the system will do when particular
situations arise. The situations are meant to represent
the conditions needed to be met in order for the system
to switch to a self-* objective while pursuing a system
goal. Note that the policies rely on actions that are
a priori-defined as functions of the system. In case,
such functions have not been defined yet, the needed
functions should be considered as autonomous functions
and their implementation will be justified by the ARE’s
selected self-* objectives. ARE does not state neither
specify how the system will perform these actions. This
is out of the scope of the ARE approach. Basically,
any requirements engineering approach states what the
software will do not how the software will do it.

3. KnowLang
A key feature of KnowLang [4] is a formal language
with a multi-tier knowledge specification model
allowing for integration of ontologies together with
rules and Bayesian networks [17]. The language aims at
efficient and comprehensive knowledge structuring and
awareness based on logical and statistical reasoning. It
helps us tackle: 1) explicit representation of domain
concepts and relationships; 2) explicit representation
of particular and general factual knowledge, in
terms of predicates, names, connectives, quantifiers
and identity; and 3) uncertain knowledge in which
additive probabilities are used to represent degrees of
belief [18]. Other noteworthy features are related to
knowledge cleaning (allowing for efficient reasoning)
[4, 18] and knowledge representation for autonomic
behavior [4, 19]. By applying the KnowLang’s multi-
tier specification model (see Figure 3) we build a
Knowledge Base (KB) structured in three main tiers
[4, 18]: 1) Knowledge Corpuses; 2) KB Operators;
and 3) Inference Primitives. The tier of Knowledge
Corpuses is used to specify knowledge representation
(KR) structures. The tier of KB Operators provides
access to Knowledge Corpuses via special classes of
ASK and TELL Operators, where ASK Operators are
dedicated to knowledge querying and retrieval and
TELL Operators allow for knowledge update. When
we specify knowledge with KnowLang, we build a
KB with a variety of knowledge structures such as
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Figure 3. KnowLang Specification Model

ontologies, facts, rules and constraints where we need
to specify the ontologies first in order to provide
the “vocabulary" for the other knowledge structures.
A KnowLang ontology is specified over concept trees,
object trees, relations and predicates. Each concept is
specified with special properties and functionalities
and is hierarchically linked to other concepts through
PARENTS and CHILDREN relationships. For reasoning
purposes every concept specified with KnowLang has
an intrinsic STATE attribute that may be associated with
a set of possible state values these concept instances
may be in. Concept instances are considered as objects
and are structured in object trees — a conceptualization
of how objects existing in the world of interest are
related to each other. The relationships in an object
tree are based on the principle that objects have
properties, where the value of a property is another
object, which in turn also has properties. Moreover,
concepts and objects may be connected via relations.
Relations are binary and may have probability-
distribution attributes (e.g., over time, over situations,
over concepts’ properties, etc.). Probability distribution
is provided to support probabilistic reasoning and
by specifying relations with probability distributions
we actually specify Bayesian networks connecting the
concepts and objects of an ontology. Figure 4 shows
a KnowLang specification sample demonstrating both
the language syntax [20] and its visual counterpart
— a concept map based on interrelations with no
probability distributions. Modeling knowledge with
KnowLang requires a number of phases:

• Initial knowledge gathering – involves domain
experts to determine the basic notions, relations

and functions (operations) of the domain of
interest.

• Behavior definition – identifies situations and
behavior policies as “control data" helping to
identify important self-adaptive scenarios.

• Knowledge structuring – encapsulates domain
entities, situations and behavior into KnowLang
structures such as concepts, objects, relations,
facts and rules.

3.1. Modeling Self-adaptive Behavior
KnowLang employs special knowledge structures and
a reasoning mechanism for modeling autonomic
self-adaptive behavior [19]. Such a behavior can
be expressed via KnowLang policies, events, actions,
situations and relations between policies and situations
(see Definitions 1 through 10). Policies (Π) are at the
core of autonomic behavior. A policy π has a goal (g),
policy situations (Siπ), policy-situation relations (Rπ), and
policy conditions (Nπ) mapped to policy actions (Aπ)
where the evaluation of Nπ may eventually (with some
degree of probability) imply the evaluation of actions

(denoted Nπ
[Z]
→ Aπ) (see Definition 2). A condition is a

Boolean expression over an ontology (see Definition 4),
e.g., the occurrence of a certain event.

Policy situations Siπ are situations (see Definition 7)
that may trigger (or imply) a policy π, in compliance
with the policy-situations relations Rπ(denoted by

Siπ
[Rπ]
→ π), thus implying the evaluation of the policy

conditions Nπ(denoted by π→ Nπ)(see Definition 2).
Therefore, the optional policy-situation relations (Rπ)
justify the relationships between a policy and the
associated situations (see Definition 10). Note that
in order to allow for self-adaptive behavior, relations
must be specified to connect policies with situations
over an optional probability distribution (Z) where a
policy might be related to multiple situations and vice
versa. Probability distribution is provided to support
probabilistic reasoning and to help the reasoner to
choose the most probable situation-policy “pair". Thus,
we may specify a few relations connecting a specific
situation to different policies to be undertaken when the
system is in that particular situation and the probability
distribution over these relations (involving the same
situation) should help the reasoner decide which policy

to choose (denoted by si
[Z]
→ π – see Definition 10).

Hence, the presence of probabilistic beliefs in both
mappings and policy relations justifies the probability
of policy execution, which may vary with time. A goal g
is a desirable transition to a state, or from a specific state
to another state, (denoted by s⇒ s′) (see Definition
5). A state s is a Boolean expression over ontology
(be(O))(see Definition 6), e.g., “a specific property of
an object must hold a specific value". A situation is
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Figure 4. KnowLang Specification Sample

expressed with a state (s), a history of actions (A ←si )
(actions executed to get to state s), actions Asi that can
be performed from state s and an optional history of
events E ←si that eventually occurred to get to state s (see
Definition 8).

Def. 1. Π := {π1, π2, ...., πn}, n ≥ 0 (Policies)

Def. 2. π :=< g, Siπ, [Rπ], Nπ, Aπ, map(Nπ, Aπ, [Z]) >

Aπ ⊂ A,Nπ
[Z]
→ Aπ (Aπ - Policy Actions)

Siπ ⊂ Si, Siπ
[Rπ]
→ π→ Nπ (Siπ - Policy Sitns)

Rπ ⊂ R (Rπ-Policy-Situation Relations )

Def. 3. Nπ := {n1, n2, ...., nk}, k ≥ 0 (Policy Condtns)

Def. 4. n := be(O) (Boolean Expression over Ontol-
ogy)

Def. 5. g := 〈⇒ s′〉|〈s⇒ s′〉 (Goal)

Def. 6. s := be(O) (State)

Def. 7. Si := {si1, si2, ...., sin}, n ≥ 0 (Situations)

Def. 8. si :=< s, A ←si , [E
←
si ], Asi > (Situation)

A ←si⊂ A (A ←si - Executed Actions)
Asi ⊂ A (Asi - Possible Actions)
E ←si⊂ E (E ←si - Situation Events)

Def. 9. R := {r1, r2, ...., rn}, n ≥ 0 (Relations)

Def. 10. r :=< π, [rn], [Z], si > (rn - Relation Name)

si ∈ Si, π ∈ Π, si
[Z]
→ π

Ideally, KnowLang policies are specified to handle
specific situations, which may trigger the application
of policies. A policy exhibits a behavior via actions
generated in the environment or in the system itself.
Specific conditions determine, which specific actions

(among the actions associated with that policy –
see Definition 2) shall be executed. These conditions
are often generic and may differ from the situations
triggering the policy. Thus, the behavior not only
depends on the specific situations a policy is specified
to handle, but also depends on additional conditions.
Such conditions might be organized in a way allowing
for synchronization of different situations on the
same policy. When a policy is applied, it checks
what particular conditions are met and performs the
mapped actions (map(Nπ, Aπ, [Z]) – see Definition 2).
An optional probability distribution may additionally
restrict the action execution. Although specified
initially, the probability distribution at both mapping
and relation levels is recomputed after the execution of
any involved action. The re-computation is based on the
consequences of the action execution, which allows for
reinforcement learning.

3.2. Converting Sensory Data to KR
One of the biggest challenges is “how to map sensory raw
data to KR symbols". My approach to this problem is
to specify special explicit concepts called METRICS. In
general, a self-adaptive system has sensors that connect
it to the real world and eventually help it listen to its
internal components. These sensors generate raw data
that represent the physical characteristics of the world.
The problem is that these low-level data streams must
be: 1) converted to programming variables or more
complex data structures that represent collections of
sensory data; 2) those programing data structures must
be labeled with KR symbols. Hence, it is required to
relate encoded data structures with KR concepts and
objects used for reasoning purposes. In this approach,
we assume that each sensor is controlled by a software
driver (e.g., implemented in Java) where appropriate
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methods are used to control the sensor and read
data from it. Both the sensory data and sensors should
be represented in the KB by using METRIC explicit
concepts and instantiate objects of these concepts. By
specifying a METRIC concept we introduce a class of
sensors to the KB and by specifying objects, instances
of that class, we give the actual KR of a real sensor.
KnowLang allows the specification of four different
types of metrics [20]:

• RESOURCE – measure resources like capacity;

• QUALITY – measure qualities like performance,
response time, etc.;

• ENVIRONMENT – measure environment quali-
ties and resources;

• ENSEMBLE – measure complex qualities and
resources; might be a function of multiple metrics
both of RESOURCE and QUALITY type.

3.3. KnowLang Reasoner
A very challenging task is the R&D of the infer-
ence mechanism providing for knowledge reasoning and
awareness. In order to support reasoning about self-
adaptive behavior and to provide a KR gateway for com-
munication with the KB, a special KnowLang Reasoner
has been developed. The reasoner communicates with
the system and operates in the KR Context, a context
formed by the represented knowledge (see Figure 5).

The KnowLang Reasoner should be supplied as a
component hosted by the system and, thus, it runs in
the system’s Operational Context as any other system’s
component. However, it operates in the KR Context
and on the KR symbols (represented knowledge). The
system talks to the reasoner via special ASK and
TELL Operators allowing for knowledge queries and
knowledge updates (See Figure 5). Upon demand, the
KnowLang Reasoner can also build up and return a
self-adaptive behavior model - a chain of actions to be
realized in the environment or in the system.

4. Capturing Autonomy Requirements for Science
Clouds
To better understand the concepts behind ARE, in this
section, is presented an example of using the ARE
approach to capture autonomy requirements for an
autonomic system described as Science Clouds.

4.1. Science Clouds
Science Clouds is a cloud computing scientific platform
for application execution and data storage [21], tackled
by the ASCENS Project [8] as a case study. Individual
users or universities can join a cloud to provide

(and consume of course) resources to the community.
A science cloud is a collection of cloud machines
- notebooks, desktops, servers, or virtual machines,
running the Science Cloud Platform (SCP). Each
machine is usually running one instance of the Science
Cloud Platform (Science Cloud Platform instance
or SCPi). Each SCPi is considered to be a Service
Component (SC) in the ASCENS sense . To form a
cloud, multiple SCPis communicate over the Internet
by using the IP protocol. Within a cloud, a few
SCPis might be grouped into a Service Component
Ensemble (SCE), also called a Science Cloud Platform
ensemble (SCPe). The relationships between the SCPis
are dynamic and the formation of a SCPe depends
mainly on the properties of the SCPis. The common
characteristic of an ensemble is SCPis working together
to run one application in a fail-safe manner and
under consideration of the Service Level Agreement
(SLA) of that application, which may require a certain
number of active SCPis, certain latency between the
parts, or have restrictions on processing power or
memory. The SCP is a platform as a service (PaaS),
which provides a platform for application execution
[22]. Thus, SCP provides an execution environment
where special applications might be run by using the
SCP’s application programming interface (API) and
SCP’s library [22]. These applications provide a software
as a service (SaaS) cloud solution to users. The data
storage service is provided in the same manner, i.e., via
an application.

Based on the rationale above, we may conclude
that the Science Clouds’ main objective is to provide
a scientific platform for application execution and data
storage [21]. Being a cloud computing approach, the
Science Clouds approach extends the original cloud
computing goal to provide services (or resources) to the
community of users. Note that cloud computing targets
three main types of service (or resource):

1. Infrastructure as a Service (IaaS): a solution
providing resources such as virtual machines,
network switches and data storage along with
tools and APIs for management (e.g., starting
VMs).

2. Platform as a Service (PaaS): a solution providing
development and execution platforms for cloud
applications.

3. Software as a Service (SaaS): a solution providing
software applications as a resource.

4.2. GORE for Science Clouds
The three different services provided by Science Clouds
(see Section 4.1) can be defined as three main goals
of cloud computing, and their realization by Science
Clouds will define the main Science Clouds goals.

8
EAI Endorsed Transactions on 

Self-Adaptive Systems 
01-2015 | Volume 1 | Issue 1 | e6 



Requirements Engineering for Self-Adaptive Systems with ARE and KnowLang

Figure 5. KnowLang Reasoner

Figure 6 depicts the ARE goals model for Science
Clouds where goals are organized hierarchically at four
different levels. In addition, from the rationale above
we may conclude that an underlying system goal is to
optimize application execution by minimizing resource
usage along with providing a fail-safe execution
environment.

As shown in Figure 6, the goals from the first three
levels are main system goals captured at different
levels of abstraction. The 3rd level is resided by goals
directly associated with Science Clouds and providing
a concrete realization of the cloud computing goals
outlined at the first two levels. Finally, the goals from
the 4th level are supporting and preliminary goals that
need to be achieved before proceeding with the goals
from the 3rd level. Figure 6 puts together all the system
goals by relating them via particular relationships such
as inheritance and dependency. Goals are depicted
as boxes listing both goal actors and targets (note
that targets might be considered as a distinct class
of actors). The ARE Goals Model for Science Clouds
provides the traceability mechanism for autonomy
requirements. When a change in requirements is
detected at runtime, the goals model can be used
to re-evaluate the system behavior with respect to
the new requirements and to determine if system
reconfiguration is needed. Moreover, the presented
goals model provides a unifying intentional view of
the system by relating goals assigned to actors and
involving targets. Some of the actors can be eventually
identified as the autonomy components providing a
self-adaptive behavior when necessary to keep up with
the high-level system objectives (the goals residing
Level 3).

The following elements describe the system goals by
goal levels as shown in Figure 6:
Level 1 Goals:

• Provide Resources: A cloud computing system
(cloud) shall provide computational resources to the
community of users.

– Actors: cloud (the cloud computing system),
users

– Targets: resources

Level 2 Goals:

• Provide Infrastructure as a Service: The cloud
shall provide resources such as virtual machines,
virtual network switches, and data storage. To
manage this infrastructure, the cloud provides
tools and APIs for management, e.g., starting and
stopping VMs or creating new virtual networks.

– Actors: cloud, operators
– Targets: virtual machines, network switches,

data storage

• Provide Platform as a Service: The cloud shall
provide development and execution platforms
for cloud applications, e.g., it may provide a
framework for writing applications (by devel-
opers), which can either be supplied with ade-
quate resources and distributed automatically, or
request additional resources.

– Actors: cloud, developers
– Targets: development platforms, execution

platforms

• Software as a Service: The cloud shall provide
software applications that can be run by users
within the cloud. Some examples of such applica-
tions could be e-mail service, word processor, etc.
A good real-life example is Google Apps.

– Actors: cloud, execution platform, users
– Targets: applications platforms

Level 3 Goals:

• Provide Zimory Cloud: This goal is to realize
the Provide Infrastructure as a Service cloud
computing goal by running the Zimory Cloud.

9 EAI Endorsed Transactions on 
Self-Adaptive Systems 

01-2015 | Volume 1 | Issue 1 | e6 



Emil Vassev

Figure 6. Science Clouds Goals Model

The Zimory Cloud shall provide cloud infrastruc-
ture based on SCP by running SCPis on virtual
machines, as described by the rationale above.
In addition, the goal requires that the Zimoty
Cloud provide both API and tools needed for
infrastructure management.

– Actors: Zimory Cloud, API, tools, SCP,
SCPis, operators

– Targets: virtual machines, network switches,
data storage, applications

• Provide SCP: This goal is to realize the Provide
Platform as a Service cloud computing goal by
providing the Zimory Cloud’s SCP. The SCP
must ensure both development and execution
platforms where cloud applications can be
developed and executed. Therefore, the platform
must provide both API and libraries used by
developers.

– Actors: SCP, developers, scientists

– Targets: API, library, virtual machines,
services, grid-like calculations, data storage

• Provide Applications: This goal is to realize the
Provide Software as a Service cloud computing
goal by providing applications running in the
SCP Cloud (or Zimory Cloud). The software
applications can be run within a SCPe by
users using the SCP’s application programming
interface (API) and SCP’s library. Data storage
services might be provided via applications as
well.

– Actors: SCP Cloud, SCPe, API, library, users

– Targets: applications, data storage

Level 4 Goals:

• Form SCPe: This goal is to form a dynamic
SCPe that shall provide the needed computational
resources for the realization of either the Provide
SCP goal or Provide Applications goal, or both.

10
EAI Endorsed Transactions on 

Self-Adaptive Systems 
01-2015 | Volume 1 | Issue 1 | e6 



Requirements Engineering for Self-Adaptive Systems with ARE and KnowLang

The Form SCPe goal is supportive to these two
goals (see the allows relationship in Figure 6).
Moreover, the achievement of this goal may
initiate two more assistive goals: Provide Fail-safe
Execution and Optimize Resource Usage, which
assist the Provide Applications goal (see Figure 6).
Note that this goal shall take into consideration
the Service Level Agreement constraint, which
may impose restrictions (or requirements) on
the processing power, number of SCPis running
within the ensemble, communication latency,
memory usage, etc.

– Actors: SCP Cloud, SCPis, application,
communication, Service Level Agreement

– Targets: SCPe

• Form SCP Cloud: This goal is to form the
SCP Cloud (Zymory Cloud) from the running
SCPis joining their resources within that cloud.
Note that the cloud allows the individual SCPis
voluntarily join in or opt out. In addition, any
application that runs on a cloud’s SCPi is also
added to the cloud as a resource. Thus, the SCP
Cloud is formed by both running SCPis and
applications (see Figure 6).

– Actors: SCP, SCPis, application, communica-
tion

– Targets: SCP Cloud

• Run SCPi: This goal is to run a SCPi as an instance
of SCP hosted by a virtual machine. Basically,
this goal along with the Run Application goal
(both connected via AND relationship) might be
considered as a sub-goal of the Form SCP Cloud
goal.

– Actors: SCP, virtual machine

– Targets: SCPi

• Run Application: This goal is to run an
application on a SCPi using SCP’s API and library.
This goal must be achieved as part of the Form
SCP Cloud goal, i.e., it might be considered as a
sub-goal of this goal.

– Actors: SCPi, API, library

– Targets: application

• Provide Fail-safe Execution: This goal is to
ensure that running applications will continue
working if a hosting SCPi fails. This policy must
be provided by a SCPe, eventually formed to
provide a fail-safe execution environment. The
Provide Fail-safe Execution goal is assistive to the

Run Application goal and it may be considered as
a self-* objective providing fault tolerance.

– Actors: applications, SCPis, SCPe

– Targets: fail-safe execution of applications

• Optimize Resource Usage: This goal is to ensure
that running applications will use the cloud
resources in the most optimal way. This policy
must be provided by a SCPe, eventually formed
to provide an optimal use of particular cloud
resources, e.g., memory, disk space, etc. The
Optimize Resource Usage goal is assistive to the
Run Application goal and it may be considered as
a self-* objective providing self-optimization.

– Actors: applications, SCPis, SCPe, cloud
resources

– Targets: optimized resource usage

4.3. GAR for Science Clouds
After completing the goals model for Science Clouds,
the next step of the ARE approach is to put the GAR
model in the context of cloud computing to derive a
domain-specific GAR that can be applied to the goals
captured by the goals model for Science Clouds. To
derive the domain-specific GAR, we need to elaborate
on the Science Clouds features, issues and goals to come
up with self-* objectives and the consecutive autonomy-
assistive requirements. For example, some remarkable
issues that eventually can turn to autonomy features are
[21]:

• fail-safe operation: An application should be
available even its host SCPi fails (see Provide Fail-
safe Execution goal in Section 4.2).

• load balancing / throughput: Parallel execution
of same applications to distribute the computa-
tional/resource overhead (load) when it is high,
but not before that.

• energy conservation: Shutting down virtual
machines or de-configuring virtual networks if
not required (this feature requires IaaS support).

• SCPi fails, disappears, or appears: A failing SCPi
attempts to notify other SCPis, which need to take
over responsibilities. If a new SCPi appears, it
should engage with applications execution.

• SCPi (or link) with high load, or idle: Move
applications to another SCPi, receive applications
from another SCPi, or run a new SCPi on a
virtual machine. If a SCPi is idle, then engage with
applications running already on another SCPi, or
simply shut down it.
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To address these issues, SCPis must be monitored
(including self-monitored) along with the cloud envi-
ronment to detect high computational loads (due to
applications), high communication latency, high mem-
ory usage, other SCPis that join in or opt out, etc.
Basically, monitoring shall go on three levels:

• network level: The SCPis forming a SCPe need to
know each other and be able to route between
themselves.

• application level: The SCPis forming a SCPe need
to know what applications run on which SCPis.

• data level: When an application is deployed,
the SCPis that can eventually run that appli-
cation need to have the application executable
(immutable data). Moreover, the SCPis running
that application need to monitor the applica-
tion data (mutable data) and eventually store it
through check points, so the application can be
resumed in case of a SCPi failure or the failure of
the application itself.

Addressing these issues in the context of the system
goals (see Section 4.2) will result into self-adaptive
behavior realized by self-* objectives. These self-*
objectives along with the autonomy-assistive require-
ments form the domain-specific GAR model for Science
Clouds as following:

• self-* objectives (autonomicity):

– self-healing: If a SCPi fails or is shut down,
the applications executing on it must be
made available on another SCPi in the SCPe
hosting those SCPis.

– self-configuring_1: Each SCPi is aware about
changes in its hosting SCPe - new SCPis
can be added to the hosting SCPe or other
can voluntarily leave of shut down. A SCPi
should adapt itself to take into consideration
both the newly available resources and
recently disappeared resources provided by
other SCPis.

– self-configuring_2: A SCPi is aware about the
performance of the hosted applications. If an
application is slowing down due to a lack of
resources, this application can be distributed
among different SCPis (run/resumed in
parallel) if the application itself supports
distributed execution.

– self-optimizing_1: If a SCPi reaches its
capacity (e.g., consistent high CPU load or
swapping due to high memory usage), it may
transfer some of the computational load to
another SCPi from the same SCPe.

– self-optimizing_2: If the communication
latency within a SCPe is relatively high,
due to overloaded links in the network, the
SCPe may engage new SCPis to reduce the
communication traffic.

– self-optimizing_3: If the communication
latency within a SCPe is relatively high, due
to overloaded links in the network, the SCPe
may reduce the load transfer within the SCPe
itself.

– self-optimizing_4: If SCPis are no longer
required, the hosting SCPe may reconfigure
to engage the idle SCPis in computational
processes.

– self-optimizing_5: If certain SCPis are no
longer required, they may shut down along
with their hosting virtual machines to save
energy.

– self-optimizing_6: If the computational load
in certain SCPes is relatively high, due to
overloaded application executions, the SCPe
may start new SCPis along with the hosting
virtual machines (if necessary) to reduce the
computational overload.

• knowledge: cloud objectives; SCPes (engaged
SCPis, ensemble’s applications, ensemble’s vir-
tual machines, service level agreement, states),
SCPis (applications, CPU, memory, storage capac-
ity, states); applications (needed resources, dis-
tributiveness, states); communication links;

• awareness: application awareness (resource con-
sumption, execution stage, load distribution,
data-transfer); SCPi self-awareness (applications,
resources, hosting virtual machine, user); SCPe
awareness (participating SCPis, communication
links, distributed applications, service level agree-
ment); cloud awareness (SCPes, SCPis); commu-
nication awareness (communicating SCPis, data-
transfer);

• monitoring: SCPi self-monitoring (running appli-
cations, CPU load, memory usage, storage capac-
ity); SCPe monitoring (ensemble’s SCPis, com-
munication latency between SCPis, data transfer
within SCPe);

• adaptability: adaptable load balancing; adaptable
communication;

• dynamicity: dynamic communication links;
dynamic SCPe formation;

• robustness: robust to SCPi failures; robust to data-
transfer failures; robust to application execution
failures;
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• resilience: resilient communication links (com-
munication losses must be repairable); network
resilience (the routing needs to work in a dynamic
environment where SCPis voluntarily join in and
opt out of SCPes); application resilience; data
resilience;

• mobility: data distribution; application distribu-
tion; SCPi mobility (SCPis may run on different
virtual machines);

4.4. ARE Requirements Chunks for Science Clouds
The next step is to merge the GORE model for Science
Clouds with the GAR model for science clouds, by
applying the GAR model to the system goals captured
in the first phase of the ARE process. Considering
the fact that the Level 3 goals (see Figure 6 and
Section 4.2) present the main system goals, we can
apply the GAR model to these goals to derive self-
adaptive behavior supporting the common Science
Clouds behavior realized by the goals Provide Zimory
Cloud, Provide SCP, and Provide Applications. Note that
not all the self-* objectives derived by the GAR model in
Section 4.3 are relevant to every one of these three goals.
In this section is presented the self-* objectives derived
for these three goals. The self-* objectives are presented
as autonomy requirements chunks (see Section 4.5).

For the Provide Zimory Cloud goal, are derived the
following self-* objectives:

• Self-Optimizing_5: If certain SCPis are no longer
required, they may shut down along with their
hosting virtual machines to save energy.

– Assisting system goals: Provide Zimory
Cloud

– Actors: SCPis, virtual machines

– Targets: SCPis shut down

– Scenario: If a SCPi is in idle mode during
a certain interval of time, then it can
autonomously shut down. If a hosting virtual
machine detects that it is not running any
SCPis for a certain period of time, it can
autonomously shut down.

• Self-Optimizing_6: If the computational load
in a SCPe is relatively high, due to overloaded
application executions, the SCPe may start new
SCPis along with the hosting virtual machines (if
necessary) to reduce the computational overload.

– Assisting system goals: Provide Zimory
Cloud

– Actors: SCPe, SCPis, virtual machines, appli-
cations

– Targets: SCPis started,

– Scenario: If a SCPe detects a high computa-
tional load in the entire ensemble of SCPis,
i.e., all the engaged SCPis run heavy applica-
tion executions, then it may start new SCPis.
If there is a lack of virtual machines that
can host SCPis, then such machines can be
started as well.

For the Provide SCP goal, are derived the following self-
* objectives:

• Self-Configuring_1: Each SCPi is aware about
changes in its hosting SCPe - new SCPis can be
added to the hosting SCPe or other can voluntarily
leave of shut down. A SCPi should adapt itself to
take into consideration both the newly available
resources and recently disappeared resources
provided by other SCPis.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, applications

– Targets: SCPis updated on changes in
resource availability

– Scenario: If a SCPi detects absence of a
previously active SCPi it stops collaborating
with that SCPi, i.e., it stops all the joint oper-
ations on applications execution and data
transferring. Moreover, the active SCPi may
need to reconsider the resource availability
and eventually reschedule the controllable
application executions to cope with the new
situation. If a SCPi detects presence of a
new SCPi that recently joined the SCPe, it
shall reconsider the resource availability and
eventually it may ask this new SCPi share
part of the computational workload.

• Self-optimizing_1: If a SCPi reaches its capacity
(e.g., consistent high CPU load or swapping due
to high memory usage), it may transfer some of
the computational load to another SCPi from the
same SCPe.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, resources, applications

– Targets: application executions shared
among SCPis

– Scenario: If a SCPi detects high resource
usage (consistent high CPU load or high
swapping) it may ask another SCPi to take
over some of the application executions.

• Self-optimizing_2: If the communication latency
within a SCPe is relatively high, due to overloaded
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links in the network, the SCPe may engage new
SCPis to reduce the communication traffic.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, communication

– Targets: low communication latency

– Scenario: If a SCPi detects high commu-
nication latency while communicating with
another SCPi, it may start collaborating with
other SCPis to reduce the data transfer with
the initial SCPi and consecutively, reduce the
communication latency.

• Self-optimizing_3: If the communication latency
within a SCPe is relatively high, due to overloaded
links in the network, the SCPe may reduce the
load transfer within the SCPe itself.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, communication, trans-
ferred data

– Targets: low communication latency

– Scenario: If a SCPi detects high commu-
nication latency while communicating with
another SCPi, it may reduce the amount of
transferred data.

• Self-Optimizing_4: If SCPis are no longer
required, the hosting SCPe may reconfigure to
engage the idle SCPis in computational processes.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, applications

– Targets: SCPis involved in application exe-
cutions

– Scenario: If a SCPi stays in idle mode for a
specific period of time, it may request from
other SCPis to take over some of the ongoing
application executions.

For the Provide Application goal, are derived the
following self-* objectives:

• Self-Healing: If a SCPi fails or is shut down,
the applications executing on it must be made
available on another SCPi in the SCPe hosting
those SCPis.

– Assisting system goals: Provide Application

– Actors: SCPe, SCPis, applications

– Targets: applications transferred for execu-
tion to other SCPis

– Scenario: If a SCPi fails or is shut down
while performing application executions,
other SCPis shall detect the SCPi failure and
shall take over the application executions
carried by the failed SCPi.

• Self-Configuring_2: A SCPi is aware about the
performance of the hosted applications. If an
application is slowing down due to a lack of
resources, this application can be distributed
among different SCPis (run/resumed in parallel)
if the application itself supports distributed
execution.

– Assisting system goals: Provide Application

– Actors: SCPe, SCPis, application, resources

– Targets: application distributed for execu-
tion to other SCPis

– Scenario: If a SCPi detects low performance
in application executions due to a lack of
resources, the SCPi may request other SCPis
to take over some of the hosted application
executions, which will eventually release
resources in the initial SCPi and improve the
performance of its still hosted applications.

In addition to the self-* objectives derived from the
context-specific GAR model, more self-* objectives
might be derived from the constraints associated
with the targeted system goal. Note that the analysis
step in Figure 1 (see Section 2.3) uses the context-
specific GAR model and elaborates on both system
goal and constraints associated with that goal. Often
environmental constraints introduce factors that may
violate the system goals and self-* objectives will
be required to overcome those constraints. Actually,
such constraints might represent obstacles to the
achievement of a goal. Constructing self-* objectives
from goal constraints can be regarded as a form of
constraint programming, in which a very abstract logic
sentence describing a goal with its actors and targets
(it may be written in a natural language as well) is
extended to include concepts from constraint satisfaction
and system capabilities that enable the achievement
of the goal. In ARE, the capabilities are actually
abstractions of system operations that need to be
performed to maintain the goal fulfillment along with
constraint satisfaction. In this approach, we need to
query the provability of the targeted goal, which
contains constraints, and then if the system goal
cannot be fulfilled due to constraint satisfaction, a
self-* objective is derived as an assistive system goal
preserving both the original system’s goal targets and
constraint satisfaction.

An example demonstrating this process can be
deriving self-* objectives from the Service Level
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Figure 7. Science Clouds Goals Model with Self-* Objectives Assisting System Goals from Level 3

Agreement (SLA) constraints (see Section 4.2). SLA
may impose constraints on application execution, e.g.,
certain number of active SCPis, certain latency between
the communicating SCPis, or restrictions on processing
power or on memory [22]. In this exercise are derived
the following self-* objectives copying with the SLA
constraints:

• Self-Engaging-SCPis: A SCPe formed for the
execution of a certain application may need a
certain number of involved SCPis.

– Assisting system goals: Provide SCP

– Actors: SCPe, SCPis, application

– Targets: exact number of SCPis

– Scenario: If an application requires an exact
number of SCPis to run, then SCPe shall
engage the exact number of SCPis needed for
the execution of that application.

• Self-Tuning-Latency: A SCPe formed for the
execution of a certain application may need a
certain latency between the communicating SCPis
needed for the execution of that application.

– Assisting system goals: Provide SCP
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– Actors: SCPe, SCPis, application, communi-
cation

– Targets: latency

– Scenario: If an application requires a certain
communication latency between the SCPis
engaged to run that application, then each
one of these SCPis shall maintain its
communication latency by either speed up
the communication (by applying the self-*
objective Self-Optimizing_3) or slow it down
(by introducing certain delay before sending
the data packages).

• Self-Tuning-CPU-Usage: A SCPi executing a cer-
tain application might be restricted by maximum
CPU power allowed to this application.

– Assisting system goals: Provide SCP

– Actors: SCPi, application

– Targets: CPU power

– Scenario: If an application is consum-
ing more CPU power than the maximum
allowed, then the hosting SCPi should slow
down the application execution to minimize
the CPU usage.

• Self-Tuning-Memory-Usage: A SCPi executing
a certain application might be restricted by
maximum memory allowed to this application.

– Assisting system goals: Provide SCP

– Actors: SCPi, application

– Targets: memory

– Scenario: If an application is consuming
more memory than the maximum allowed,
then the hosting SCPi should enforce lower
memory use by this application.

Figure 7 depicts the Science Clouds Goals Model
(shown in Figure 6), but enriched with the self-
* objectives described above. As shown, these self-*
objectives (depicted in gray color) inherit the system
goals they assist by providing behavior alternatives
with respect to these system goals. Note that, due
to the “inheritance” relationship, the targets of the
assisted system goals are kept in all of those self-
* objectives. Note that the Science Clouds system
switches to one of the assisting self-* objectives when
alternative autonomous behavior is required (e.g., an
SCPi fails to perform).

4.5. Formalizing Science Clouds with KnowLang
The next step after deriving the autonomy requirements
per system goal is their specification with KnowLang.

Note that the autonomy requirements carry all the
necessary information that needs to be represented
as knowledge for Science Clouds. Therefore, by
specifying the captured self-* objectives, we build the
necessary knowledge model for Science Clouds, which
is the ultimate goal of this exercise. Specifying with
KnowLang goes over a few phases:

1. Initial knowledge requirements gathering -
involves domain experts to determine the basic
notions, relations and functions (operations) of
the domain of interest.

2. Behavior definition - identifies situations and
behavior policies as “control data” helping to
identify important self-adaptive scenarios.

3. Knowledge structuring - encapsulates domain
entities, situations and behavior policies into
KnowLang structures like concepts, properties,
functionalities, objects, relations, facts and rules.

By applying the ARE approach to capture the autonomy
requirements for Science Clouds, we actually perform
the first two phases, as described above. This makes
the resulting knowledge model very efficient and rele-
vant and without any unnecessary knowledge details.
KnowLang [4] is exclusively dedicated to knowledge
specification where knowledge is specified as a Knowl-
edge Base (KB) comprising a variety of knowledge
structures, e.g., ontologies, facts, rules, and constraints.
Here, in order to specify the autonomy requirements
for Science Clouds, the first step is to specify the KB
representing the cloud, SCPes, SCPis, applications, etc.
To do that, we need to specify ontology structuring
the knowledge domains of the cloud. Note that these
domains are described via domain-relevant concepts
and objects (concept instances) related through relations.
To handle explicit concepts like situations, goals, and
policies, we grant some of the domain concepts with
explicit state expressions (a state expression is a Boolean
expression over ontology) [4]. Note that being part of
the autonomy requirements, knowledge plays a very
important role in the expression of all the autonomy
requirements: autonomicity, knowledge, awareness, moni-
toring, adaptability, dynamicity, robustness, resilience, and
mobility outlined by GAR (see Section 2.3).

Science Cloud Ontology. Figure 8, depicts a graphical
representation of the Cloud_Thing concept tree relating
most of the concepts within the Science Cloud Ontology
(SCCloud). Note that the relationships within a concept
tree are “is-a” (inheritance), e.g., the Latency concept is a
Phenomenon and the Action concept is a Knowledge and
consecutively Phenomenon, etc. Most of the concepts
presented in Figure 8 were derived from the Science
Clouds Goals Model (see Figure 7). Other concepts
are considered as “explicit” and were derived from
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Figure 8. Science Clouds Ontology: Cloud_Thing Concept Tree

the KnowLang’s multi-tier specification model [4]. The
following is a sample of the KnowLang specification
representing two important concepts: the SCP concept
and the Application concept (partial specification
only). As specified, the concepts in a concept tree
might have properties of other concepts, functionalities
(actions associated with that concept), states (Boolean
expressions validating a specific state), etc. The IMPL
specification directive refers to the implementation of
the concept in question, i.e., in the following example
SCPImpl is the software implementation (presuming a
C++ class) of the SCP concept.
// Science Cloud Platform

CONCEPT SCP {

CHILDREN {}

PARENTS { SCCloud.Thing..Cloud_Platform }

STATES {

STATE Running { this.PROPS.platform_API. STATES.Running AND

this.PROPS.platform_Library.STATES.Running }

STATE Executing { IS_PERFORMING(this.FUNCS.runApp) }

STATE Observing { IS_PERFORMING(this.FUNCS.runApp) AND

SCCloud.Thing..Application.PROPS.initiator=this }

STATE Down { NOT this.STATES.Running }

STATE Overloaded { this.STATES.OverloadedCPU OR

this.STATES.OverloadedStorage OR this.STATES.OverloadedMemory }

STATE OverloadedCPU { SCCloud.Thing..Metric.CPU_Usage.VALUE > 0.95 }

STATE OverloadedMemory { SCCloud.Thing..Metric.Memory_Usage.VALUE > 0.95 }

STATE OverloadedStorage { SCCloud.Thing..Metric.Hard_Disk_Usage.VALUE > 0.95 }

STATE ApplicationTransferred { LAST_PERFORMED(this, this.FUNCS.transferApp) }

STATE InCommunication { this.FUNCS.hasActiveCommunication }

STATE InCommunicationLatency { this.STATES.InCommunication

AND this.FUNCS.getCommunicationLatency >0.5 }

STATE InLowTrafic { this.FUNCS.getDataTrafic <= 0.5 }

STATE Started { LAST_PERFORMED(this, this.FUNCS.start) }

STATE Stopped { LAST_PERFORMED(this, this.FUNCS.stop) }

}

PROPS {

PROP platform_API { TYPE {SCCloud.Thing..API} CARDINALITY {1} }

PROP platform_Library { TYPE {SCCloud.Thing..Library} CARDINALITY {1} }

PROP platform_CPU { TYPE {SCCloud.Thing..CPU} CARDINALITY {1} }

PROP platform_Memory { TYPE {SCCloud.Thing..Memory} CARDINALITY {1} }

PROP platform_Storage { TYPE {SCCloud.Thing..Data_Storage} CARDINALITY {1} }

PROP platform_Applications { TYPE {SCCloud.Thing..Application} CARDINALITY {*} }

}

FUNCS {

FUNC run { TYPE { SCCloud.Thing..Action.RunSCP } }

FUNC down { TYPE { SCCloud.Thing..Action.StopSCP } }

FUNC runApp { TYPE { SCCloud.Thing..Action.RunApplication } }

FUNC startApp { TYPE { SCCloud.Thing..Action.StartApplication } }

FUNC stopApp { TYPE { SCCloud.Thing..Action.StopApplication } }

FUNC transferApp { TYPE { SCCloud.Thing..Action.TransferApplication } }

FUNC startNewCommunication { TYPE { SCCloud.Thing..Action.StartCommunication } }

FUNC stopNewCommunication { TYPE { SCCloud.Thing..Action.StopCommunication } }

FUNC hasActiveCommunication { TYPE { SCCloud.Thing..Action.HasActiveCommunication } }

FUNC getCommunicationLatency { TYPE { SCCloud.Thing..Action.GetCommunicationLatency } }

FUNC getDataTraffic { TYPE { SCCloud.Thing..Action.GetTraffic } }

}

IMPL { SCCloud.SCPImpl }

}

// Science Cloud Application

CONCEPT Application {

CHILDREN {}

PARENTS { SCCloud.Thing..Software }

STATES {

STATE Running { PERFORMED(this.FUNCS.Started)

AND NOT PERFORMED(this.FUNCS. Stopped) }

STATE Started { LAST_PERFORMED(this, this.FUNCS.start) }

STATE Stopped { LAST_PERFORMED(this, this.FUNCS.stop) }

}

PROPS {

PROP needed_CPU_Power { TYPE {SCCloud.Thing..CPU_Power} CARDINALITY {1} }

PROP needed_Memory { TYPE {SCCloud.Thing..Capacity} CARDINALITY {1} }

PROP needed_Storage { TYPE {SCCloud.Thing..Storage} CARDINALITY {1} }

PROP distributiveness { TYPE {Boolean} CARDINALITY {1} }

PROP requiredSCPis { TYPE {Integer} CARDINALITY {1} }

PROP requiredLatency { TYPE { SCCloud.Thing..Latency } CARDINALITY {1} }

PROP initiator { TYPE {SCCloud.Thing..SCP} CARDINALITY {1} }

}

FUNCS { ÅĚ }

IMPL { SCCloud.ApplicationImpl }

}

As mentioned, the states are specified as Boolean
expressions. For example, the state Executing is true
while the SCP is performing the runApp function.
The KnowLang operator IS_PERFORMING evaluates
actions and returns true if an action is currently per-
forming. Similarly, the operator LAST_PERFORMED
evaluates actions and returns true if an action is the last
successfully performed action by the concept realiza-
tion. A concept realization is an object instantiated from
that concept, e.g., a SCP instance (SCPi). A complex
state might be expressed as a Boolean function of other
states. For example, the Running state is expressed as a
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Boolean function of two other states, particularly, states
of concept’s properties, e.g., the SCP is running if both
its API and Library are running:

STATE Running { this.PROPS.platform\_API.STATES.Running AND

this.PROPS.platform\_Library.STATES.Running }

States are extremely important to the specification of
goals (objectives), situations, and policies. For example,
states help the KnowLang Reasoner determine at
runtime whether the system is in a particular situation
or a particular goal (objective) has been achieved.
Note that to specify some of the SCP states, we used
metrics. Metrics are special KnowLang constructs [4]
that may handle the monitoring autonomy requirements
(see Section 4.3).

STATE OverloadedCPU { SCCloud.Thing..Metric.CPU_Usage.VALUE > 0.95 }

The Cloud_Thing concept tree (see Figure 8) is the main
concept tree of the SCCloud Ontology. Note that due
to space limitations, Figure 8 does not show all the
concept tree branches. Moreover, some of the concepts
in this tree are “roots” of other trees. For example,
the Action concept, expressing the common concept
for all the actions that can be realized by the cloud,
is the root of the concept tree shown in Figure 9. As
shown, actions are grouped by subsystem (or part) they
are associated with. For example, the SCP actions are:
RunSCP, StopSCP, LeaveSCPe, and JoinSCPe.

Note that in the KnowLang specification models, in
addition to concepts, we also specify concept instances,
which are considered as objects and are structured in
object trees. The latter are a conceptualization of how
objects existing in the world of interest (e.g., Science
Clouds) are related to each other. The relationships
in an object tree are based on the principle that
objects have properties, where the value of a property
is another object, which in turn also has properties
[4]. Therefore, the object trees are the realization of
concepts in the ontology domain (e.g., Science Clouds).
To better understand the relationship between concepts
and objects, we may think of concepts as similar to the
OOP classes and objects as instances of these classes.
For example, the SCP concept might be regarded as a
class and the SCPis as SCP “instances” of that class.
In this exercise are specified a few exemplar SCPis as
object trees, which are not presented here due to space
limitations.

Autonomicity. To specify the self-*objectives (auto-
nomicity requirements), we use goals, policies, and
situations [4]. These are defined as explicit con-
cepts in KnowLang and for the Cloud Ontol-
ogy (SCCloud) are specified under the concepts
Virtual_entity->Phenomenon->Knowledge (see Figure 8).
Figure 10, depicts a concept tree representing the speci-
fied Science Clouds goals. Note that most of these goals
were directly interpolated from the goals models (see

Section 4.2) and more specifically, from the goals model
for self-* objectives assisting the Science Clouds goals
from Level 3 (see Section 4.4).

KnowLang specifies goals as functions of states where
any combination of states can be involved. A goal
has an arriving state (Boolean function of states) and
an optional departing state (another Boolean function
of states) [4]. A goal with departing state is more
restrictive, i.e., it can be achieved only if the system
departs from the specific goal’s departing state.

The following code samples present the specification
of two simple goals. Note that their arriving and
departing states can be either single SCP states or
Boolean functions involving more than one state. Note
that the states used to specify these goals are specified
as part of the SCP concept.
//

//==== Cloud Goals ==============================================================

//

CONCEPT_GOAL Self-optimizing_1 {

SPEC {

DEPART { SCP.STATES.OverloadedCPU }

ARRIVE { SCP.STATES.ApplicationTransferred AND NOT SCP.STATES.OverloadedCPU }

}

}

CONCEPT_GOAL Self-optimizing_3 {

SPEC {

DEPART { SCP.STATES.InCommunicationLatency }

ARRIVE { SCP.STATES.InLowTrafic AND NOT SCP.STATES.InCommunicationLatency }

}

}

According to the KnowLang semantics (see Section
3.1), in order to achieve specified goals (objectives),
we need to specify policies triggering actions that will
eventualy change the system states, so the desired ones,
required by the goals, will become effective [4]. All
the policies in KnowLang descend from the explicit
Policy concept. Note that policies allow the specification
of autonomic behavior (autonomic behavior can be
associated with self-* objectives). As a rule, we need to
specify at least one policy per single goal, i.e., a policy
that will provide the necessary behavior to achieve
that goal. Of course, we may specify multiple policies
handling same goal (objective), which is often the case
with the self-* objectives and let the system decides
which policy to apply taking into consideration the
current situation and conditions.

The following is a specification sample showing
a simple policy called ReduceCPUOverhead - as the
name says, this policy is intended to reduce the CPU
overhead of a SCPi. As shown, the policy is specified
to handle the goal Self-Opimizing_1 and is triggered by
the situation HighCPUUsage. Further, the policy triggers
conditionally (the CONDITONS directive requires that
a SCPi is executing an application) the execution of a
sequence of actions.
CONCEPT_POLICY ReduceCPUOverhead {

SPEC {

POLICY_GOAL { SCCloud.Thing..Self-Optimizing_1 }

POLICY_SITUATIONS { SCCloud.Thing..HighCPUUsage }

POLICY_RELATIONS { SCCloud.Thing..Policy_Situation_1 }

POLICY_ACTIONS {SCCloud.Thing..Action.StartCommunication,

SCCloud.Thing..Action.TransferApplication,

SCCloud.Thing..Action.StopCommunication }

POLICY_MAPPINGS {

MAPPING {

CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
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Figure 9. Science Clouds Ontology: Cloud_Action Concept Tree

DO_ACTIONS { SCCloud.Thing..SCP.Action.StartCommunication,

SCCloud.Thing..SCP.Action.TransferApplication,

SCCloud.Thing..SCP.Action.StopCommunication }

}

}

}

}

As mentioned above, policies are triggered by situa-
tions. Therefore, while specifying policies handling sys-
tem objectives, we need to think of important situations
that may trigger those policies. These situations shall
be eventually outlined by the scenarios of the ARE
Requirements Chunks (see Section 4.4). A single policy
requires to be associated with (related to) at least one
situation, but for polices handling self-* objectives, we
eventually need more situations. Actually, because the
policy-situation relation is bidirectional, it is maybe more
accurate to say that a single situation may need more
policies, those providing alternative behaviors or execu-
tion paths from that situation. The following code rep-
resents the specification of the HighCPUUsage situation,
used for the specification of the ReduceCPUOverhead
policy.
//

//==== Cloud Situations =========================================================

//

CONCEPT_SITUATION HighCPUUsage {

CHILDREN {}

PARENTS { SCCloud.Thing..Situation}

SPEC {

SITUATION_STATES { SCCloud.Thing..SCP.STATES.OverloadedCPU}

SITUATION_ACTIONS { SCCloud.Thing..Action.TransferApplication,

SCCloud.Thing..Action.SlowDownApplication,

SCCloud.Thing..Action. StopApplication }

}

}

As shown, the situation is specified with states and
possible actions. To consider a situation effective (the

system is currently in that situation), its associated
states must be respectively effective (evaluated as true).
For example, the situation HighCPUUsage is effective if
the SCP state OverloadedCPU is effective. The possible
actions define what actions can be undertaken once
the system falls in a particular situation. For example,
the HighCPUUsage situation has three possible actions:
TransferApplication, SlowDownApplication, and StopAp-
plication. The following code represents another policy
intended to handle the HighCPUUsage situation. In this
policy are specified three MAPPING sections, which
introduce three possible alternative execution paths.

CONCEPT_POLICY AIReduceCPUOverhead {

SPEC {

POLICY_GOAL { SCCloud.Thing..Self-Optimizing_1 }

POLICY_SITUATIONS { SCCloud.Thing..HighCPUUsage }

POLICY_RELATIONS { SCCloud.Thing..Policy_Situation_2 }

POLICY_ACTIONS { SCCloud.Thing..Action.SlowDownApplication,

SCCloud.Thing..Action. StopApplication }

POLICY_MAPPINGS {

MAPPING {

CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }

DO_ACTIONS { SCCloud.Thing..Action. SlowDownApplication }

PROBABILITY {0.5}

}

MAPPING {

CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }

DO_ACTIONS { SCCloud.Thing..Action. StopApplication }

PROBABILITY {0.4}

}

MAPPING {

CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }

DO_ACTIONS { GENERATE_NEXT_ACTIONS(SCCloud.Thing..SCP) }

PROBABILITY {0.1}

}

}

}

}

Note that situations are related to policies via relations
[4]. The following code demonstrates how we related
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Figure 10. Science Cloud Ontology: Cloud_Goal Concept Tree

the HighCPUUsage situation to two different policies:
ReduceCPUOverhead and AIReduceCPUOverhead.
//

//==== Cloud Relations ========================================================

//

RELATIONS {

RELATION Policy_Situation_1 {

RELATION_PAIR { SCCloud.Thing..HighCPUUsage, SCCloud.Thing..ReduceCPUOverhead }

PROBABILITY {0.5}

}

RELATION Policy_Situation_2 {

RELATION_PAIR { SCCloud.Thing..HighCPUUsage, SCCloud.Thing..AIReduceCPUOverhead}

PROBABILITY {0.4}

}

}

As specified, the probability distribution gives initial
designer’s preference about what policy should be
applied if the system ends up in the HighCPUUsage
situation. Note that at runtime, the KnowLang Reasoner
maintains a record of all the action executions and
re-computes the probability rates every time when
a policy has been applied. Thus, although initially
the system will apply the ReduceCPUOverhead policy
(it has the higher probability rate of 0.5), if that
policy cannot achieve its goal due to action fails (e.g.,
the communication link with another SCPi is broken
and application transfer is not possible), then the
probability distribution will be shifted in favor of the
AIReduceCPUOverhead policy and the system will try to

apply that policy. Note that in this case both policies
share the same goal.

Probability distribution at the level of situation-
policy relation can be omitted, presuming the rela-
tionship will not change over time. It is also pos-
sible to assign probability distribution within a pol-
icy where the probability values are set at the level
of action execution, e.g., see the specification of the
AIReduceCPUOverhead policy above. As specified, the
AIReduceCPUOverhead policy is intended to handle
the HighCPUUsage situation by providing alternative
execution paths with similar probability distribution.
Here, probabilities are recomputed after every action
execution, and thus the behavior change accordingly.
Moreover, to increase the goal-oriented autonomicity,
in this policy’s specification is used the special KnowL-
ang operator GENERATE_NEXT_ACTIONS, which will
automatically generate the most appropriate actions
to be undertaken by the SCP. The action generation
is based on the computations performed by a special
reward function implemented by the KnowLang Rea-
soner. The KnowLang Reward Function (KLRF) observes
the outcome of the actions to compute the possible
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successor states of every possible action execution and
grants the actions with special reward number consid-
ering the current system state (or states, if the current
state is a composite state) and goals. KLRF is based on
past experience and uses Discrete Time Markov Chains
[23] for probability assessment after action executions
[4].

Note that when generating actions, the GENER-
ATE_NEXT_ACTIONS operator follows a sequential
decision-making algorithm where actions are selected
to maximize the total reward. This means that the
immediate reward of the execution of the first action, of
the generated list of actions, might not be the highest
one, but the overall reward of executing all the gen-
erated actions will be the highest possible one. More-
over, note that, the generated actions are selected from
the predefined set of actions (e.g., the possible Cloud
actions - see Figure 9). The principle of the decision-
making algorithm used to select actions is as follows:

1. The average cumulative reward of the reinforce-
ment learning system is calculated.

2. For each policy-action mapping, the KnowLang
Reasoner learns the value function, which is
relative to the sum of average reward.

3. According to the value function and Bellman
optimality principle1, is generated the optimal
sequence of actions.

Monitoring. The monitoring autonomy requirement is
handled via the explicit Metric concept [4]. In general,
a self-adaptive system has sensors that connect it to
the world and eventually help it listen to its internal
components. These sensors generate raw data that
represent the physical characteristics of the world.
In this approach is assumed that cloud sensors are
controlled by a software driver (e.g., implemented in
C++) where appropriate methods are used to control
a sensor and read data from it. By specifying a Metric
concept, we introduce a class of sensors to the KB, and by
specifying objects, instances of that class, we represent
the real sensor. KnowLang allows the specification of
four different types of metrics [4]:

• RESOURCE - measure resources like capacity;

• QUALITY - measure qualities like performance,
response time, etc.;

• ENVIRONMENT - measure environment qualities
and resources;

1The Bellman optimality principle: If a given state-action sequence
is optimal, and we were to remove the first state and action, the
remaining sequence is also optimal (with the second state of the
original sequence now acting as initial state).

• ENSEMBLE - measure complex qualities and
resources where the metric might be a function
of multiple metrics both of RESOURCE and
QUALITY type.

The following is a specification of metrics mainly used
to assist the specification of states in the specification of
the SCP concept (see Section 4.5).

//Cloud Metrics

CONCEPT_METRIC CPU_Usage {

SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { CPU.Usage }

DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }

CONCEPT_METRIC Memory_Usage {

SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { Memory.Usage }

DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }

CONCEPT_METRIC Hard_Disk_Usage {

SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { HDD.Usage }

DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }

5. Related work
An autonomous system is able to monitor its behavior
and eventually modify the same according to changes
in the operational environment, thus being considered
as self-adaptation. As such, autonomous systems must
continuously monitor changes in its context and react
accordingly. But what aspects of the environment
should such a system monitor? Clearly, the system
cannot monitor everything. And exactly what should
the system do if it detects less than optimal conditions
in the environment? Presumably, the system still needs
to maintain a set of high-level goals that should be
satisfied regardless of the environmental conditions,
e.g., mission goals of unmanned spacecraft used for
space exploration. But non-critical goals could be not
that strict [24], thus allowing the system a degree
of flexibility during operation. These questions (and
others) form the core considerations for building
autonomous systems.

Traditionally, requirements engineering is concerned
with what a system should do and within which con-
straints it must do it. Requirements engineering for
autonomous systems and self-adaptive systems, there-
fore, must address what adaptations are possible and
under what constrains, and how those adaptations
are realized. In particular, questions to be addressed
include: 1) “What aspects of the environment are rel-
evant for adaptation?”; and 2) “Which requirements
are allowed to vary or evolve at runtime, and which
must always be maintained?”. Requirements engineering
for autonomous systems must deal with uncertainty,
because the execution environment often is dynamic
and the information about future execution environ-
ments is incomplete, and therefore the requirements
for the behavior of the system may need to change (at
runtime) in response to the changing environment.

Requirements engineering for autonomous systems
appears to be a wide open research area with only
a limited number of approaches yet considered. The
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Autonomic System Specification Language (ASSL) [25–
27] is a framework providing for a formal approach
to specifying and modeling autonomous (autonomic)
systems by emphasizing the self-* requirements. Cheng
and Atlee [28] report on work on specifying and
verifying adaptive software. In [29, 30], research on
runtime monitoring of requirements conformance is
described. In [31], Sutcliffe, S. Fickas and M. Sohlberg
demonstrate a method (called PC-RE) for personal and
context requirements engineering that can be applied
to autonomous systems. In addition, some research
approaches have successfully used goal models as a
foundation for specifying the autonomic behaviour [32]
and requirements of adaptive systems [33].

A major breakthrough of the past decade in Software
Requirements Engineering is the goal-oriented approach
to capturing and analyzing stakeholder intentions
to derive functional and non-functional (hereafter
quality) requirements [34, 35]. In essence, this approach
has extended upstream the software development
process by adding a new phase (early requirements
analysis) that is also supported by engineering concepts,
tools and techniques.

The fundamental concepts used to drive the goal-
oriented form of analysis are those of goal and actor. To
fulfill a stakeholder goal, the Goal-Oriented Require-
ments Engineering (GORE) [3] approach provides for
analyzing the space of alternatives, which makes the
process of generating functional and non-functional
(quality) requirements more systematic in the sense that
the designer is exploring an explicitly represented space
of alternatives. It also makes it more rational in that
the designer can point to an explicit evaluation of these
alternatives in terms of stakeholder criteria to justify
her choice.

ARE uses GORE as the first phase of the Autonomy
Requirements Engineering process. ARE uses GORE to
build goal models that can help us derive autonomy
requirements in several ways:

1. Goal models can be used to capture and
refine requirements for autonomic systems. A
goal model provides the starting point for the
development of such a system by analyzing
the environment for the system-to-be and by
identifying the problems that exist in this
environment as well as the needs that the
system under development has to address. Thus,
requirements goal models can be used as a
baseline for validating software systems.

2. Goal models provide a means to represent
alternative ways in which the objectives of the
system can be met and analyze and rank these
alternatives with respect to stakeholder quality
concerns and other constraints. This allows for
exploration and analysis of alternative system

behaviors at design time, which leads to more
predictable and trusted autonomic systems. It
also means that if the alternatives that are
initially delivered with the system perform well,
there is no need for complex social interactions
among autonomic elements. Of course, not all
alternatives can be identified at design time. In an
open and dynamic environment, new and better
alternatives may present themselves and some of
the identified and implemented alternatives may
become impractical. Thus, in certain situations,
new alternatives will have to be discovered
and implemented by the system at runtime.
However, the process of discovery, analysis, and
implementation of new alternatives at runtime is
complex and error-prone. By exploring the space
of alternative process specifications at design
time, we minimize the need for that difficult task.

3. Goal models provide the traceability mechanism
from AC system designs to stakeholder require-
ments. When a change in stakeholder require-
ments is detected at runtime (e.g., a major change
in the global mission goal), goal models can be
used to re-evaluate the system behavior alterna-
tives with respect to the new requirements and to
determine if system reconfiguration is needed. For
instance, if a change in stakeholder requirements
affected a particular goal in the model, it is possi-
ble to see how this goal is decomposed and which
components/autonomic elements implementing
the goal are in turn affected. By analyzing the
goal model, it is also easy to identify how a
failure to achieve some particular goal affects the
overall objective of the system. At the same time,
highly variable goal models can be used to visu-
alize the currently selected system configuration
along with its alternatives and to communicate
suggested configuration changes to users in high-
level terms.

4. Goal models provide a unifying intentional
view of the system by relating goals assigned
to individual autonomic elements to high-level
system objectives and quality concerns. These
high-level objectives or quality concerns serve
as the common knowledge shared among the
autonomic computing elements to achieve the
global system optimization. This way, the system
can avoid the pitfalls of missing the globally
optimal configuration due to only relying on local
optimizations.

6. Conclusions
This article has presented an Autonomy Requirements
Engineering approach, developed to tackle the special
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autonomy requirements used to derive self-adaptation
capabilities of software intensive systems. A proof-of-
concept example has been presented where is applied
the proposed ARE model to a Science Clouds case study.
With this example is demonstrated how ARE can be
used to both elicit and express autonomy requirements
for software-intensive, yet self-adaptive, systems. Note
that ARE relies on Goal-Oriented Requirements
Engineering (GORE) to elicit and define the system
goals, and uses a Generic Autonomy Requirements
(GAR) model to derive and define assistive and
eventually alternative goals (or objectives) of the system.
The system may pursue these “self-* objectives” in the
presence of factors threatening the achievement of the
initial system goals. Once identified, the autonomy
requirements, including the self-* objectives, have been
further specified with KnowLang. The specification of
the Science Clouds autonomy requirements along with
accompanying rationale have also been presented in
this article.

Future work is mainly concerned with development
of tools for ARE. An efficient ARE Tool Suite incor-
porating an autonomy requirements validation approach
is the next logical step needed to complete the ARE
Framework. Moreover, an efficient ARE Framework
shall adopt KnowLang as a formal notation and pro-
vide tools for specification and validation of autonomy
requirements. Runtime knowledge representation and
reasoning shall be provided along with monitoring
mechanisms to support the autonomy behavior of a
system at runtime. We need to build an ARE Test Bed
tool that will integrate the KnowLang Reasoner and
will allow for validation of self-* objectives based on
simulation and testing. This will help engineers validate
self-* objectives by evaluating the system’s ability to
perceive the internal and external environment and
react to changes. Therefore, with the ARE Test Bed
tool, we shall be able to evaluate capabilities that
might manifest system awareness about situations and
conditions. Ideally, both the autonomy requirements
model specified in the form of knowledge representa-
tion and the reasoner, can be further implemented in
autonomous spacecraft as an engine responsible for the
adaptive behavior. Eventually, a code generator shall be
able to generate stubs supporting the operations of the
KnowLang Reasoner. These stubs can be further used
as a basis for the real implementation of the mechanism
controlling the autonomic behavior of the system.
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