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Abstract

A promising way to cope with complexity in verifying large systems is to perform modular verification
where components are verified separately. However, in the context of adaptive systems, it is difficult to
apply this principle because adaptation behaviour and functional behaviour are often intertwined. In this
paper, we present and apply a design pattern for distributed adaptive real-time systems using the process
calculus Timed CSP. Our pattern explicitly differentiates between functional data and adaptive control
data and thereby allows for a strict separation of adaptation and functional components. We enable the
modular verification of functional and adaptation behaviour, respectively, based on the notion of process
refinement in Timed CSP. The verification of refinements is automated using industrial-strength proof tools.
As the notion of refinement can also be used to justify abstractions, we furthermore enable abstraction-
based verification, where a detailed system is abstracted to facilitate more efficient verification efforts. This is
especially important in the industrial development of adaptive systems using languages like SystemC where
a designer not necessarily applies fine-grained refinements, but implements larger parts of the functional and
adaptation logic possibly at the same time. Therefore, we discuss how common refinements and abstractions
from the context of Timed CSP can be used as a formal basis for refinements and abstractions in SystemC.
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1. Introduction
Modern adaptive systems are distributed among
different network nodes. One of the advantages of such
distributed adaptive systems is their robustness, which
must not be corrupted by single points of failures as
provoked by centralized components. Thus, adaptation
of the entire network’s behaviour should be distributed
as well. This means that adaptive components should
be able to adapt both, their local behaviour and
the behaviour of the overall network, for example
by notifying other components. This, however, makes
these systems very complex to design and analyse.

In this paper, we present a design pattern for
distributed adaptive real-time systems. Our aim is

HThis article is an extended version of [11]. The main extensions
lie in the discussion of refinement-based verification in SystemC
(Section 4.4) and in the discussion of abstraction-based verification
in Timed CSP and SystemC (Section 6).
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threefold. First, we describe an architecture that serves
as a general template for the formal design of adaptive
systems. Second, we enable a strict separation of
functional and adaptation behaviour. Third, due to
this separation, we allow for modular refinement- and
abstraction-based verification of adaptive systems.

In previous work [3], we considered the separated
refinement-based verification of adaptation and func-
tional behaviour in untimed adaptive systems. In this
paper, we extend this approach by introducing timing
dependencies and by additionally focussing on a strict
distinction between functional data and control data
following [5]. A functional component manipulates its
functional data but its behaviour may be controlled by
possibly dynamic control data that can only be changed
by some corresponding adaptation component. The
adaptation component gathers information from the
functional component, which it uses for an analysis con-
cerning whether or not adaptation is necessary. Then, a
plan is created which results in a set of new control data,
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which is finally set in the functional component or sent
to another distributed adaptive component. We show
how this idea can be modelled and used for refinement-
based verification with Timed CSP in a modular and
stepwise manner using automatic tool support. Timed
CSP is an ideal choice for this because of its expressive
semantics, its compositional notions of refinement, and
its mature tool support.

As the notion of refinement can be directly used
to justify abstractions formally, we present several
abstractions in Timed CSP and discuss how they can
be used for verification (of adaptive systems). The
benefits of abstraction-based verification is that a spe-
cific set of abstractions can be applied to make ver-
ification of a particular property feasible. The corre-
sponding abstract model is not necessarily constructed
in a refinement-based development process. Thus,
abstraction-based verification can be applied in a more
goal-oriented way.

We discuss both, the refinement- and the abstraction-
based approach, w.r.t. their applicability in SystemC.
We consider SystemC because of its industrial impor-
tance in the design and implementation of embedded
real-time systems. This lays the foundation for a well-
founded verification approach for distributed adaptive
real-time systems that are designed in SystemC in
future work. Furthermore, this would have the advan-
tage that the rather theoretical language of (Timed) CSP
can be applied in practice by a system designer without
the need of explicitly working with (Timed) CSP.

The rest of this paper is structured as follows. In Sec-
tion 2, we briefly introduce the process calculus Timed
CSP and the system level design language SystemC,
which is widely used in industry. Then, we discuss
related work in Section 3. In Section 4, we introduce
our timed adaptive specification pattern and discuss its
refinement and verification capabilities. Furthermore,
we discuss how its verification capabilities can be trans-
ferred to the context of SystemC. We illustrate the
benefits of our approach using an example in Section 5.
In Section 6, we discuss abstractions that can be used
in the context of our pattern and discuss how these
abstractions can be used in the context of SystemC.
Finally, we conclude the paper in Section 7 and give
pointers to future work.

2. Background
In this section, we give a brief introduction to Timed
CSP followed by a short introduction to SystemC.

2.1. Timed CSP
Timed CSP is a timed extension of the CSP (Com-
municating Sequential Processes) process calculus [28].
It enables the description and the compositional

refinement-based verification of possibly infinite-state
real-time systems. Process operators like STOP, SKIP,
Prefix (a -> P), Sequential Composition (P ; Q), External
Choice (P [] Q), Internal Choice (P |~| Q), Parallel Com-
position (P [|A|] Q), Hiding (P \ A), and special timed
operators like WAIT(t) are used to describe systems.

The basic processes of (Timed) CSP are STOP
and SKIP. While STOP cannot do anything (except
letting time advance), SKIP can also successfully
terminate. The process a -> P offers the environment
the opportunity to synchronize on event a at some point
and then behaves like P. The process P ; Q first behaves
like P and, if it successfully terminates, then behaves
like Q. The process P [] Q offers its environment a
choice between P and Q, which is triggered by the first
visible event in either P or Q. The process P |~| Q

behaves like either P or Q, but the choice is resolved
internally without the influence of the environment.
The parallel composition P [|A|] Q requires P and Q to
synchronize on each event a ∈ A, but all other events of
either P or Q are performed independently. The process
P \ A executes the events in the set A internally, without
synchronization with the environment; they can be
thought of as being replaced by indistinguishable τ
events. Finally, the WAIT(t) operator can let t time

units advance before it behaves like SKIP.
A discretely-timed dialect of Timed CSP that is

amenable to automatic model checking techniques is
tock-CSP. Here, the passage of time is explicitly mod-
elled using a distinguished event tock. In FDR3 [10],
which is the standard tool for CSP, tock-CSP is sup-
ported via timed operators and the prioritise opera-
tor which can be used to give internal (τ) as well as other
events priority over tock. This is necessary to preserve
the notion of refinement and its compositional features
from Timed CSP.

Refinement is usually considered in the semantical
traces or failures model. The refinement P vT Q, for
example, expresses that traces(Q) ⊆ traces(P ) where
traces(_) denotes all finite traces of a process. Traces can
be used to specify safety properties. In contrast, failures
additionally record a set of refused events at the end
of each trace and thereby allow for the specification
of liveness properties. Failures refinement is written as
P vSF Q. While traces refinement is relatively intuitive,
failures refinement basically describes reduction of
(internal) non-determinism. This comes from the fact
that refused events are only recorded in stable states
after a trace, i.e., states where no internal step is
possible. For example, P |~| Q is refined by the process
P [] Q with respect to the (stable) failures model.
The most important point concerning the semantics of
(Timed) CSP is compositionality. From the refinements
P v P ′ and Q v Q′ it follows that in any arbitrary
composition also P ⊗Q v P ′ ⊗Q′ holds, i.e., refinement
can be shown component-wise. This enables modular
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verification in (Timed) CSP, which we exploit in the
context of our adaptive system pattern.

2.2. SystemC
SystemC [16], introduced by the Open SystemC Initia-
tive (OSCI) in 1999, is a system level design language
and a framework for HW/SW co-simulation. It is imple-
mented as a C++ library and provides elements for the
description of both hardware and software, and of com-
munication and synchronization between concurrent
processes. It allows modelling and execution of system
designs on various levels of abstraction. A SystemC
design consists of communicating processes, which are
triggered by events and communicate through chan-
nels. Structural information is represented in terms
of modules (computing units) and channels (commu-
nication units). SystemC also introduces an integer-
valued time model with arbitrary time resolution. The
execution of SystemC designs is controlled by a coop-
erative and non-preemptive scheduler. It controls the
simulation time, the event notification, the execution
of processes, and the update of primitive channels. To
impose a partial order on simultaneous actions, Sys-
temC supports the notion of delta-cycles. A delta-cycle
consists of two phases: the evaluation of ready processes
and the update of primitive channels. The order in
which concurrent processes are executed is chosen non-
deterministically. SystemC supports immediate, delta,
and timed notification where immediate notified pro-
cesses are triggered before the update of primitive
channels and delta notified processes afterwards.

The semantics of SystemC is informally defined by
the SystemC scheduler, but there also exist a variety of
approaches that provide a formal semantics for subsets
of SystemC (as summarised in the next section).

3. Related Work
Dynamic reconfiguration of systems is supported by
the architecture description language (ADL) Dynamic
Wright [2]. Reconfiguration of interacting components
is modelled separately from steady-state behaviour in a
central specification. Our work aims at supporting the
stepwise construction of distributed adaptive systems
in which adaptation is realised in a decentralised way.

The work in [1] provides a model-based development
approach for adaptive embedded systems in which
adaptation behaviour is strictly separated from func-
tional behaviour. Verification properties are expressed
in temporal logics and verified using theorem provers
and model checkers. In contrast, our approach aims
to support development processes for adaptive real-
time systems with the powerful notion of refinement
in Timed CSP and proof tools for automatic refinement
checking.

In [18], CSP is used to model self-adaptive appli-
cations where nodes in a network learn from the
behaviour of other nodes. Behavioural rules, which are
used to adapt the individual behaviour, are described
in terms of CSP processes and communicated between
the nodes. In contrast, we focus on modelling entire
(self-)adaptive systems using Timed CSP and verifying
properties of them based on the notion of refinement.

In [30], a modular approach for model-checking
adaptive systems is presented. Invariant properties are
stated in the temporal logic A-LTL, an extension of
LTL with an adapt-operator. Modular verification is
performed by decomposing the system into submodules
and by applying assume-guarantee reasoning. Assump-
tions and guarantees are computed automatically. In
contrast to our work, neither refinement nor real-time
aspects are considered.

Timed automata are used in [17] for modelling and
verifying a decentralised adaptive system. Verification
of safety, liveness, and timing properties is performed
using the Uppaal model checker. In contrast, we focus
on the stepwise development and modular verification.

In [21], a UML-based modelling language for
untimed adaptive systems is presented. Based on its
formal semantics, deadlock freedom and stability can
be verified. Our work enables the stepwise development
and furthermore the verification of general functional
and adaptation properties in a timed setting.

In [3], we presented an approach for the specification
and verification of untimed distributed adaptive
systems in CSP. A main goal of that work was the
separation of functional from adaptation behaviour.
The application of that framework in [29] has shown
that the high level of abstraction becomes problematic
when supplementing the adaptive system model with
functional behaviours. While functional and adaptation
events and also respective system variables can be
separated, it remains unclear how the interface can
be modelled in a systematic manner. This drawback
is addressed in this paper following IBM’s MAPE
approach. This allows for a more modular verification
approach compared to our previous work. Furthermore,
we introduce mechanisms to specify and verify timing
behaviour.

Related Work on SystemC can be split into two
groups. On the one hand, there are modelling
approaches for adaptive systems in SystemC that do
not consider formal verification and on the other hand,
there are approaches for formal verification of SystemC
designs that do not consider adaptivity. [9, 24, 27]
provide modelling mechanisms for reconfigurability in
SystemC. In [24, 27] additional libraries for SystemC
providing elements for modelling of reconfigurable
components are proposed. In [9] reconfiguration of
hardware tasks is modelled using dynamic threads.
ANDRES [14] provides a modelling framework for
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adaptive heterogeneous embedded systems, based on
three SystemC extensions. It supports multiple means
of adaptivity. Adaptivity is modelled with a formally
defined adaptive process, which changes its behaviour
depending on signals on a special control channel. In
[13], a refinement flow from such an abstract adaptive
process into dynamically reconfigurable hardware is
presented. These modelling approaches explicitly focus
on adaptive systems but do neither consider distributed
adaptive systems nor support formal verification.

There exist a lot of formal verification approaches for
subsets of SystemC (e.g. [6, 12, 20]), but they consider
neither adaptivity nor modular verification. In [25]
a verification framework for SystemC that uses state
reduction and abstraction techniques is proposed, but
adaptivity is not considered.

4. Timed Adaptive System Pattern and
Refinement-Based Verification
In this section, we introduce an abstract pattern for
distributed adaptive real-time systems. It defines a
general structure of such systems, which is amenable to
modular refinement-based verification. In Figure 1, the
overall architecture is illustrated. We consider adaptive
systems consisting of a network of adaptive components
(AC(i)) that communicate using events. Communication
events are categorised, depending on their purpose,
as either functional events (FE) or external adaptation
events (EA). A single component can perform some
computation (also depicted by the occurrence of an
abstract FE event) or adapt its internal behaviour (IA)
due to the violation of some (local) invariant. Note
that such computations are represented abstractly by
events that possibly take time and by possibly changing
the state variables. Internal adaptation can also be
triggered by an internal timeout (TO). Timeouts can,
for example, be used to indicate that during a certain
amount of time, certain functional events have not
been communicated. If some internal adaptation takes
place, other components can be triggered to adapt their
behaviour accordingly using external adaptation events
(EA). The environment interacts with the adaptive
system using functional events (FE) only. As it might be
necessary to restrict the behaviour of the environment,
the process ENV can be used to constrain it.

In a model-driven development process, an abstract
design is continuously refined until an implementation
model is reached. To start with more abstract models
offers the advantage that properties can be verified,
whose verification would be too complex on more
concrete levels. In the following, we explain how the
pattern can be formally defined on an abstract level
in Timed CSP and how it can be refined in a stepwise
fashion. This enables verification of properties in a
modular manner. The primary focus of the models is

AC(1) AC(2)

AC(3)

ENV

IA/TO,
FE

IA/TO,
FE

IA/TO,
FE

FE

EA, FE

EA, FE EA, FE

Environment

Figure 1. Architecture of Specifications

on the strict separation of functional behaviour and
adaptation behaviour. Basing verification on the notion
of refinement allows us to verify both of these aspects
separately while leaving out concrete details of the
respective other part. Using the real-time capabilities
of Timed CSP and FDR3, we can particularly specify
and verify timing dependencies in the functional and
adaptation behaviours.

4.1. Abstract Model
In our approach, an adaptive system consists of a
set of (distributed) adaptive components. Each such
component consists of an adaptation component, a
functional component, and, if necessary, a timer.

AdaptiveComponent ( i ) =
(AC( i ) [ | { timeout } | ] TIMER( i ) )

[ | union ( FE ( i ) , { | getData , setControlData | } ) | ] FC( i )

The adaptation component checks whether adapta-
tion of the functional component is necessary every
t(i) time units. To this end, it implements IBM’s MAPE
(monitor, analyse, plan, execute) approach [15]. It gath-
ers the data from the functional component using the
getData event, analyse it, plan adaptation and execute
the plan by setting the control data and possibly noti-
fying other adaptive components. These steps are cap-
tured in the CHECKADAPT and ADAPT processes described
below. The adaptation component can also be triggered
by some external adaptation event (initiated by another
adaptive component) or be notified that the timeout has
elapsed. The timeout can for example be used to denote
that during the last timer(i) time units no functional
event took place (see TIMER below).

AC( i ) =
WAIT( t ( i ) ) ; CHECKADAPT( i )

[ ] ( [ ] x :EA( i ) @ x −> getData ?d? cd −> ADAPT( i , x ) )
[ ] timeout −> getData ?d? cd −> ADAPT( i , timeout )

The CHECKADAPT process gathers functional and con-
trol data from the functional component. Depending on
violations of the local invariant, control data is adapted
in the ADAPT process. On this abstract level, the invari-
ant is not explicitly captured but possible violations are
modelled via internal choices.
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CHECKADAPT( i ) = getData ?d? cd −>
( | ~ | x : IA ( i ) @ x −> ADAPT( i , x )

| ~ | AC( i ) )

Adaptation takes some time ta(i,x), depending
on the component i in which adaptation takes place
and depending on the cause of adaptation x. After
the plan is created, the corresponding control data is
set in the functional component and further adaptive
components are notified using external adaptation EA

events, which is realised in the NotifyACs process.

ADAPT( i , x ) = WAIT( ta ( i , x ) ) ;
| ~ | cd : CD @ setControlData . cd −>

( NotifyACs ( i , x ) ; AC( i ) )

The timer keeps track of whether some functional
event took place within the last timer(i) time units.

TIMER( i ) = [ ] x : FE ( i ) −> TIMER( i )
[ ] WAIT( timer ( i ) ) ; timeout −> TIMER( i )

The functional component provides information
about the internal data to the adaptation component. It
also can obtain new control data from the adaptation
component. On this level of abstraction, we abstract
away state information using constructions based on
internal choices. Furthermore, a functional component
can communicate with other functional components or
just manipulate its functional data using FE events,
which may take some time tf(fe).

FC( i ) = | ~ | ( d , cd ) : { ( d , cd ) | d <− D , cd <− CD}
@ getData . d . cd −> FC( i )

[ ] setControlData ? cd ’ −> FC( i )
[ ] | ~ | fe : FE ( i ) @ fe −> WAIT( t f ( fe ) ) ; FC( i )

The abstract components have a far smaller state
space than the refined components that we introduce
in the following subsection. This especially enables the
verification on the abstract level in reasonable time.
The relatively complicated construction for coping
with state information based on internal choices (e.g.
getData in the functional component) is necessary to
allow for later refinements in the failures model of CSP.
It is certainly a radical way to leave out all of the state
information here. However, it would be possible to keep
at least a part of the state information.

4.2. Refined Model
In the abstract model described above, state informa-
tion of the components is abstracted away. A refined
model needs to make clear when the abstract actions
actually take place. To do this in the context of
CSP, non-determinism is usually reduced by using
guarded deterministic choices ([]) instead of internal
choices (|~|). For the adaptation component this means
that the adaptation logic is refined by reducing non-
determinism in CHECKADAPT and ADAPT. In the CHECK-

ADAPT’ subcomponent, the invariant is now explicitly

modelled by the g(i,d,cd,ia) predicate. Note that
CHECKADAPT’ and ADAPT’ now also depend on the func-
tional (d) and control data (cd).

AC’ ( i ) = WAIT( t ) ; CHECKADAPT’ ( i )
[ ] ( [ ] x :EA @ x −> getData ?d? cd

−> ADAPT’ ( i , d , cd , x ) )
[ ] timeout −> getData ?d? cd

−> ADAPT’ ( i , d , cd , timeout )

CHECKADAPT’ ( i ) = getData ?d? cd −>
( [ ] i a : IA ( i ) @ g ( i , d , cd , i a ) & i a

−> ADAPT’ ( i , d , cd , i a )
[ ] e l s e & none −> AC’ ( i ) )

ADAPT’ ( i , d , cd , x ) = WAIT( ta ( i , x ) ) ;
setControlData . f ( i , d , cd , x ) −>
NotifyACs ’ ( i , d , cd , x ) ; AC’ ( i )

The functional component no longer abstracts from
the data, but makes use of it to implement the actual
functional logic using guards (gf(...)), for example.

FC ’ ( i , d , cd ) = getData . d . cd −> FC ’ ( i , d , cd )
[ ] setControlData ? cd ’ −> FC ’ ( i , d , cd ’ )
[ ] ( [ ] fe : FE ( i ) @ gf ( i , d , cd , fe ) & fe

−> WAIT( t f ( fe ) ) ; FC ’ ( i , h ( d , fe ) , cd ) )

In the next section, we explain the modular
refinement and verification process in the context of the
presented adaptive system pattern.

4.3. Proving Refinement
The aim of the described pattern is to facilitate the
modular verification of adaptive real-time systems.
The most abstract system model leaves out most
of the details concerning adaptation and functional
behaviour. Thus, the most abstract model is suited
to verify properties, which focus neither on the
adaptation behaviour nor the functional behaviour,
e.g., abstract communication properties. By introducing
more detailed adaptation or functional behaviour,
we refine the abstract model to models that fulfil
more detailed properties w.r.t. adaptation or functional
behaviour, respectively. The key point is that often only
the functional behaviour or the adaptation behaviour
needs to be refined, not both at the same time.

A refinement-based approach for verification has two
major advantages. First, we can verify functional and
adaptation correctness separately (see Figure 2). On
the most abstract level, the system is composed of
functional components FC(i) and adaptation compo-
nents AC(i). Both of these abstract kinds of compo-
nents leave out most of the implementation details.
When refining a functional component to FC′(i) or an
adaptation component to AC′(i), we can verify func-
tional and adaptation properties separately by leaving
out details of the respective other components, which
are not of interest for the respective property. This
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AC'(i) FC(i) AC(i) FC'(i)

AC(i) FC(i)

AC'(i) FC'(i)

verify adaptation
behaviour

verify functional 
behaviour

Figure 2. Refinement Strategy

kind of component-wise refinement is possible due to
compositionality of (Timed) CSP refinement. For the
composed system, we have FC(i) ⊗ AC(i) vFD FC(i)′ ⊗
AC(i) and FC(i) ⊗ AC(i) vFD FC(i) ⊗ AC′(i). Further-
more, we have that FC′(i) ⊗ AC(i) vFD FC′(i) ⊗ AC′(i)
and FC(i) ⊗ AC′(i) vFD FC′(i) ⊗ AC′(i). Thus, all prop-
erties that are valid on the partly refined models
FC′(i) ⊗ AC(i) and FC(i) ⊗ AC′(i) remain valid in the
refined model FC′(i) ⊗ AC′(i). The second advantage is
related to the environment model. In CSP, a model is
more abstract than another if it contains fewer con-
straints. This means that a refined system has fewer
behaviours than the abstract one. Ideally, an adap-
tive system is verified with a most abstract or most
unconstrained environment. However, this is almost
never possible, especially not in the context of adaptive
systems. Fortunately, refinement allows us to introduce
necessary constraints to the environment.

4.4. Towards Refinement for SystemC
Our pattern from Section 4 is not restricted to Timed
CSP, but can also be used to develop adaptive systems
in design languages like SystemC. An adaptive SystemC
model consists of (distributed) adaptive components,
modelled as hierarchical modules that communicate
using channels. Each such module contains a functional
and an adaptation module, which realises the MAPE
approach. SystemC supports a stepwise design process
starting with an abstract specification, which is refined
by adding functional and communication details as well
as accurate timing.

Refinement proofs allow for transferring verification
results from an abstract design to a refined one. For
proving refinement, a formal semantics is necessary.
However, the SystemC semantics is only informally
defined. There exist several approaches that define
formal semantics to enable verification (see Section 3).
However, as far as we know, there are no approaches for
proving refinement between SystemC designs directly.

One possibility to prove trace refinement between
two SystemC designs is to combine an approach

that defines a formal semantics for SystemC via
transformation to UPPAAL Timed Automata (a timed
extension of finite state machines) [12] with an
approach for proving trace-based refinement for timed
automata [7, 8]. Using this idea, trace refinement can
be shown by transforming both, the abstract and the
refined SystemC design to timed automata and verify
whether there exists a trace refinement between them.

The work of [12] supports a large subset of SystemC
including the SystemC transaction level modelling
standard TLM [22] and the most important memory
related operations [23] and enables model checking
with the UPPAAL model checker. Therefore, it is
well suited for the formal verification of SystemC
designs. Trace-based refinement checking for timed
automata can be done with the notion of timed
simulation for externally observable traces (hiding local
synchronisation) [4, 7]. [4] checks refinement between
two cottbus timed automata using a fixpoint algorithm
on the set of reachable states of the composition of the
two automata. In [7], refinement checking considering
timed traces of Timed Input/Output Automata is done
by solving a safety timed game. This approach is
implemented in the ECDAR [8] tool, an extension of
UPPAAL-TIGA (timed games).

5. Example
In this section, we present a simple adaptive system to
illustrate the main ideas of the adaptive system pattern
from the previous section. It consists of two adaptive
components: a light dimmer and a daylight sensor.
When the daylight sensor recognises a change in light
intensity that stays stable for a certain amount of time,
the dimmer is notified that it should adapt to the new
situation by changing the dim intensity. Furthermore,
the dimmer can be adjusted manually. This represents
the actual functional behaviour of the dimmer. On
the abstract level, we omit details concerning the state
information within the components. This means that
all choices, which depend on the state information are
realised by internal choices.

As the process DimmerFC_0 below shows, the dimmer
is adjusted manually using the higher and lower

events. Furthermore, the dim intensity can be set using
the setGoal event leading to an automatic adjustment
phase thereafter. Finally, the current dim value can be
queried. The obs event is used as an observation event
for later verification only.

DimmerFC_0( y ) = higher −> obs ? x −> DimmerFC_0( y )
[ ] lower −> obs ? x −> DimmerFC_0( y )
[ ] setGoal ?ny −> DimmerFC_0 ( 9 )
[ ] ( y>0 & ( ad jus t −> DimmerFC_0( y−1)

| ~ | DimmerFC_0 ( 0 ) ) )
[ ] y==0 & obs ? x −> DimmerFC_0( −1)
[ ] getCurrent ? x −> DimmerFC_0( y )
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The corresponding adaptation component can be
notified that the intensity of the surrounding light has
changed such that it subsequently adapts the behaviour
of the functional component.

DimmerAC_0 = newIntensity ? y
−> getCurrent ? x
−> (DimmerAC_0

| ~ | setGoal ? x −> DimmerAC_0)

AdaptiveComponent1_00 = DimmerAC_0
[ | { | getCurrent , setGoal | } | ] DimmerFC_0( −1)

The light sensor recognises the daylight intensity.
If it remains stable for 5 time units, it is checked
whether the dimmer needs to be notified using the
newIntensity event. On this abstract level, details of
the check are hidden through an internal choice.

LightSensorTimer =
WAIT( 5 ) ; timeout −> LightSensorTimer

[ ] l i g h t ? y −> LightSensorTimer

LightSensorAC_0 =
timeout

−> g e t I n t e n s i t y ? y
−> ( newIntensity ? x −> LightSensorAC_0

| ~ | LightSensorAC_0 )

LightSensorFC_0 = l i g h t ? x −> LightSensorFC_0
[ ] g e t I n t e n s i t y ? x −> LightSensorFC_0

AdaptiveComponent2_00 =
( ( LightSensorAC_0

[ | { timeout } | ] LightSensorTimer ) \ { timeout } )
[ | { | g e t I n t e n s i t y | } | ] LightSensorFC_0

The environment model formalises the restriction
that the system is interacted with at most once a second.
This is clearly a severe restriction but eases presentation
here. Finally, the system model assembles the adaptive
components and the environment model according to
the architecture given by our adaptive pattern.

ENV = WAIT( 1 ) ; ( l i g h t ? y−>ENV
[ ] higher−>ENV
[ ] lower−>ENV)

System_abs_0 = ( ( AdaptiveComponent1_00
[ | { | newIntensity | } | ]

AdaptiveComponent2_00 )
[ | { | l i g h t , higher , lower | } | ]

ENV) \ { | newIntensity , getCurrent , g e t I n t e n s i t y | }

We have modelled three safety properties as CSP
processes, which can be verified using trace refinement.
The first property states that two consecutive setGoal

events always occur with different values. The second
one states that there is a delay of at least 4 time units
between consecutive setGoal events. Finally, the third
property states that the dimmer is adjusted gradually.
The dim value before and after setting it can differ by
two at most.

Prop1 = ( [ ] x : d i f f ( Events , { | setGoal | } )@ x −> Prop1 )
[ ] setGoal ? x −> Prop1_help ( x )

Prop1_help ( x ) =
( [ ] e : d i f f ( Events , { | setGoal , higher , lower | } )

@ e −> Prop1_help ( x ) )
[ ] setGoal ? y : { y | y <− DIMINTENSITY , y ! = x }

−> Prop1_help ( y )
[ ] higher −> Prop1
[ ] lower −> Prop1

Prop2 = ( [ ] x : d i f f ( Events , { | setGoal | } )@ x −> Prop2 )
[ ] setGoal ? x −> Prop2_help ( 0 )

Prop2_help ( x ) =
( [ ] e : d i f f ( Events , { | setGoal , tock | } )

@ e −> Prop2_help ( x ) )
[ ] tock −> Prop2_help ( addbound ( x , 1 , 1 0 ) )
[ ] x>=4 & setGoal ? x −> Prop2

Prop3 = ( [ ] x : d i f f ( Events , { | obs | } )@ x −> Prop3 )
[ ] obs ? x −> Prop3_help ( x )

Prop3_help ( x ) =
( [ ] e : d i f f ( Events , { | obs | } ) @ e −> Prop3_help ( x ) )

[ ] obs ? y : { addbound ( x , −2 ,10) , addbound ( x , −1 ,10) , x ,
addbound ( x , 1 , 1 0 ) , addbound ( x , 2 , 1 0 ) }
−> Prop3_help ( y )

These properties are not valid in the abstract model
above. As all three properties are concerned with the
adaptation behaviour of the two components, we first
refine the adaptation mechanisms accordingly.

DimmerAC_1 =
newIntensity ? y

−> getCurrent ? x
−> i f ( x−y < 0) or ( x−y > 9) then DimmerAC_1

e l s e setGoal . ( x−y ) −> DimmerAC_1

LightSensorAC_1 ( x ) =
timeout −> g e t I n t e n s i t y ? y
−> i f ( y ! =x ) then newIntensity . l D i f f ( x , y )

−> LightSensorAC_1 ( y )
e l s e LightSensorAC_1 ( x )

The definitions of the adaptation component above
are updated with these refined parts accordingly
(taking 0 as the initial value for x). The corresponding
new system description System_abs_1 is sufficiently
refined to show the second property using FDR3. Now,
we have two prove obligations: First, it has to be
shown that System_abs_1 is indeed a refinement of
System_abs_0 and that the second property holds.

For the refinement check, we exploit compositional-
ity of CSP. Instead of showing refinement of the overall
system, we show it component-wise.

a s s e r t AdaptiveComponent1_00
[FD= AdaptiveComponent1_10

a s s e r t AdaptiveComponent2_00
[FD= AdaptiveComponent2_10

For showing the second property on the (partly)
refined system, we need to prioritise internal events
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over tock in the system model. Furthermore, we specify
that the setGoal and obs events are urgent but visible
to be able to express properties using these events.

a s s e r t P2 [T= prio ( System_abs_1 ,
<{ | setGoal , obs | } , { tock } >)

The first and the third property do not hold on
this model because they also depend on the functional
behaviour of the dimmer. So, we also refine the
DimmerFC component.

DimmerFC_1( x , y ) =
x<9 & higher −> obs . ( x+1) −> DimmerFC_1( x+1 ,−1)

[ ] x>0 & lower −> obs . ( x−1) −> DimmerFC_1( x−1 ,−1)
[ ] setGoal ?ny −> DimmerFC_1( x , ny )
[ ] y>=0 and y>x & adjus t −> DimmerFC_1( x+1 ,y )
[ ] y>=0 and x>y & adjus t −> DimmerFC_1( x−1 ,y )
[ ] y>=0 and x==y & obs . x −> DimmerFC_1( x , −1)
[ ] getCurrent . x −> DimmerFC_1( x , y )

Again, we have to check refinement explicitly.

a s s e r t AdaptiveComponent1_10
[FD= AdaptiveComponent1_11

With this refined version, we can finally show the first
and the third property.

a s s e r t P1/P3 [T= prio ( System_abs \_2 ,
<{ | setGoal , obs | } , { tock } >)

Note that the last property is not as obvious as
it appears at first glance. If we did not have the
environmental assumptions that there is a delay of at
least one time unit between external events, a setGoal

event could be arbitrarily delayed while higher and
lower events have an effect on the dimmer.

For completeness, we also give the refined version
of the functional component of the light sensor. Here,
the last intensity value that has been recognised
is memorised and can be given to the adaptation
component accordingly.

LightSensorFC_1 ( x ) =
l i g h t ? y −> LightSensorFC_1 ( y )

[ ] g e t I n t e n s i t y . x −> LightSensorFC_1 ( x )

In summary, we have shown that it is possible to
verify the example above in a modular way by focussing
especially on adaptation behaviour while abstracting
from functional behaviour as much as possible. The
advantages of this approach become even more striking
when this pattern is applied to more complex adaptive
systems. In future work, we plan to apply our approach
to the case study of an adaptive multicore scheduler,
which could not be verified conveniently [29] because
there was no clear separation of functional and control
data. By applying our pattern, we expect verification to
be far more modular and more scalable. Furthermore,
we would like to evaluate abstraction-based verification
of such systems. In the next section, we briefly describe
how this could be done.

6. Abstractions for Modular Verification of Adaptive
Systems
In Sections 4 and 5, we have defined and illustrated
a pattern for the design and analysis of distributed
adaptive real-time systems. To be precise, we have con-
sidered the setting of a refinement-based development
approach. Refinements preserve abstract properties and
can automatically be checked. In practice, however, it is
likely that the refinement steps are not that fine-grained
but that there are rather large refinement steps. This
might make it necessary to abstract from details in a
design in order to be able to perform verification.

Abstractions are dual to refinements. Instead of
adding details to some design, they abstract from
details in order to make verification feasible. While
in the refinement-based approach it is assumed that
refinement is explicitly verified between models,
abstractions should be correct in any case. The reason
for this is that it might not be easily possible in
concrete domains to verify refinement between models.
For example, the domain of SystemC models allows for
abstractions based on CSP-like refinement. However, to
enable verification of concrete refinements in SystemC,
a formal semantics supporting trace and failures
refinement would be needed. Although results for trace
refinements are partly available via a transformation to
timed automata, sophisticated refinements like failures
refinement are not yet supported.

In this section, we define abstractions in the
CSP setting, which are safe in the sense that their
constructions imply failures refinement. We briefly
discuss how these abstractions can be used in the setting
of SystemC to allow for state-space reduction and, thus,
provide an efficient way to verification in an industrial
system description language.

6.1. Safe Abstractions in CSP
In the following, we first sketch some comparatively
simple abstractions in (Timed) CSP before we review
two more sophisticated abstractions, based on data
independence and timewise refinement. We argue
that their combination can make (abstraction-based)
verification of adaptive real-time systems feasible.

Control Abstraction. The basic idea in CSP-based refine-
ment, especially in failures refinement, is to make deci-
sions more concrete, i.e., to reduce non-determinism.
We can clearly go the other way around by reducing
concrete control by non-deterministic decisions. One
source of concrete control is the use of guarded exter-
nal choices. If we replace guarded external choices
by internal choices, we obtain the required abstrac-
tion, which directly can be justified based on failures
refinement. However, this abstraction is only valid, if
it can be ensured that at least one alternative of the
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guarded choices is available at each time. Otherwise
a deadlock would be possible. As adaptive systems
should be generally reactive systems and therefore non-
terminating, such a deadlock can be considered as error
in the design. Fortunately, it can be statically checked
whether at least one guard is satisfied at each time by
checking that

∧
i∈X gi equals >. With this condition, we

can define two abstraction rules, which can be applied
to the model of interest in a step-wise way.

g_a & a −> P_a
[ ] g_b & b −> P_b
==>

a −> P_a
| ~ | b −> P_b

[ ] x : X @ g_x & x −> P_x
==>
| ~ | x : X @ x −> P_x

The presented abstraction captures the most obvious
way to abstract (Timed) CSP models because it directly
corresponds to the main principle of refinement in
(Timed) CSP. In the following, we present abstractions
that exploit the structure of the adaptive systems
based on the presented pattern. We especially focus
on the state information, which needs to be explicitly
communicated to other components, and how it can be
abstracted away in the (Timed) CSP context.

Observer Abstraction. In a state-based system, it is
likely that state information is communicated in some
way. As a first step to abstract away state-based
information, we can hide exact state information that
is communicated to some environment. To this end,
we replace communication events by internal choices
which range over the state information that is possibly
communicated.

P( x ) = . . . obs . x −> . . .
. . . comm . x −> . . .

==>
P( x ) = . . . | ~ | x : X @ obs . x −> . . .

. . . | ~ | x : X @ comm . x −> . . .

If we use this abstraction until no exact state
information is communicated, we can apply the next
abstraction, which has the potential of heavily reducing
the state space of (Timed) CSP models.

State Abstraction. If no event depends on (specific
parts of) actual state information, (parts of the) state
information itself can be abstracted away. In CSP,
state can only be modelled explicitly within recursive
process definitions which are parameterised over
state information as parameter. As the denotational
CSP semantics focus on observable behaviour only,
parameters are only necessary if the behaviour depends
on them. The previous abstractions allow us to
eliminate these dependencies so that finally parameters
of process definitions can be eliminated as well.

P( x ) = . . . | ~ | x : X @ obs . x −> . . . P( x )
. . . | ~ | x : X @ comm . x −> . . . P( x )

==>

P = . . . | ~ | x : X @ obs . x −> . . . P
. . . | ~ | x : X @ comm . x −> . . . P

Above, we have sketched some possible abstractions
that directly reverse refinement. This means that
instead of reducing nondeterminism, we introduce
nondeterminism in order to be able to reduce the state
space of components.

In the following, we also review two famous
abstractions that are available for (Timed) CSP. Together
with the abstractions described above, they can provide
a formal foundation of abstractions in SystemC as
described in Section 6.2.

Communication and Functional Abstraction. The presented
observer and state abstractions eliminate state depen-
dencies, but still work with original data domains.
This might result in large systems depending on the
size of the underlying data type. For certain proper-
ties, however, it is sufficient if a smaller abstract data
type is considered. These could be properties that do
not depend on actual data, which is communicated
or actual computation results of some function in the
system. The formal basis for this idea is data indepen-
dence, which has also been studied in the context of
CSP [19]. Under certain (data independence) conditions
on the usage of data, some possibly unbounded data
type can be replaced by a finite data type, which is
usually comparably small. Properties established on the
system using the finite data type remain valid on the
concrete system modelled with the possibly unbounded
data type. These data independence conditions can be
checked using only the syntactical structure of the
CSP processes. Control abstraction together with data
independence results have the potential to massively
reduce the state space. While control abstraction allows
for achieving actual data independence, the data inde-
pendence results allow for verification based on a small
range of data values.

Timing Abstraction. Often, one is not only interested
in timing properties but also in untimed safety
and liveness properties. To be able to abstract away
detailed timing behaviour, the notion of timewise
refinement [28] can be used as a correctness criterion.
The idea is to formally relate untimed and real-time
systems. To refine an untimed process to a real-time
process, prefixes can be replaced by delayed prefixes
and terminating SKIP processes can be replaced
by WAIT processes. The idea is that the real-time
system does not have to provide certain communication
capabilities from the beginning but that it is sufficient
if the system stabilises after some time such that
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they are stably provided then. Timewise refinement is
compositional for sequential processes. For concurrent
processes this is, however, not necessarily the case. As a
solution, it is possible to check the processes for “non-
retraction” [28]. Recently, it has been shown how time-
wise refinement can be checked automatically using
the FDR3 refinement checker [26]. By taking again a
dual view on timewise refinement, abstractions can be
defined by removing concrete timing information.

6.2. Transferring the Abstractions to SystemC
In this subsection, we illustrate how the safe abstrac-
tions from the last subsection can be used in the context
of SystemC.

Control Abstraction. In CSP, control abstraction is
used to replace concrete control by non-deterministic
choices. In SystemC, such non-deterministic choices
can be realized by replacing boolean conditions with
a random boolean value and, in case of a switch
statement, by replacing a state variable with a variable
with random values.

Control abstraction introduces non-determinism and
eliminates control dependencies on state variables
enabling further abstractions to reduce the state space.

int s t a t e = rand ()%3;
switch ( s t a t e ) { switch ( s t a t e ) {

case " a " : case 0 :
foo ( x ) ; foo ( x ) ;
break ; break ;

case " b " : ==> case 1 :
bar ( x ) ; bar ( x ) ;
break ; break ;

case " c " : case 2 :
bar ( x ) ; bar ( x ) ;
break ; break ;

} }

bool randcond = rand ()%2;
i f ( condit ion ) { . . . } ; i f ( randcond ) { . . . } ;

Observer Abstraction. Observer Abstraction in CSP
hides state information that is communicated to the
environment by introducing a non-deterministic choice
on the possible communication events. In SystemC,
this can be achieved in a similar way by introducing a
random choice on the events or variable values.

These last two abstractions are not common in
SystemC, whereas the next abstractions are often used
in a top-down SystemC design process.

State Abstraction. In CSP, state information is repre-
sented by parameters of recursive process definitions
and can be eliminated if the observable behaviour does
not depend on them. To reduce the state space in
SystemC, variables have to be eliminated or replaced by
variables with a smaller range of possible values. This
can be done easily for variables, which are never used or
which can be directly derived from other variables. As

SystemC has a stronger focus on internal computations
than CSP, in addition to the observable behaviour, the
influence of variables on internal computations have
to be considered. To enable further abstractions those
computations have to be abstracted.

Communication and Functional Abstraction. For verification
of a property that does not depend on actual (com-
municated or calculated) data, data and computational
abstractions can be used to abstract from the actual
data. Data abstraction replaces actual data with abstract
data to reduce the range of possible values. Data vari-
ables like integers can be replaced by enumerations
on values representing equivalence classes of the orig-
inal values. Complex data objects can be replaced by
abstract data objects with less detail. Computational
abstraction can be achieved by encapsulating internal
computation and replacing it with a simpler computa-
tion or even with an abstract function result.

In SystemC, communication and computation are
clearly separated (in channels and modules). Hence,
they can be abstracted separately. A common abstrac-
tion is communication abstraction, where the commu-
nicated data is replaced with abstract data and the
communication channel, implementing the communi-
cation protocol, is replaced by an abstract channel (e.g.
message passing via fifo).

Timing Abstraction. An important abstraction to reduce
the state space of SystemC designs is timing abstraction.
This can be achieved by replacing timed notification
with delta notification (i.e., replace wait(t) with
wait(SC_ZERO_TIME)). With delta notification, no
simulation time elapses, but the scheduler gets control
for one delta cycle, enabling an update of all channels.

We have sketched how formal abstractions in
CSP can be transferred to SystemC. In the case of
communication, functional, and timing abstraction
the transfer showed similarities between common
abstractions in both worlds. Due to the fact, that
both languages have similar principles (e.g., concurrent
processes, event-based synchronisation), a transfer of
formal abstractions in Timed CSP to SystemC is
possible. In the following we illustrate how these
abstractions can be used as systematic abstractions to
enable abstraction-based modular verification.

6.3. Abstraction-Based Modular Verification of
Adaptive Systems
For modular verification, our goal is to use the con-
ceptual separation between adaptation and functional
logic, as well as the modular structure of the overall
system. The idea is to split the verification properties
into sets of properties concerning the adaptation logic,
concerning the functional logic, and concerning the
interaction between components.
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To verify a functional component (FC), we want to
abstract the adaptation component (AC) concerning the
observable behaviour at the interface between FC and
AC. Expecting the AC to implement a MAPE-loop,
only the monitoring and executing parts need to be
verified. Therefore, we want to replace the AC with
an abstract component, which implements the interface
and communicates any control data to the FC in order
to adjust the functional logic.

Respectively, we want to abstract the FC concerning
the interface behaviour to verify the AC. Here, we
can abstract from the functional behaviour for the
monitoring and the analysing parts of the AC and use
an abstract FC component communicating any control
data to the AC. This approach can be used to verify
properties like t time units after a change in the control
data (representing the state of FC), the AC receives the
updated control data or The AC detects an invariant
violation after at most t time units.

Considering the planning and executing parts of the
AC, we want to verify properties like t time units after
an invariant violation occurs, the invariant holds again.
Therefore, we cannot abstract away the functional
behaviour completely, but have to consider the part
that is affected by an adaptation and responsible for
reestablishing the invariant.

In this section, we have presented several abstractions
in CSP and corresponding abstractions in SystemC.
Furthermore, we have illustrated our vision of how
these abstractions can be used for the abstraction-based
modular verification of timed adaptive systems.

7. Conclusion and Future Work

In this paper, we have presented a design pattern
that supports the modular design and verification of
distributed adaptive real-time systems. In particular,
it clarifies how data is processed and communicated
within the individual components of an distributed
adaptive system. Adaptation is achieved in a decen-
tralised fashion by the cooperation of the individual
components. Moreover, we have demonstrated how
timing dependencies can be modelled and analysed
using a refinement-based approach. Using an exam-
ple, we have shown how the approach facilitates the
stepwise development of distributed adaptive real-time
systems and helps to cope with the complexity of such
systems by providing automated verification methods.
We have also considered abstractions that can be based
on the notion of Timed CSP refinement. This way,
goal-oriented abstractions can be built that allow for
verification of more complex systems. For both, the
refinement- and the abstraction-based approach, we
have discussed how they can be transferred to SystemC.
Being an industrially widely used system description

language, this provides the basis for practical verifica-
tion of distributed adaptive real-time systems.

In future work, we plan to apply our approach to an
adaptive multicore system, which was previously only
incompletely verified [29] using Timed CSP because
of limited scalability due to not strictly separating
functional from adaptation behaviour. As another piece
of work, we want to analyse whether we can exploit
the compositional structure of systems in our approach
to enable runtime verification. This would especially
enable the integration of more flexible adaptation
strategies at design time such that the system could
apply the correct strategies at runtime while preserving
functional and adaptation correctness.

Furthermore, we are interested in applying our
ideas to the practical verification of adaptive real-time
systems in SystemC. We are currently working on the
implementation of a case study concerning an adaptive
automotive emergency break system. In a first step,
we plan to formalise our proposed abstractions and to
formally relate them to the SystemC semantics.
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