
Patterns for self-adaptive systems: agent-based
simulations
Mariachiara Puviani1,∗, Giacomo Cabri 2, Franco Zambonelli3

1DIEF, Università di Modena e Reggio Emilia, Via Vignolese 905/b, Modena, Italy
2FIM, Università di Modena e Reggio Emilia, Via Campi 213/b, Modena, Italy
3DISMI, Università di Modena e Reggio Emilia, Via Amendola 2, Reggio Emilia, Italy

Abstract

Self-adaptive systems are distributed computing systems that can adapt their behavior and structure to
different kinds of conditions. This adaptation does not concern the single components only, but the entire
system. In a previous work we have identified several patterns for self-adaptation, classifying them by means
of a taxonomy, which aims at being a support for developers of self-adaptive systems. Starting from that
theoretical work, we have simulated the described self-adaptation patterns, in order to better understand the
concrete and real features of each pattern. The contribution of this paper is to report about the simulation
work of three patterns as examples, detailing how it was carried out, in order to provide a further support for
the developers.

Received on 23 October 2014; accepted on 19 January 2015, published on 28 January 2015
Keywords: Adaptation pattern, taxonomy, MAS, role

Copyright © 2015 M. Puviani et al., licensed to ICST. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/sas.1.1.e4

1. Introduction
Software is today the main enabler of many of
the appliances and devices omnipresent in our
daily life [27]. Software systems are catching on in
different domains and environments. These domains
are characterized by mobility, rapid changes in
operation conditions along with changes in the systems’
environment, and so on. To face to these problems, self-
adaptation has been proposed as a solution to manage
the growing complexity of systems: with the continuous
increase in runtime scale and complexity of software
systems, self-adaptation has assumed a central role in
the software engineering development, and has been
often mentioned as one of the defining challenges for
the discipline [11].

In software engineering, self-adaptation is defined
as the ability of a system to autonomously adapt
its behavior to dynamic operating conditions [28].
Software systems need to adapt to failures, changes

HPlease ensure that you use the most up to date class file, available
from EAI at http://doc.eai.eu/publications/transactions/

latex/
∗Corresponding author. Email: mariachiara.puviani@unimore.it

in their computing and physical environments, and
to the availability of new or upgraded services [9].
Adaptation can occur at two levels: at the level of a
single component, and at the level of the entire system
viewed as an ensemble of components.

In order to build self-adaptive systems, developers
can choose a specific adaptation pattern among
available ones. In a the ASCENS project1 we have
catalogued them [18], and such a catalogue turns out to
be useful, because a pattern describes a generic solution
for a recurring design problem and the application of
these adaptation patterns helps to develop a system
that exhibits specific adaptation features and that is
able to self-adapt during all its life. Often the same
problem can be solved with different approaches,
which means that different adaptation patterns can
be used. Because the system’s performances are based
on environmental/external conditions, if a different
pattern describes the system, it makes the system
behave and also perform in different way (related to the
same environment/external conditions). This leads to

1http://www.ascens-ist.eu/

1

EAI Endorsed Transactions
on Self-Adaptive Systems Research Article

EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
http://doc.eai.eu/publications/transactions/latex/
mailto:<mariachiara.puviani@unimore.it>

M. Puviani, et al.

consider that for different conditions, different patterns
are better than others.

Furthermore, in a system, features like the execution
time, that are considered non-functional requirements,
may become functional requirements during systems
life (e.g. if batteries discharge in a robot). Using patterns
(that is able to describe them), these non-functional
requirements can be well implemented in order to make
the system to adapt to these kind of new possible
situations.

Starting from the catalogue of adaptation patterns,
we wrote a taxonomy table [22] that will help developer
to choose the most suitable pattern for their systems.
Moreover, to better understand (and take advantages
from) the specific features of each adaptation pattern
and its applicability, we have simulated the behavior of
different patterns. The simulations allow us to define
a “table of applicability” that will complete the initial
taxonomy of patterns. In this paper we report the
simulation of three patterns, taken as examples; the
same approach can be adopted for the other patterns.
The choice of these three patterns is motivated by the
fact that they are the “basic” patterns of each ensemble
level of adaptation patterns.

In simulating self-adaptive systems we take advan-
tages of agents. Software agents represent an interest-
ing paradigm to develop intelligent and distributed
systems, because of their autonomy, proactiveness and
reactivity. In addition to that, their sociality enables
the distribution of the application logic in different
agents that can interact with each other and with the
host environment. In our work we use Multi Agent
Systems [10] in order to simulate complex self-adaptive
systems. This is because, as said before, agents exhibit
features very relevant for self-adaptation.

The chosen mechanism used to implement adapta-
tion patterns is the “role based approach” [5]. Roles
are sets of behaviors common to different entities that
can be applied to the context in which a component
is behaving. An adaptive pattern can be described in
terms of the roles the different components play. That
will allow us to apply different roles to agents, in order
to simulate different adaptation patterns.

The remainder of this paper is organized as follows.
In Section 2 we present the taxonomy of adaptation
patterns and show some adaptation patterns; in
Section 3 we present the “role based approach” and
how agents are used to develop the considered patterns.
Section 4 presents two different tasks relates to a case
study, and simulations implemented using RoleSystem.
Moreover this section shows how these simulations help
us to improve the initial taxonomy and validate the
use of adaptation patterns in developing self-adaptive
systems. Section 5 discusses related work in the area,
while Section 6 discuss the results of the work and
conclude the paper.

2. Use of patterns
Because patterns are able to describe generic solutions
for a recurring deign problem, their use to design self-
adaptive systems is very relevant. Moreover, a very
important task to develop a well performing self-
adaptive system, is to understand which pattern to
choose. Defining how a pattern works in a self-adaptive
system and which kind of systems are covered by
a specific pattern, we create a preliminary taxonomy
presented in Figure 1 [22].

In order to understand the table we have to define
the basic components that are used in. A Service
Component (SC) is a context dependent component.
The component lives and acts inside an environment
and with other components that create an ensemble. Its
interactions both with the environment and with the
other components constitute its context. Moreover, an
Autonomic Manager (AM) is an AC that externalizes the
feedback loop used to adapt one or more components.

This table describes the different patterns listed in
different levels:

• the single components level - first row;

• the ensemble level where the environment is
considered as the means of adaptation (e.g. a bio-
inspired system) - second row;

• the ensemble level where adaptation is delegated
to an external agent called Autonomic Manager
(AM) that manages all the other agents (e.g.
centralised system with regard to the adaptation
aspects) - third row;

• the ensemble level where adaptation is delegated
to the agents themselves though their direct
communication of adaptation mechanisms - forth
row.

How these patterns are useful to build self-adaptive
systems has been demonstrated in different works
like [17], [19], [20] and [16].

With the aid of this taxonomy table and the catalogue
of pattern presented in [18], we are able to understand
which pattern better describe a system. For example the
table tells us that to build a system where it is important
that the mechanisms for adaptation are shared between
all the components, one of the patterns of the fourth
row can be used.

However, to better understand the functionality of
adaptation patterns, we aim at deeper analyzing, with
the aid of simulations, the use of adaptation patterns.
So we started analyzing the “basic” pattern of each
ensemble level (the single level is delegated to the
internal of each agent). In this article we only report
the studies on the first column of patterns - starting
from the taxonomy table, while the other columns are

2 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

Patterns for self-adaptive systems: agent-based simulations

SC#

ENVIRONMENT#

SC# SC#

SC#

AM#

SC# SC#

SC#

AM#

AM#

SC#

AM#

SC#

AM#

SC#

ENVIRONMENT#

SC#

ENVIRONMENT#

ENVIRONMENT#

ENVIRONMENT#

AM#

SC#

AM#

SC#

AM#

SC#

AM#

ENVIRONMENT#

AM#

SC#

AM#

SC#

AM#

SC#

ENVIRONMENT#

SC# SC# SC#

ENVIRONMENT#

Figure 1. Part of the taxonomy of self-adaptation patterns based on different composition mechanisms

derived from this, adding more and more levels of AMs
that are able to manage adaptation of different parts of
the system (SCs or other AMs). These three patterns
are the most specific that can be chosen in order
to describe the different class of patterns. Moreover
they include some of the most important class of
adaptation: adaptation via stigmergy, adaptation using
direct communication between peers, and adaptation
propagated via a supervisor (AM).

First of all we present in the next subsections some of
the studied patterns. In term of importance, we report
a shorter description of each pattern. We report the

“context” of the system that will apply that pattern,
its main “behavior”, its structure (see the different
Figures), and its “consequences”.

2.1. Reactive Stigmergy Service Components
Ensemble Pattern

Context: This pattern has to be adopted when:

1. there are a large amount of components acting
together;

3
EAI Endorsed Transactions on

Self-Adaptive Systems
01-2015 | Volume 1 | Issue 1 | e4

M. Puviani, et al.

!"#$%&"'!"()

*&'+&"!"() *&'+&"!"() *&'+&"!"()

Figure 2. Reactive Stigmergy SCE Pattern

2. the components need to be simple component,
without having a lot of knowledge in their
internal;

3. the environment is frequently changing;

4. the components are not able to directly communi-
cate one with the other.

Behavior: This pattern has not a direct feedback
loop. Each single component acts like a bio-inspired
component (e.g. an ant). To satisfy its simple goal,
the component acts in the environment that senses
with its “sensors” and reacts to the changes in it
with its “effectors”. The different components are
not able to communicate one with the other, but
are able to propagate information (their actions) in
the environment. Than they are able to sense the
environment changes (other components reactions) and
adapt their behavior due to these changes.
Consequences: If the components composing the

systems are proactive, their behavior is defined inside
the components along with their internal goal. The
behavior of the whole system cannot be a priori defined.
It emerges from the collective behavior of the ensemble.
The components do not require a large amount of
knowledge. The reaction of each component is quick
and does not need other managers because adaptation
is propagated via environment. The interaction model
is an entirely indirect one.

2.2. Centralized AM Service Components Ensemble
Pattern
Context: This patterns has to be adopted when:

1. the components are simple and an AM is
necessary to manage adaptation;

2. a direct communication between components is
necessary;

3. a centralized feedback loop is more suitable
because a single AM has a global vision on the
system;

4. there are few components composing the ensem-
ble.

!"#$"%&%'(

)*'"%"#+!(
#)%),&-(

!"#$"%&%'(!"#$"%&%'(

&%.+-"%#&%'(

Figure 3. Centralized AM SCE Pattern

Behaviour: This pattern is designed around a unique
feedback loop. All the components are managed by a
unique AM that “controls” all the components behavior
and, sharing knowledge about all the components, is
able to propagate adaptation.
Consequences: A unique AM is more efficient to

manage adaptation over the entire system, but it may
become a point of failure. If the AM fails, mechanisms
of negotiation have to be applied in order to create
another AM, when it is possible.

2.3. P2P Negotiation Service Components Ensemble
Pattern

!"#$"%&%'(!"#$"%&%'(!"#$"%&%'(

&%)*+"%#&%'(

Figure 4. P2P Negotiation SCE Pattern

Context: This patterns has to be adopted when:

1. the components are proactive;

2. the components need to directly communicate one
with the other to propagate adaptation.

Behavior: Each component is managed by an internal
and implicit AM. The components directly communi-
cate one with the other with a P2P communication
protocol.
Consequences: The communicate between compo-

nents makes it possible to share knowledge.

4 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

Patterns for self-adaptive systems: agent-based simulations

3. Agents and the Role based approach
To evaluate patterns, we implement them using roles.
In the following we present the “role theory” and
the concept of roles in subsection 3.1, while in
subsection 3.2 we introduce the implementation of
roles, using RoleSystem.

3.1. Roles
The “role theory” [3] has been applied to several
computer science fields. For this reason there are several
definitions of the concept of role, depending on the
considered scenario. The interesting feature of roles
is that they can be used as a paradigm to smartly
model the view of a complex system [12]. As the author
said, role is defined as “a set of behaviors common to
different entities, with the possibility to apply them
to an entity in order to change its capabilities and
behavior”.

Roles are very important not only because can be
applied to existing entities to change their behavior,
but also because they can be reused in different
situations. For this reason they are considered as
solutions common to different problems, as the same
way patterns are considered as solutions common to
different systems. Roles can also be used to manage
interactions between components. These interactions
are not a priori defined between components, but
only occur when the roles involved in the interaction
are associated to components. It is important to note
that roles are tied to the local execution environment,
thus they represent context-dependent views of entities
running in that environment [1], granting adaptability.
Moreover roles grant portability and generality: since
they are tied to each interaction context, they hide
context details to components, which are free to discard
those “low-level” details. For all these reasons roles can
be useful to build adaptation patterns.

In order to play a role, a component must assume
it. In other words, a component must choose a specific
role that means that the role assumption is considered
an active process of the component’s adaptation. In
complex system, using the agent paradigm, we assume
that a role is a software component (e.g. a Java class)
that can be added to each service component of the
ensemble. In our approach, a role is modelled as a set
of capabilities and an expected behavior, both related
to the component (i.e. agent) that plays such role.

There are some features that are proprietary of a role
(independently to the component they are applied to):

• a role is temporary, a component may play it in
a well-defined period of time or in a well-defined
context;

• a role is generic, it is not tightly bound to a specific
application, but it expresses general properties

that can be used in different applications and then
for different components;

• a role is related to a context, each environment
can impose its own rules and can grant some local
capabilities, forcing components to assume spe-
cific roles in order to adapt to such environment.

So roles represent the behavior that components
are expected to show; who expects such behavior are
entities external to components themselves, mainly
organizations [32] and environments. This model leads
to a twofold viewpoint of the role. From the application
point of view, the role allows a set of capabilities, which
can be exploited by components to carry out their tasks.
From the environment point of view, the role imposes a
defined behavior to the entities that assumes it.

We are especially focused on the latter point that is a
component assuming a given role is expected to exhibit
a specific behavior. In our specific case, since agents
are at least reactive components, they are sensible to
what happens in the environment where they live, they
can analyze the perceived information and infer what
behavior can apply.

In the Agent field, “roles” represent a cross-cut view
of the agent space, and thus can be adopted to model
dynamic and open environments. Roles can be applied
to agents in order to both enhance their capabilities,
granting a better adaptability, and to model interactions
and coordination in MAS systems [6].

3.2. RoleSystem and roles implementation
Based on the concept of role, we exploit RoleSystem [7].
RoleSystem is an interaction infrastructure completely
written in Java. This will grant high portability
and the capability to be associated with the main
agent platforms. The agent platform we chose to
exploit RoleSystem is Jade [2], a FIPA compliant agent
platform, and perhaps the most exploited one; but we
have associated RoleSystem also to Aglets [15], a mobile
agent platform originated from IBM and now open
source.

The RoleSystem infrastructure is divided in two
parts, as shown in Figure 5: the upper one is
independent of the agent platform, while the lower part
is bound to the chosen agent platform (i.e. Jade).

As said before, agents are a key point of RoleSystem.
In applications exploiting the RoleSystem infrastruc-
ture, an agent is composed of two layers: the subject
layer, representing the subject of the role - independent
of the platform; and the wrapper layer, which is the Jade
agent in charge of supporting the subject layer.

A specific agent, called Server Agent, is in charge
of managing the roles and their interactions for each
context/environment. It interacts with the wrapper

5 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

M. Puviani, et al.

Figure 5. RoleSystem: separation of domain

layer of agents by exchanging ACL messages formatted
in an appropriate way.

Every agent is a subject that performs some actions
and on which some event can happen. So a “role” is
defined as a set of actions that an agent assuming that
role can play, and a set of events that an agent assuming
that role can recognize. Based on this idea, every agent
can choose the role on its temporary and immediate
necessities.

We do not start from scratch, but starting from
the existing RoleSystem, we developed several Java
classes, both platform-independent and related to Jade.
The main platform-independent classes, that are in
the rolesystem.core and rolesystem.roles packages, are
reported in the UML diagram of Figure 6.

Figure 6. RoleSystem packages

The connection between the subject layer and the
wrapper layer is granted by two Java objects, instances
of classes implementing respectively the RoleSystem
and RoleRegistration interfaces, which provide methods

to register agents with roles, to search for agents playing
a given role, to listen for events and to perform actions.
The RoleSystem interface enables agents to perform
preliminary operations needed to assume a specific
role; while the RoleRegistration interface enables agents
to perform operations on the system via a specific
registration (i.e., after that the agent has assumed a
role).

To play a role, an agent has to obtain an object that
implements the RoleRegistration interface, invoking the
reqRegistration method. The returned object represents
the association between the agent and the specific role.
As soon as an agent does not need to play the assumed
role, it can release the role registration via the dismiss
method. If the agent wants to assume a role again (one
just assumed or another one), it has to require another
registration via the reqRegistration method.

A role is implemented by an abstract class, where
the features of the role are expressed by static fields
and static methods. The class that implements a role
has the same name of the role, and it is part of a
package that represents the application scenario for
such role. A static and final field called ROLE_ID
identifies the role. Each action defined in a role is
built by a static method, which is in charge of creating
an appropriate instance of the class RoleAction and
returning it to the caller. Such a static method has the
same name of the corresponding action and one or two
parameters: the former one is the agent addressee of the
event corresponding to the action; the latter parameter
(optional) is the information content to perform that
action.

To perform an action, an agent playing a given
role must obtain the appropriate RoleAction instance,
invoking the corresponding static method of the role
class. Then, it has to invoke the doAction method
of RoleRegistration to actually perform the action,
supplying the previously created instance of RoleAction.
Then, when the server agent receives the request to
perform the action via the wrapper layer, translates it
into a known event, and sends it to the addressee agent.
To find partners to interact with, an agent exploits
the searchForRoleAgent methods made available by the
RoleSystem interface, by which the agent can get a list
of the registrations related to a specific role, each one
specified by an identifier.

Starting from RoleSystem we have implemented a
scenario of swarm robotics. There we develop dedicated
Java classes representing the used roles (see Section 4).

4. Evaluated case studies
In our work, we consider the use of roles as an
ideal starting point to implement different simulations
that develop self-adaptive systems. With the aid of
RoleSystem, we implement agents systems to develop

6 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

Patterns for self-adaptive systems: agent-based simulations

self-adaptive systems, starting from different case
studies.

Since this work has been carried on in the context
of the ASCENS project, we use two different tasks
of one of the case study presented in the project to
develop RoleSystem classes and to implement different
simulations.

In particular, we take care of a swarm robotics
scenario: the disaster recovery scenario (Figure 7).

Figure 7. Disaster recovery scenario - ASCENS case study

As reported in [26], in the disaster recovery case
study, we imagine that a disaster happened, such as the
catastrophic failure of a nuclear plant, or a major fire
in a large building. We also imagine that an activity
of search and rescue must be carried out. For instance,
people may be trapped inside a building and they must
be found and brought to safety. Given the high danger
of operating in such environment, it is realistic to think
that an ensemble of robots could be used to perform the
most dangerous activities. Among these activities, four
are very relevant: exploring the environment, mapping
dangerous areas and targets to rescue, performing the
rescue, and seal the dangerous areas. In particular,
we analyze and present here, two task to understand
how different patterns behave in order to build such a
system: the environment exploration task and the perform
the rescue task. The two tasks and their implementations
are presented in the following.

In this scenario, the necessity to develop an
adaptive system is given by the presence of an
unknown environment that is continuously changing:
the dangerous areas can enlarge or a new one can
be created, new obstacles can appear, the number of
victims is not a priori known and can change. Moreover,
the system will need not only to adapt to external
conditions, but also in its composition because some of
the components could broke or remain imprisoned in
the disaster.

4.1. “Environment exploration” task implementation
In this scenario, an ensemble of robots (simulated
by agents) has the task to explore the environment
in order to map it. The ensemble is composed of a
given number of autonomous robots that are initially
randomly distributed in an area (e.g. each position is
randomly chosen once a robot is entered in the area).
The goal of the ensemble is strictly connected to the
utility of minimizing the time of completion of the task.
Another important utility of the system is to provide an
equal work balancing for all the components that form
the ensemble. A single robot does not know in advance
the number of components of the ensemble. At the same
way the robot does not know anything on the shape and
the length of the environment.

To implement the simulations of this scenario we
have defined an area of the size of 30x30 cells, with 15
obstacles in, randomly distributed. The obstacles can be
walls or something else (e.g. ruins from an explosion)
that are not possible to be removed from a robot. Due to
the size of the area we initially implemented 16 robots
moving in (they are a right amount compared to the
size of the area, in order to be a swarm). The choice
of using 16 robots was made after a lot of experiments
in real world scenarios: using real robots in an arena of
3x3 meters and with the described obstacles. From these
experiments we saw that using less robots was too time
consuming (due to the large part of ground to explore),
and using more robots, they spent a lot of time avoiding
not only obstacles but also the other robots.

In Figure 8 we can see a screenshot of the
environment.

Figure 8. Environment of the “environment exploration scenario”

In order to implement each pattern, we wrote one or
more specific role with RoleSystem, which robots must
play during their life.

7 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

M. Puviani, et al.

The first pattern we used to implement the system
was the “Reactive Stigmergy” pattern. This is because
the system’s requirements are well described in the
context of this pattern, and because usually, in swarm
robotics, the stigmergic mechanism is the one that best
fits for adaptation.

For this pattern, we implemented the “Explorer” role.
With this role a robot starts to explore the cells in
its surrounding, following an anti-clockwise random
movement. Using the moveRandom(RoleRegistration
registration) method described in the following, a robot
leaves a pheromone every time it explores a new cell,
and when it senses this pheromone, left by other robots
in a cell, it is able to understand that this cell has been
explored by others. The simulation ends when every
robot does not find any free cell unexplored (by itself) in
a range of 10 cells. An example of code of the “Explorer”
role is reported in Figure 9.

Figure 10. Average time of goal’s satisfaction and standard
deviation with different patterns: (A) Reactive Stigmergy pattern,
(B) Centralized AM pattern, (C) Centralized AM Pattern with
failure, (D) P2P Negotiation pattern

We performed hundreds of simulations using this
pattern and in Figure 10 - (A) we show the average
time of the goal’s satisfaction, using 16 robots, and the
standard deviation. As we can see, the average time
is about 418000 millisec. In these simulations every
robot colours the pavement of the area (while it lets the
pheromone) of a different colour. However, at the end
of these simulations, only few colours appear on the
screen, as we can see from Figure 11. This is because
it happens that most of the time a robot explores again
a cell just explored by another robot. This is a drawback
of patterns based on stigmergy.

To overcome this, we implemented the same system
using also the “Centralized AM” pattern and the “P2P”
pattern.

For the “Centralized AM" pattern we implemented
the “Manager” and the “Slave" roles. An example of
code of the “Manager” role is reported in Figure 12.

The manager, communicating with all the robots,
receives the information about their positions and the
explored area. Then it merges all the information
received to create a map of the explored area and it

Figure 11. Screenshot of a simulation implementing the Reactive
Stigmergy pattern

shares this map to the other robots that are able to
understand the perimeter of the known area in order
to explore the exterior of that area.

An example of the code of the “Slave” role is reported
in Figure 13.

With this method the robot-slave is able to update
its knowledge with the data of all the other robots, by
updating its myKnownSquares variable with data given
by the manager.

The exploration ends if the built map finds a
closed perimeter explored (the perimeter is outlined by
obstacles in closed cells) or if all the robots do not find
unexplored areas in the surrounding of a radius of 10
cells.

As we can see from Figure 10 - (B), the average time
of the goal’s satisfaction is better than the same system
developed using the “Reactive Stigmergy” pattern,
but it remains high (it was compared with expected
results studied in previous works). This is due to the
necessity of coordinating a large number of robots in
an unknown environment. The fact of not knowing the
environment makes it very difficult to well coordinate
the robots, because the manager knows the other
robots’ positions and the explored area, but it does not
know which area still misses to be explored.

Moreover, if the AM fails (example not reported in
this simulation), it has to be replaced by negotiation.
Here, the simplest and less time consuming strategy for
negotiation is that the first robot that senses the AM
is out of work, become the new AM. This solution is
also the most dangerous one because more than two
robots may become AM. Other solutions use negotiation
algorithms.

Instead, the “P2P” pattern does not suffer from
the limitation of having a single point of failure.

8 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

Patterns for self-adaptive systems: agent-based simulations

public KnownEnvironment moveRandom(RoleRegistration registration) throws RoleException
{

agent_data.setMode(1); // 1 random
DataOutputManager.dataSim.setagentData(id, agent_data);
while(ExplorerSL.END_SEARCH_MOVEMENT==false)
{

for(int movement_counter=0;movement_counter<10;movement_counter++) //check done every 10 movement
{

sleepAgent(PAUSE);
int modeChange=contactManager.receiveModeChangeMessageRandom(registration);
saveRandomData();
if(modeChange==1)
{

NEW_MASTER_TO_INIT=true;
return knownEnvironment;

}
if(modeChange==2)
{

SLAVE_INIT=true;
return knownEnvironment;

}
MoveData moveData=searchUntilMove(PHEROMONE_MODE);
KnownEnvironmentManager.setKnownEnvironments(id,knownEnvironment);
if(moveData.getRange()==10 && moveData.getRouteSize()==0)
{

ExplorerSL.setSimulationEnd(id, true);
break;

}
drawVisualization();

}
checkThreshold(registration);

};
return knownEnvironment;

}!

Figure 9. Fragment of code of the “Explorer” role

public void moveMaster(RoleRegistration registration) throws RoleException
{

ExplorerSL.setSimulationEnd(id, true);
agent_data.setMode(3); // 1 random // 2 slave // 3 master
DataOutputManager.dataSim.setagentData(id, agent_data);
while(ExplorerSL.END_SEARCH_MOVEMENT==false)
{

boolean modeChange=false;
for(int i=0;(i<ExplorerSL.id_counter) && modeChange==false;i++)
{

sleepAgent(800);
int myKnownSquares=KnownEnvironmentManager.getKnownEnvironments(id).getKnownNumber();
modeChange=contactManager.receiveModeChangeMessage(registration);
saveMasterSlaveData(myKnownSquares);

}
contactManager.refreshExplorers(registration,KnownEnvironmentManager.getKnownEnvironments(id));

if(modeChange==true)
{

ExplorerSL.setSimulationEnd(id, false);
break;

}
};

}!

Figure 12. Fragment of code of the “Manager” role

Furthermore, more that the “Reactive Stigmergy”
pattern, in this pattern the adaptation mechanism is
shared between components. In the “P2P” pattern
we developed the “Negotiator” role that permits a
component to share its knowledge with neighbours in
a range of 10 cells and to negotiate with them which
cell has to be explored next.

An example of the code of the “Negotiator” role is
reported in Figure 14.

With this role the time necessary to exchange
adaptation messages between neighbours does not
invalidate the ultimate satisfaction of the goal:
components are able to coordinate themselves in little
groups and if some of them expire, the adaptation of
the whole system goes on, as the Negotiator role allows

9
EAI Endorsed Transactions on

Self-Adaptive Systems
01-2015 | Volume 1 | Issue 1 | e4

M. Puviani, et al.

public void moveSlave(RoleRegistration registration) throws RoleException
{

agent_data.setMode(2); // 1 random // 2 slave // 3 master
DataOutputManager.dataSim.setagentData(id, agent_data);
while(ExplorerSL.END_SEARCH_MOVEMENT==false)
{

for(int movement_counter=0;movement_counter<5;movement_counter++) //check every n movement
{

sleepAgent(PAUSE);
int myKnownSquares=KnownEnvironmentManager.getKnownEnvironments(id).getKnownNumber();
boolean modeChange=contactManager.receiveModeChangeMessage(registration);
saveMasterSlaveData(myKnownSquares);
if(modeChange==true)
{

return;
}
MoveData moveData=searchUntilMove(false);
KnownEnvironmentManager.setKnownEnvironments(id,knownEnvironment);
if(moveData.getRange()==10 && moveData.getRouteSize()==0)
{

ExplorerSL.setSimulationEnd(id, true);
break;

}
drawVisualization();

}
if(ExplorerSL.searchType!=2)
{
 checkThresholdSlave(registration);
}

contactManager.sendExplorationData(registration,KnownEnvironmentManager.getKnownEnvironments(id));
};

return;
}!

Figure 13. Fragment of code of the “Slave” role

public void moveNegotiator(RoleRegistration registration) throws RoleException
{

DataOutputManager.dataSim.getAgentData(id).setMode(4); // 1 random // 2 slave // 3 master // 4 negotiator

BooleanNegotiator.set(ConfigurationParameters.END_CHECK_BASE_BOOL + String.valueOf(id),true);

while(BooleanNegotiator.get(ConfigurationParameters.END_SEARCH_MOVEMENT_BOOL)==false &&
BooleanNegotiator.get(ConfigurationParameters.EXIT_AGENT_BASE_BOOL + String.valueOf(id))==false)

{
sleepAgent(ConfigurationParameters.PAUSE-100);

boolean modeChange=false;
int Neighbour = NEIGHBOUR;
for(int i=0;(i<Neighbour && modeChange==false);i++)
{

int myKnownSquares=KnownEnvironmentManager.getKnownEnvironments(id).getKnownNumber();
modeChange=contactNeighbour.receiveModeChangeMessage(registration);
saveNegotiatorData(myKnownSquares);

}

contactNeighbour.refreshExplorers(registration);

MoveData moveData=searchUntilMove(NextNeighbour);
for (i=0; i<Neighbour; i++)
{

if(moveData.getRange()==10 && moveData.getRouteSize()==0 && moveData.getExplored(Neighbour))
{

BooleanNegotiator.set(ConfigurationParameters.END_CHECK_BASE_BOOL + String.valueOf(id),true);
break;

}
}
drawVisualization();

};!

Figure 14. Fragment of code of the “Negotiator” role

it. Figure 10 - (D) shows the average time in simulations
that use this pattern.

10
EAI Endorsed Transactions on

Self-Adaptive Systems
01-2015 | Volume 1 | Issue 1 | e4

Patterns for self-adaptive systems: agent-based simulations

4.2. “Performing the rescue” task implementation
In this scenario, an ensemble of robots (simulated by
agents) has the task to find objects (i.e. people to
assist and rescue) and to carry them to the way out of
the area (e.g. a blazing building). As for the previous
task, the ensemble is composed of a given number
of autonomous robots that are initially randomly
distributed in an area.

The goal of the ensemble is strictly connected to the
utility of minimizing the time of completion of the task.
A single robot does not know in advance the number of
components of the ensemble. At the same way the robot
does not know anything on the environment (number
and position of obstacles) and on the objects to rescue
(number and position).

For the implementation of the simulations, we use the
same area of the previous scenario. Here we initially
implement 8 robots moving in. In Figure 15 we can
see a screenshot of the environment where yellow dots
are objects to rescue, black dots are the agents moving
around, the green dots are the obstacles to avoid and the
red dot is the light that indicate the way out to the area.

Figure 15. Environment of the “performing the rescue scenario”

As for the previous implementation, in order to
implement each pattern, we wrote one or more specific
role with RoleSystem, which robots must play during
their life. The implementation of the different patterns
is very similar to the previous example.

For the implementation of the “Reactive Stigmergy”
pattern, we wrote the “Carrier” role. With this role a
robot randomly move in order to find an object. First of
all it explores the cells in its surrounding. If it does not
find anything, it moves randomly to another position
and starts again to search. When it finds an object, it
carries it and goes back to the way out of the area (red
light). The simulation ends when every robot does not
find any object in a range of 10 random movements.

An example of code of the “Carrier” role is reported in
Figure 16.

Figure 17. Average time of goal’s satisfaction and standard
deviation with different patterns: (A) Reactive Stigmergy pattern,
(B) Centralized AM pattern, (C) Centralized AM pattern with
failures, (D)) P2P Negotiation pattern

We performed hundreds of simulations using this
pattern and in Figure 17 - (A) we show the average
time of the goal’s satisfaction, using 8 robots, and the
standard deviation. As we can see, the average time is
about 57000 millisec.

To verify the choice of the pattern, we implemented
the same system using also the “Centralized AM”
pattern and the “P2P” pattern.

For the “Centralized AM" pattern we implemented
the “Manager” and the “Slave" roles. An example of
code of the “Manager” role is reported in Figure 18.

The manager, communicating with all the robots,
receives the information about their positions and what
they find. Then it merges all the information received
to and creates a map of the explored area to steer all the
slaves in unexplored areas to find new objects. Here the
most of the time spent, is used by the manager to merge
the different information and to indicate new ways to
slaves. The exploration ends if the manager does not
receive new information about carried objects from all
the slaves, in a time of 1000 millisec.

The code of the “Slave”, not reported here, permits
the slave to send information to the Manager about
its position and when it finds an object to carry.
Moreover, the “Slave” is able to receive from the
Manager indication about where to go in exploration.

As we can see from Figure 17 - (B), the average
time of the goal’s satisfaction is worse than the
same system developed using the “Reactive Stigmergy”
pattern, because in an unknowing environment, where
is also not know the number of objects to rescue,
the operations to coordinate all the agents is time
expansive.

From the study of this pattern, we can see that instead
it will be very useful in systems where a robot is not
able to carry an object alone and collaboration in term

11 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

M. Puviani, et al.

private void Carrier_Logic(RoleRegistration registration, PositionSq goal) throws RoleException
{

Square test=EnvironmentManager.pickObject(new PositionSq(goal));
if(test==null)
{

DataOutputManager.printString(id + " Object not found at destination");
agent_data.inclostObjects();
DataOutputManager.dataSim.setagentData(id, agent_data);
return;

}
else
{

agent_data.incobjectCarried();
DataOutputManager.dataSim.setagentData(id, agent_data);

}
movementManager.carryObjectSimple();
return;

}!

Figure 16. Fragment of code of the “Carrier” role

Figure 18. Fragment of code of the “Manager” role

of adaptive strategy is necessary. This pattern can be
used when this specific task occurs, if only a specific
group of robots (the ones necessary to carry the object)
can adopt this pattern. Here, the known situation and
environment (a robot has an heavy object), makes the
application of the pattern the better solution.

However the exploitation of this approach, called
“Self-expression” [21], is outside from the intent of this
paper.

Using this pattern, the considerations made for the
previous scenario are still valid. If the AM fails it has to
be replaced by negotiation. This will further increases
the time for goal’s satisfaction.

The “P2P” pattern does not suffer from the limitation
of having a single point of failure. But the mechanisms
of information sharing about components, is useful only
to make robots not to explore a cell twice, but not to find
more objects. In the “P2P” pattern we developed the

“Negotiator” role that permits a component to share its
knowledge with neighbours in a range of 10 cells and to
negotiate with them which cell has to be explored next.

The code of the “Negotiator” role, reported in Figure
19, is very similar to the code used in the previous
scenario because the shared information are not about
the goal’s satisfaction, but about how to implement a
utility (time of satisfaction).

Figure 17 - (D) shows the average time in simulations
that use this pattern. The time is higher than the
“Centralized AM” patter, because the exchange of
information is higher.

5. Related Work
The interest in engineering complex distributed self-
adaptive systems is growing more and more in the last
years, as shown by the number of surveys and overviews
on the topic [8, 24, 29]. However, a comprehensive and

12 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

Patterns for self-adaptive systems: agent-based simulations

Figure 19. Fragment of code of the “Negotiator” role

rationally-organized analysis of architectural patterns
for self-adaptation, and their use, is still missing,
despite the potential advantages of such a contribution.

Going into details, some works are very relevant
considering patterns for adaptive system. For example,
Gomaa et al. [14] introduces the concept of “software
adaptation patterns” and specifies how they can
be used in software adaptation of service-oriented
architectures. However, they do not give a complete
overview of their use. Ramirez and Cheng [23] go
somehow farther, by expanding upon the most common
patterns for adaptation actions and representing them
– the same as we do – in a more standard way.
Again, though, their focus is different from that of a
detailed and comprehensive analysis of architectural
self-adaptation patterns and their use.

Grounded on earlier works on architectural self-
adaptation approaches, the FORMS model (FOrmal
Reference Model for Self-adaptation) [30] enables
engineers to describe, study and evaluate alternative
design choices for self-adaptive systems. FORMS
defines a shared vocabulary of adaptive primitives that
– while simple and concise – can be used to precisely
define arbitrary complex self-adaptive systems, and
can support engineers in expressing their design
choices, there included those related to the architectural
patterns for feedback loops. FORMS does not have
the ambition to analyze and classify architectural self-
adaptation patterns, and rather has to be considered as
a potentially useful complement to our work. Closest to
our approach, Weyns et al. [31] introduce the concept
of patterns for self-adaptive systems based on control

loops. The authors describe how control loops are able
to enforce adaptivity in a system, and present a set of
patterns, but it is not clear how to choose between them.
Differently from our scope this paper does not aim to
describe a comprehensive set of patterns for adaptive
systems, but basically identifies in the patterns, how
different MAPE loops interact with each other.

Regarding the use of roles, we have to underline that
role models are used quite heavily in the RBAC (Role
Based Access Control) approach (e.g. [25]), especially
to extend MAS in agent oriented computing, but none
of them is focused on the description of patterns using
roles.

In summary, the analysis of the related work in
the area shows that literature on adaptive systems is
very rich: patterns are a good mechanism that can
be adopted to promote and support self-adaptation,
but are not too much investigated, especially there is
not a clear idea on how to help developers to choose
among patterns for their systems. After our taxonomy
proposed in [22], experiments that support the use of
patterns to build self-adaptive systems are still missing,
and that is why we proceed with our work. From
our knowledge, there are no works that use agents to
simulate self-adaptive systems, exception of the use of
AMAS proposed for example by [4] and [13].

6. Conclusions
As emerged from the simulations of the two different
scenario of the robotics case study, all patterns end
satisfying the goal and all the developed patterns make
it possible to have a self-adaptive system. However, in

13 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

M. Puviani, et al.

different conditions (due to the environment or to other
components composing of the system) simulations
show that some perform better than other. For example,
in the first scenario the Reactive Stigmergy pattern
has the worst performances because there are no
coordination between components of the systems and
they risk to spend a lot of time analysing part of the
ground that have been already explored. The same
pattern instead, has the best performances in the second
scenario where it is not important to explore “all” the
ground, but the time saved because of the absence of
communication and coordination between components
is important in find objects to rescue.

This implementation of different patterns on the
same case study, gives us the possibility to add
important specification to the initial taxonomy. As
said before, in this paper we reported simulations and
analysis only of the basic patterns, one for each level
of adaptation - first column of the taxonomy table
(see [18]). Moreover, we need to recall that, for each
pattern, the addition of an external manager over a
component (that can be a component or another AM)
will add a level of autonomicity but the why adaptation
is propagated inside the pattern remain the same for all
the pattern of a specific level (same row).

As a future work, we aim at extending the simulations
to other patterns with the goal of completing the
taxonomy table and implementing guidelines to help
developers to create self-adaptive systems.

7. Acknowledgements
Work supported by the ASCENS project EU FP7-FET,
Contract No. 257414 and by the “Linea strategica
SMART ICT FOR SMART SOCIAL WORLDS” of the
Università di Modena e Reggio Emilia.

References
[1] Bäumer, D., Riehle, D., Siberski, W., and Wulf, M. (1998).

The role object pattern. In Washington University Dept. of
Computer Science. Citeseer.

[2] Bellifemine, F., Caire, G., Trucco, T., and Rimassa, G.
(2002). Jade programmerï£¡s guide. Jade version, 3.

[3] Biddle, B. (1979). Role theory: Concepts and research.
Krieger Pub Co.

[4] Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999).
Swarm intelligence: from natural to artificial systems. Oxford
University Press, USA.

[5] Cabri, G. and Capodieci, N. (2013). Runtime Change of
Collaboration Patterns in Autonomic Systems: Motivations
and Perspectives. In Proceedings of the Ninth International
Symposium on Frontiers of Information Systems and Network
Applications (FINA), Barcelona, Spain, March 2013.

[6] Cabri, G., Leonardi, L., and Zambonelli, F. (2003a).
Implementing role-based interactions for internet agents.
In Applications and the Internet, 2003. Proceedings. 2003
Symposium on, pages 380–387. IEEE.

[7] Cabri, G., Leonardi, L., and Zambonelli, F. (2003b).
Implementing Role-based Interactions for Internet Agents.
In The 2003 International Symposium on Applications and
the Internet (SAINT), Best Paper Award Orlando,Florida,USA,
January 2003.

[8] Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee,
J., Andersson, J., Becker, B., Bencomo, N., Brun, Y., Cukic,
B., et al. (2009). Software engineering for self-adaptive
systems: A research roadmap. In Cheng, B., Lemos, R. d.,
Inverardi, P., and Magee, J., editors, Software Engineering
for Self-Adaptive Systems, volume 5525 of Lecture Notes in
Computer Science, pages 1–26. Springer.

[9] Edwards, G. et al. (2009). Architecture-driven self-
adaptation and self-management in robotics systems.
In Software Engineering for Adaptive and Self-Managing
Systems, 2009, pages 142–151, Vancouver, BC, Canada.
IEEE.

[10] Ferber, J. (1999). Multi-agent systems: an introduction to
distributed artificial intelligence, volume 1. Addison-Wesley
Reading.

[11] Fernandez-Marquez, J. L., Serugendo, G. D. M., Snyder,
P. L., and Valetto, G. (2012). A pattern-based architectural
style for self-organizing software systems. Drexel
University, Department of Computer Science, Tech. Rep, 6.

[12] Fowler, M. (1997). Dealing with roles. In Proceedings of
PLoP, volume 97, Monticello, Illinois, USA.

[13] Georgé, J.-P., Peyruqueou, S., Régis, C., and Glize, P.
(2009). Experiencing self-adaptive mas for real-time
decision support systems. In Demazeau, Y., Pavón,
J., Corchado, J., and Bajo, J., editors, 7th International
Conference on Practical Applications of Agents and Multi-
Agent Systems (PAAMS 2009), volume 55 of Advances in
Intelligent and Soft Computing, pages 302–309. Springer
Berlin Heidelberg.

[14] Gomaa, H. and Hashimoto, K. (2012). Dynamic self-
adaptation for distributed service-oriented transactions. In
Proceedings of the 2012 International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pages
11–20, Zï£¡rich, Switzerland. IEEE Computer Society.

[15] Lange, D. B. and Mitsuru, O. (1998). Programming
and Deploying Java Mobile Agents Aglets. Addison-Wesley
Longman Publishing Co., Inc.

[16] Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi,
F., Pugliese, R., Keznikl, J., and Bureš, T. (2013). The
Autonomic Cloud: A Vision of Voluntary, Peer-2-Peer
Cloud Computing. In Proceedings of 3rd Workshop
on Challenges for Achieving Self-Awareness in Autonomic
Systems, pages 1–6, Philadelphia, USA.

[17] Puviani, M. (2012a). Adaptive System’s Configuration in
a Swarm Robotics Scenario. Awareness magazine, page 3.

[18] Puviani, M. (2012b). Tr 4.2: Catalogue of architectural
adaptation patterns. Technical report, ASCENS Project.

[19] Puviani, M., Cabri, G., and Frei, R. (2012a). Self-healing
in Ensembles’ Adaptive Collaborative Patterns. In 1st
International Conference on Through-life Engineering Services
(TESConf 2012), page 361ï£¡367, Shrivenham, UK.

[20] Puviani, M., Cabri, G., and Leonardi, L. (2012b).
Adaptive Patterns for Intelligent Distributed Systems:
a Swarm Robotics Case Study. In Proceedings of the
6th International Symposium on Intelligent Distributed
Computing - IDC 2012, pages 241 – 246. Sringer.

14 EAI Endorsed Transactions on
Self-Adaptive Systems

01-2015 | Volume 1 | Issue 1 | e4

Patterns for self-adaptive systems: agent-based simulations

[21] Puviani, M., Cabri, G., and Leonardi, L. (2014). Enabling
self-expression: the use of roles to dynamically change
adaptation patterns. In Self-Adaptive and Self-Organizing
Systems Workshops (FoCAS), Fifth IEEE Conference on, Ann
Arbor, Michigan, USA. IEEE Computer Society.

[22] Puviani, M., Cabri, G., and Zambonelli, F. (2013).
A Taxonomy of Architectural Patterns for Self-adaptive
Systems. In Sixth International C* Conference on Computer
Science & Software Engineering, pages 77–85, Porto (P).
ACM.

[23] Ramirez, A. and Cheng, B. (2010). Design patterns for
developing dynamically adaptive systems. In Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, pages 49–58, Cape Town, South
Africa. ACM.

[24] Salehie, M. and Tahvildari, L. (2009). Self-adaptive
software: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems (TAAS),
4(2):14.

[25] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. (1996). Role-based access control models. Computer,
29(2):38–47.

[26] Serbedzija, N., Massink, M., Brambilla, M., Latella, D.,
Dorigo, M., and Birattari, M. (2012). Ensemble model
syntheses with robot, cloud computing and e-mobility.
ASCENS Deliverable D, 7.

[27] Weiser, M. (1991). The computer for the 21st century.
Scientific american, 265(3):94–104.

[28] Weyns, D. and Holvoet, T. (2007). An architectural
strategy for self-adapting systems. In Software Engineering
for Adaptive and Self-Managing Systems, 2007, page 3,
Minnesota, USA. IEEE Computer Society.

[29] Weyns, D., Iftikhar, M., Malek, S., and Andersson, J.
(2012a). Claims and supporting evidence for self-adaptive
systems: A literature study. In Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE
Workshop on, pages 89 –98.

[30] Weyns, D., Malek, S., and Andersson, J. (2012b). Forms:
Unifying reference model for formal specification of
distributed self-adaptive systems. ACM Transactions on
Autonomous and Adaptive Systems, 7(1):8.

[31] Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola,
R., Prehofer, C., Wuttke, J., Andersson, J., Giese, H., and
Göschka, K. (2012c). On patterns for decentralized control
in self-adaptive systems. Software Engineering for Self-
Adaptive Systems II, pages 76–107.

[32] Zambonelli, F., Jennings, N., and Wooldridge, M.
(2001). Organisational rules as an abstraction for the
analysis and design of multi-agent systems. International
Journal of Software Engineering and Knowledge Engineering,
11(03):303–328.

15
EAI Endorsed Transactions on

Self-Adaptive Systems
01-2015 | Volume 1 | Issue 1 | e4

	1 Introduction
	2 Use of patterns
	2.1 Reactive Stigmergy Service Components Ensemble Pattern
	2.2 Centralized AM Service Components Ensemble Pattern
	2.3 P2P Negotiation Service Components Ensemble Pattern

	3 Agents and the Role based approach
	3.1 Roles
	3.2 RoleSystem and roles implementation

	4 Evaluated case studies
	4.1 ``Environment exploration'' task implementation
	4.2 ``Performing the rescue'' task implementation

	5 Related Work
	6 Conclusions
	7 Acknowledgements

