
Simulation of Peer-to-peer streaming over large-scale
networks using OPSS

Lorenzo Bracciale
∗

DIE
University of Rome "Tor

Vergata", Italy

Francesca Lo Piccolo
†

DIE
University of Rome "Tor

Vergata", Italy

Dario Luzzi
‡

DIE
University of Rome "Tor

Vergata", Italy

Stefano Salsano
§

DIE
University of Rome "Tor

Vergata", Italy

ABSTRACT
In this paper we present OPSS, an Overlay Peer-to-peer
Streaming Simulator designed to simulate a large scale (i.e.
in the order of 100K nodes) peer-to-peer streaming systems.
OPSS is able to simulate a fair (i.e.“TCP-like”) sharing of
the uplink and downlink bandwidth among different connec-
tions, and it guarantees extensibility by allowing the imple-
mentation of different peer-to-peer streaming algorithms as
separate modules. Therefore it allows to simulate the be-
havior of arbitrary tree-based or mesh-based approaches. In
particular, we implemented two trivial tree-based and mesh-
based approaches for which we could easily find an analytic
model of chunk distribution delay. The results of the model
have been compared with the simulation output, showing
an excellent fit. Source code of OPSS is available under the
GPL license1.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications—
P2P streaming systems; C.4 [Performance of Systems]:
Performance attributes; I.6.8 [Types of Simulation]: Dis-
crete event

General Terms
Performance

∗lorenzo.bracciale@uniroma2.it
†francesca.lopiccolo@uniroma2.it
‡dario.luzzi@uniroma2.it
§stefano.salsano@uniroma2.it
1An abstract on the same topic will appear in a special issue
of Performance Evaluation Review.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSTools ’07, October 22, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

Keywords
Simulation of large-scale networks, performance metrics

1. INTRODUCTION
Even if IP multicast has originally been introduced with

the purpose of offering point-to-multipoint content distribu-
tion services, many deployment issues have still to be solved.
As argued in [1], IP multicast calls for multicast-capable
routers able to maintain per group state information, which
seriously limit its scalability. Second, IP multicast is a best
effort service, and providing higher level features such as re-
liability, congestion control, flow control, and security has
been shown to be more difficult than in the unicast case.
Finally, IP multicast requires changes at the infrastructure
level, and this slows down the deployment pace.

Due to this, more and more researchers are investigating
application level multicast as solution to stream multimedia
audio and video content from a source to a large number of
end users. This approach consists of end hosts, which ac-
cording to peer-to-peer (P2P) paradigm auto-organize them-
selves in an overlay network out of unicast tunnels across
participating overlay nodes. Relaying data among overlay
nodes allows then the multicast service.

Overlay multicast distribution trees represent the most
natural way of extending IP level multicast to application
level. To name a few, NARADA [2], HMTP [3], NICE [4],
ZIGZAG [5], CoopNet [6], SplitStream [7] are tree-based
P2P streaming systems. However, while tree-based topolo-
gies are well suited to dedicated IP multicast routers, they
could suffer from re-configurability problems in presence of
the high churn rate of P2P nodes. In reason of this, overlay
mesh-based and unstructured topologies have also been pro-
posed. CoolStreaming/DONet [8] and GridMedia [9] offer
examples of the latter approach.

The performance analysis of a large scale real-time stream-
ing system is far from trivial. One has to consider both the
“control plan” related aspects (how peers exchange the in-
formation about chunk availability and schedule the trans-
mission of chunks) and the “transport plane” related as-
pects (how much time is necessary to transmit chunks given
the available transmission resources on the access and back-
bone links and considering the competition among different
peers).



The paper is organized as follows. In section 2 we review
the current approaches of performance evaluation of real-
time P2P streaming systems and we highlight their limita-
tions. In section 3 we present OPSS [10], a simulator de-
signed to simulate a fair (i.e. “TCP-like”) sharing of the up-
link and downlink bandwidth among different connections in
large scale (i.e. in the order of 100K nodes) P2P streaming
systems. In section 4, OPSS is used to provide a simulative
evaluation of two real-time streaming algorithms. An ana-
lytical performance analysis of the algorithms is also given.
Note that the purpose of this section is neither the proposal
of a specific algorithm nor the comparison of a set of algo-
rithms. We rather aim at showing that OPSS is a valuable
tool for performance analysis and we show this by looking at
the excellent matching between the simulative performance
analysis and the analytic results. Finally, section 5 concludes
the paper.

2. REVIEW OF EXISTING WORKS
In this section we first briefly introduce some existing sys-

tems for P2P live media streaming and we focus especially
on the existing works that try to evaluate their performance.
Then we analyze a set of existing simulators for P2P sys-
tems.

CoolStreaming/DONet [8] is a Data-driven Overlay Net-
work for live media streaming. The overlay membership
management is built on a gossip-based protocol [11]. In
gossip-based protocols, a node sends a newly generated mes-
sage to a set of randomly selected nodes; these nodes do
similarly in the next round, and so other nodes do until the
message is spread. The video stream is divided into seg-
ments or chunks, and chunk availability in the node buffer
is represented by a Buffer Map (BM), where bit 1 and 0 indi-
cate that a segment is respectively available and unavailable.
Each node learns about chunk availability by periodically ex-
changing its BM with the BMs of its overlay neighbors, also
called partners. DONet is built on a “pull” approach, i.e.
the download of a given chunk starts only if a node requests
that chunk from a supplier partner. The performance of
DONet has been evaluated in [8] using PlanetLab [12][13].
PlanetLab is a global overlay network to support the de-
sign and the performance evaluation of applications widely
distributed over the Internet. The control overhead and the
continuity index are considered as performance metrics. The
former represents the ratio between the control traffic vol-
ume and the video traffic volume; the latter is the num-
ber of segments that arrive before or on playback deadlines
over the total number of segments. DONet performance is
also compared with the performance of a tree-based overlay
streaming system. Besides the continuity index, the average
hop count is considered as raw approximation of end-to-
end delay for delivering each segment. The number of used
PlanetLab nodes ranges from 10 to 200 (passing through
50,100,150).

GridMedia [9] is a unstructured P2P live media stream-
ing system which tries to overcome the limitation of the
DONet pull approach. It is based on a “push-pull” approach
that implies requesting stream packets in pull mode at start
up and having nodes relaying stream packets without ex-
plicit request in the immediate following phase. PlanetLab
testbed is used to evaluate GRidMedia performance in [9].
Pull and push-pull approaches are compared. The proposed
experimental results relate to a number of PlanetLab nodes

ranging from 300 to 340. Among the proposed performance
indexes, we mention i) the absolute delay, that is the delay
between the sampling time at the server and the playback
time at the local node; ii) the delivery ratio, that is the ra-
tio between the number of stream packets arriving before or
right on absolute playback deadline and the total number
of packets; iii) the α-playback-time, that is the minimum
absolute delay at which the delivery ratio is larger than α
(0 ≤ α ≤ 1); iv) the control overhead of the gossip protocol,
that is the average ratio between the control traffic and the
total traffic at each node.

The same authors as [9] focus in [14] on the optimal stream-
ing scheduling problem in data-driven overlay networks. The
optimal streaming scheduling problem aims at addressing
how each node optimally decides from which neighbor to
request which block, and how it allocates its limited out-
bound bandwidth to every neighbor, in order to maximize
the throughput. This scheduling problem is formulated as a
classical min-cost network flow problem and two resolution
strategies are considered. The first one is a global optimal
solution which assumes a centralized knowledge of all net-
work states, the second one is an heuristic procedure which
is fully distributed and calls for only local information ex-
change. To validate their algorithm, they use a discrete
event-driven P2P simulator to simulate a data driven over-
lay network of 500 nodes. However, the authors do not give
details about the kind of simulator they use. The low num-
ber of simulated nodes makes the hypothesis of packet-level
simulator reasonable. The considered metric is the aver-
age delivery ratio, that is the ratio between the number of
packets arriving before or right on the playback deadline
averaged on all the nodes and the total number of packets.
The proposed solution is compared with DONet, ChainSaw
[15] and round-robin streaming scheduling.

NICE [4] is another overlay P2P live streaming system,
but it is built on a hierarchically connected overlay topol-
ogy differently from the previously described systems. The
host hierarchy is used to define different overlay structures
for control messages and data delivery paths. End-to-end la-
tency is used as distance metric between host and it drives
the association of nodes in clusters. NICE clusters and lay-
ers are created, maintained and eventually repaired by a
fully distributed protocol. Data overlay delivery path is in-
stead the tree rooted at data source and implicitly defined
by the control overlay topology hierarchy. A packet level
simulator is used to evaluate NICE performance. Network
topologies are generated using the Transit-Stub graph model
and the GT-ITM topology generator [16]. The number of
end hosts in the multicast group is ranges from 8 to 2048.
Performance metrics such as the average link stress and the
average path length are investigated. The first one is the
number of identical packets sent over each underlying net-
work link averaged across all the network links. The second
one is the length (in number of hops) of the path from the
source to the hosts averaged across all the hosts. The frac-
tion of members that correctly receive the data packets in
case of node failures and the byte-overhead for control traffic
at the access links of the end-hosts are evaluated too. The
achieved results are compared with the results obtained by
simulating the application-layer multicast protocol Narada
[2].

There are other P2P streaming applications like PPLive
[17] or Sopcast [18] that are widely deployed but whose al-



gorithms are not under public domain. The only solution
for investigating their performance and behavior is to use
a black-box measurement-based approach, as in [19] and in
[20].

Regardless of the P2P live streaming systems described so
far, a large number of P2P simulators has recently emerged.
Most of them mainly focuses on simulating the resource
search phase and the related query message handling. This
is the case of Aurora [21] and Serapis [22], which model the
key announcement, insert or request process of Freenet-like
systems. Similarly, P2Psim [23], FreePastry [24] and the
Chord simulator [25], simulate only the DHT-based (Dis-
tributed Hash Table) search phase. A similar approach is
employed in other general-purpose P2P simulators, such as
Neurogrid [26][27], 3LS [28], and Peersim [29][30]. Although
the P2P query/search phases are undoubtedly representa-
tive of a P2P system, there is plenty of interest in quan-
titatively characterizing performance figures related to the
resource distribution process among involved peers. All the
previously mentioned simulation platforms are not suitable
to this purpose, as they neglect the process of distributing
data across peers. In fact, with regard to the low level net-
work dynamics, either their effect is totally neglected, as
in [21] and [26], where the overlay message transmission is
immediate, or an exponentially distributed packet delay is
used, as in [25], or the concept of distance between any two
nodes is somehow defined and the overlay message transmis-
sion time is identified with the latency between the relative
nodes, as in [22][23][24][28][29].

To properly model the data distribution phase, Gnutel-
laSim [31][32] interfaces with the ns-2 [33] discrete event
packet-based network simulator, which provides a very de-
tailed packet-level simulation model of the underlying trans-
port network. However, such a simulation model compro-
mises the scalability of the resulting simulation, as only a
few hundreds nodes may be properly simulated in reason-
able time with such a level of details.

3. SIMULATOR DESCRIPTION

3.1 Objective
The review of existing research works on the topic of

P2P streaming has pointed out that it is possible to iden-
tify three different approaches of performance evaluation: i)
measurement-based studies or real systems ii) experimen-
tal testbeds, such as PlanetLab, and iii) simulation tools.
Measurement-based studies do not allow to consider differ-
ent alternatives and to evaluate performance in advance of
building and deploying a system. Experimental testbeds and
current simulation tools suffer from scalability problems for
different reasons. On the one hand, experimental testbeds
would require a large network of emulator nodes, which is
not easy to realize and to manage. On the other hand, the
current simulation tools either are mostly oriented to the
search phase and neglect the content distribution phase or
perform the simulation at packet level, making unpractical
to simulate a P2P live streaming system over a network of
the order of 100K peers. Typical available results concern
network size of the order of hundreds or few thousands peers.
This is not representative of real-life P2P video streaming
systems, which aim at streaming live multimedia content to
a very large number, several hundred thousands if not mil-
lions, of users. It may be the case that network dynamics

simulated in small-scale networks are not representative of
large-scale P2P system deployments.

On basis of the above observation, we propose OPSS [10],
a new simulative approach that makes P2P video streaming
performance evaluation scalable.

3.2 How does OPSS achieve scalability?
In order to circumvent the tight scalability limits imposed

by packet-based simulators and simultaneously to model
networks dynamic with acceptable accuracy level, OPSS
was conceived as discrete-event fluid-flow simulator. This
allows to simulate the data distribution at the flow level,
i.e. neglecting transmissions of single packets and focusing
on events, such as start/end of a file or a file chunk trans-
mission, which lead to a variation in the rate of the connec-
tions among peers. This approach dramatically reduces the
number of simulation events and the related memory and
computational load with respect to packet-level simulation,
while retaining a satisfactory accuracy in the model of the
data delivery process. We also assume that all active con-
nections share fairly the available transmission resources, as
it happens if peer nodes use TCP as transport protocol and
round trip times are of the same order of magnitude. These
assumptions justify the meaning of “TCP-like” sharing of
the uplink and downlink bandwidth among different connec-
tions. Under this hypothesis it is possible to use a max-min
fair [34] rate allocation algorithm in order to evaluate the
available capacity for each connection, given the link band-
width constraints. The notion of max-min fair allocation is
based on the following premises: i) no entity should receive
an allocation larger than its demand, and ii) increasing the
allocation of any entity should not result in the decrease of
the allocation of another entity that received an equal or
smaller allocation. It well approximates the TCP-like shar-
ing uploading and downloading bandwidth between concur-
rent flows.

Evaluating the max-min fair rate allocation in a network
of hundred of thousand peers, with millions of active con-
nections is not an easy task. The classical centralized im-
plementation of max-min fair rate allocation (as suggested
for instance in [34]) does not scale well for the network di-
mensions of our interest. The overall computational load
of max-min fair allocation in our scenario is the product of
two different factors. On the one hand, a max-min fair re-
computation is required every time a new traffic relation is
established, or an old traffic relation is completed or inter-
rupted (e.g. because of peer disconnection), the frequency
of these events being linearly dependent on the number of
simulated peers2. On the other hand, the implementation
suggested in [34] requires to re-compute the allocated rates
per each network node, and thus it results in a complexity
which grows linearly with the number of simulated peers.

2In fact, given a peer connected to the network with
an access link of capacity C byte/second and upload-
ing/downloading a number of files with size L bytes accord-
ing to a processor-sharing queuing discipline, the average
service rate is (assuming that all the link capacity is used)
C/L file/second. Since a re-computation of the max-min
fair rate allocation algorithm is required at each change in
the served traffic relations, given N nodes, the number of re-
computations per second is approximated by N ·C/L, hence
linearly dependent on the network size. Note that we have
neglected the fact that new arriving requests, if not queued,
add further re-computation events.



To the best of our knowledge, existing P2P fluid-flow sim-
ulators, such as [35] or [36], never rely on the exact im-
plementation of the max-min fair rate allocation algorithm,
but approximate it to improve its computational effective-
ness. For example, [35] and [36] rely on an approach called
(in [35]) minimum-share allocation. The rate allocated to a
connection is given by the minimum among the fair share
rates (link bandwidth divided by number of connections)
at each involved link. Clearly, the resulting computational
efficiency is traded off with an underestimation of the band-
width actually used by flows: the excess bandwidth which
a connection bottlenecked at a remote node makes avail-
able at a node, is not exploited by the other connections.
Numerical results presented in [35] show a difference less
than 10% in terms of completion time for file transfers with
respect to the ns-2 computation. However, [35] does not
mention whether heterogeneous access links are employed
in their simulation results. Indeed, we intuitively expect
that the accuracy of such an approximation might notably
diminish in a highly bandwidth-heterogeneous scenario and
that, despite its computational weight, an exact max-min
fair bandwidth allocation algorithm should be employed in
fluid-flow simulators.

Due to this, we have developed OPSS starting from the
exact and efficient implementation of the max-min fair rate
allocation algorithm proposed in [37]. As it was observed
in [37], when a new connection is established or an old con-
nection is interrupted or completed, such events may affect
only a subset of the existing connections. The above ob-
servation has been exploited to develop an exact and more
efficient max-min fair rate allocation implementation under
the assumption of bottleneck links only in the access side
of the network. More details about such implementation
may be found in [37]. The reported results show that the
algorithm proposed in [37] outperforms traditional max-min
computation approaches by as much as a factor 100 for a
million nodes network. As in [37], we made the assumption
that rate bottlenecks occur only in the access part of the
network. This assumption is employed in both analytical
models appeared in the literature [38] as well as in simula-
tion programs such as [35] and [39]. It is justified by the
current bandwidth gap between access links and core net-
work trunk, and by the empirical observation that practical
P2P clients typically further throttle the upload bandwidth,
which in most cases results fully utilized by the uploading
connections.

Obviously, the most serious limit in our approach is that
the max-min fair bandwidth allocation well approximates a
TCP-like steady state bandwidth sharing. Due to this, our
approach is well suited to the case of persistent connections
between peers. In addition, it is currently impossible to
simulate Transit-Stub topologies such as the ones generated
by GT-ITM topology generator. To overcome this last limit,
extending the efficient and exact implementation of max-min
fair rate allocation proposed in [37] to the case of generic
topologies, even if not trivial, could be a reasonable solution.

3.3 Implementation details
OPSS is written in C++ and is publicly available [10]

under GPL license. It was designed according to a modular
implementation logic. Figure 1 illustrates the main blocks
of the simulator architecture.

As the figure shows, it is possible to identify three layers:

Figure 1: OPSS architecture

User, Overlay and Network. User layer represents the peer
behavior, taking into account for example connection and
disconnection policies (i.e. the “churn” behavior). Overlay
layer is responsible to simulate the overlay network and the
overlay interactions between peers. Network layer represents
the network behavior, and it currently implements the op-
timized max-min fair rate allocation approach as described
in [37]. All the above layers interact with the Engine block,
which contains the discrete-event-related classes and man-
ages the event executions. Engine block is also responsible
for output log file where events are dumped with the corre-
sponding time. The set of events that will be included in the
log file is customizable to prevent log files to become too big
in size. While User, Overlay, Network and Engine include
the basic structures common to any P2P streaming system,
the Algorithms block is responsible of the P2P streaming
algorithm and application to be simulated, including the
control communication between nodes and the scheduling
algorithm of stream segments. It inherits the basic struc-
tures of User, Overlay, Network and Engine, and allows to
customize them. In such a way, it allows the implementation
of any P2P live streaming mechanism.

The previously described approach makes OPSS a very
flexible simulator, as it offers the possibility of implement-
ing the logic of P2P streaming application as separate mod-
ule. Moreover, simulator users may exploit different ba-
sic classes provided by User, Overlay, Network and Engine
blocks and potentially implement any kind of P2P streaming
algorithms. For further information about how to write al-
gorithms, please refer to the guide available on the reference
site.

3.4 Performance metrics
In this section we discuss the performance metrics we may

evaluate using OPSS. Due to the characteristics of the appli-
cation (streaming of real-time multimedia flows), the consid-
ered metrics are basically related to the delay of the received
chunks. In the definition and evaluation of these delay re-
lated metrics, we need also to carefully consider that some
chunks may not be received by some receiver.

Consider a real time multimedia streaming system where
the multimedia stream is divided in chunks of duration T [s].
The origination of chunks starts at t = tstart = 0, and ends
up at t = tend. The total number of originated chunks will
be tend/T . In order to produce consistent measurements,
we need to observe the system in an interval of duration



wend−wstart, with 0 ≤ wstart < wend ≤ tend. For simplicity,
we assume that wstart corresponds to the generation time of
one given chunk, and we observe C chunks starting from the
one created at wstart. Therefore the generation times of the
observed chunks will be tc = wstart+(c−1)T , c = 1, 2, ···, C.
The first observed chunk originates at t1 = wstart and the
last observed chunk at tC = wstart + (C − 1)T . In order
to allow the last chunk to be received by all receivers, we
need to choose our observation interval end time wend such
that wend > tC . In particular, let be wend = tC + Dmax,
where Dmax is the maximum delay we are considering in our
evaluation of the system. Note that the origination of chunks
will continue also after the origination of the last observed
chunk, in the time interval in which we are still observing
the system and waiting for the last observed chunk to be
received.

Assume that there are (N − 1) receiving nodes 3 and that
node n receives the c-th observed chunk at time tr(c, n) =
wstart + (c − 1)T + d(c, n). Then d(c, n) is the delay of
chunk c at node n. Let us consider the last chunk C. If
d(C, n) > Dmax, the event is out of our observation window
and it will be lost. For the generic chunk c, the relative
reception event at node n goes out of our observation window
if d(c, n) > Dmax + (C − c + 1)T . From a methodological
point of view, it is not good that the maximum observable
delay for a chunk depends on the chunk number c. Therefore
we think it should be better to set Dmax as maximum chunk
delay for all chunks and to consider a chunk c lost if d(c, n) >
Dmax.

We consider that a receiving node n can be active or not by
defining its activity function a(t, n) as follows: a(t, n) = 1 if
node n is active at time t, a(t, n) = 0 if node n is not active
at time t. The activity of node n during the observation
window is:

A(n) =
1

wend − wstart

Z wend

wstart

a(t, n)dt (1)

The number of active nodes at time t is given by:

NA(t) =
X

n

a(t, n) (2)

Therefore the average number of active nodes NA over the
observation window will be:

NA =
1

wend − wstart

Z wend

wstart

NA(t)dt (3)

We define the chunk delivery ratio (CDR) for a chunk c
(that depends on Dmax) as the ratio between the nodes that
have received the chunk c and the average number of active
nodes when the chunk is originated. Note that we should
consider the average number of active nodes in a time in-
terval following the chunk origination event as this is the
number of potential receivers for the chunk. As the chunk
delivery delay is variable, it is not clear over which time in-
terval we should average NA(t). A simpler solution is to
define a “conventional” chunk delivery ratio for a chunk c
using the overall average number NA of active nodes over
the observation window. This is reasonable if the average
number of active nodes does not change over time. Accord-
ing to such assumption, the chunk delivery ratio relative to

3The total node number is N if we add the stream source
to the receiving nodes.

chunk c is:

CDRDmax(c) =
1

NA

X
n

rDmax(c, n) (4)

where rDmax(c, n) = 1 if chunk c is received by node n with
d(c, n) ≤ Dmax, while rDmax(c, n) = 0 if chunk c either is
not received or is received with d(c, n) > Dmax.

We also define the overall chunk delivery ratio (that de-
pends on Dmax as well) as:

CDRDmax =
1

C

X
c

CDRDmax(c) =
1

C · NA

X
c,n

rDmax(c, n)

(5)
Metrics related to the chunk delivery ratio are very com-

mon in P2P streaming performance studies [8][9]. These
metrics can measure the continuity of the playback; how-
ever, to better characterize live streaming applications, it
is advisable to take into account also the absolute delay of
chunks at the peer nodes. To this purpose, OPSS allows
also to evaluate metrics related to d(c, n), that represents
the time interval between the time instant at which chunk c
is available at stream source and the time instant at which
node n completes the download of chunk c. Specifically, we
consider the average chunk delay for a chunk c, which can be
evaluated by averaging the delay over all nodes that received
that chunk (with a delay lower than or equal to Dmax):

d
chunk
Dmax

(c) =
1

NA · CDRDmax(c)

X
n|rDmax (c,n)=1

d(c, n) (6)

It could be interesting to consider the perspective of a
given node n and to evaluate the perceived performances.
First of all, we can evaluate the chunk delivery ratio seen by
a given node n:

CDRnode
Dmax

(n) =
1

C · A(n)

X
c

rDmax(c, n) (7)

We can also evaluate the average chunk delay perceived
by a generic node n:

d
node
Dmax

(n) =
1

C · A(n) · CDRnode
Dmax

(n)

X
c|rDmax (c,n)=1

d(c, n)

(8)
It is also interesting to consider the α-chunk delay per-

centile (CDP) of the distribution of chunk delay perceived
by a generic node n. Typical values that we can consider
are α = 95, α = 99.

CDP node
Dmax

(α, n) = x|Prob{d(c, n) < x} =
α

100
(9)

The overall average chunk delay can be evaluated by aver-
aging the delay over all received chunks (with a delay lower
than or equal to Dmax):

dDmax =
1

C · NA · CDRDmax

X
c,n|rDmax (c,n)=1

d(c, n) (10)

Note that this is different from averaging d
chunk
Dmax

(c) over c.



4. THE EVALUATED P2P STREAMING AL-
GORITHMS

Goal of this section is to show OPSS performance in terms
of both scalability and capability of producing correct re-
sults. To this purpose, we simulated two“trivial”P2P stream-
ing distribution schemes (“Balanced M -ary tree” and “Triv-
ial Mesh”), for which we could easily derive analytical mod-
els. We compared the experimental results achieved by
OPSS with the results of the analytical model, and verified
OPSS correctness. On the other hand, OPSS scalability was
simply evaluated by simulating an ever increasing number
of nodes. In the following subsections, we describe the simu-
lated distribution schemes and we report the corresponding
analytical models and experimental results.

4.1 Balanced M-ary tree
This stream distribution scheme corresponds to a bal-

anced M -ary distribution tree. The stream source is the
root of the tree. The stream video is divided into segments
or chunks, and R = 1/T denotes the source chunk rate
[chunk/s]. Each node downloads chunks from one single
node, and it uploads chunks to M nodes. According to the
tree graphs jargon, each node has M children. We assume
that all nodes (including the stream source) join the system
simultaneously and form the distribution tree. We also as-
sume a static situation, in which all nodes persist through
the whole lifetime of the simulation.

Due to the last assumption, the issues related to the num-
ber of active nodes at a time instant and the average num-
ber of active nodes may be neglected. Another assumption
we make is that wstart = t1 = 0, where according to sub-
section 3.4 wstart and t1 denote respectively the observa-
tion start time and the first chunk creation time. The c-th
chunk will be referred to as c and the relative creation time
is tc = (c − 1)/R.

We now introduce the level concept. With reference to a
node, the level l represents its distance from stream source as
number of hops in the overlay tree. The level of the stream
source is l = 0, while the last level is denoted as l = L.
If all levels are complete, the number of nodes at level l is
M l and the total number of nodes is N =

PL
l=1 M l. In the

following, we will always consider trees with complete levels.
All nodes are assigned an access link with uplink and

downlink capacities Wup and Wdown [chunk/s]. To sim-
plify, we assume symmetrical access links, that means also
W = Wup = Wdown. As consequence, each node down-
loads chunks at W/M [chunk/s] from its father in the tree.
If W/M < R, the distribution system cannot work as each
node does not have enough capacity to download the stream
of chunks. We thus restrict our attention to the case in
which the available portion of the father’s uplink capacity is
greater than or equal to the rate of the stream to be received:
W/M ≥ R.

It is convenient to express the delay of chunk c at node
n in terms of the corresponding node level l. The reason
is that all nodes at the same level perceive the same delay.
Specifically, given the level l, l = 1, 2, · · ·, L, and the chunk
c, the corresponding chunk delay is

d(c, l) =
M

W
· l (11)

The average chunk delay for chunk c is

d
chunk

(c) =

PL
l=1 M l · d(c, l)PL

l=1 M l
(12)

=
M{M l [L (M − 1) − 1] + 1}

W (M − 1) (M l − 1)

Note that it does not depend on c. The reference to Dmax is
omitted, as we are assuming an ideal system where chunks
are not lost. We only need to set Dmax > L · W/M so that
we are able to observe all chunk reception events.

The average chunk delay perceived by a generic node at
level l is

d
node

(l) =
1

C

CX
c=1

d(c, l) =
M

W
· l (13)

The assumption in (13) is that C chunks are observed during
the observation window.

Let us now consider the experimental results we achieved
by setting M = 2. In more detail, we simulated a set of
binary distribution trees by varying the maximum depth
L of the tree in the range [1, 17] (e.g. the node number
ranges from 3 to 131171). Figure 2 illustrates the binary
tree corresponding to L = 4. Observation time end was set
to 3600 sec. Moreover, W = 2 [chunk/s] and R = 1 [chunk/s]
were used as upload capacity and chunk creation rate. We
highlight the “deterministic” nature of the simulations, since
there is no variability in the input data and all nodes are
always active. Therefore, the results of each simulation are
relative to a single simulation run and we do not indicate
any confidence interval (the same considerations apply to
the next subsection).

Figure 2: Binary distribution tree with N=31 nodes

Figure 3 shows the chunk delivery ratio CDR(c) defined
in (4) versus c. As the observation end time wend is 3600 sec
and the last observed chunk is generated at 3600, we are not
able to observe the complete diffusion of all chunks created
during the observation window. The correct approach in
order to observe all reception events is set C to the greatest
c such that the condition (L+c−1)M/W < wend is verified.
For instance, when the simulated nodes are 255, solving the
above condition leads to c = 3593, corresponding to the
highest vertical step in the curve for 255 nodes.

The cumulative distribution function of the average chunk

delay for a given chunk d
chunk

(c), defined in (12), is illus-
trated in Figure 4. According to equation (12), the cumu-
lative distribution function confirms that the average chunk



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 3500  3520  3540  3560  3580  3600

C
hu

nk
 D

el
iv

er
y 

R
at

io

Chunk number

255 nodes
2047 nodes
16383 nodes
131071 nodes

Figure 3: Chunk delivery ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  2  4  6  8  10  12  14  16

C
D

F
 o

f a
ve

ra
ge

 c
hu

nk
 d

el
ay

 (
pe

r 
ch

un
k)

Chunk play delay [sec]

255 nodes
2047 nodes

16383 nodes
131071 nodes

Figure 4: Cumulative distribution function of aver-
age chunk delay for a given chunk

delay is constant, and there is a perfect matching between
the values achieved by equation (12) and the values achieved
by simulation.

Figure 5 shows the cumulative distribution function of the
average chunk delay perceived by the generic node. Given
a number of simulated nodes, the steps correspond to the
different tree levels and their probability values may be de-
duced from the ratio between the number of nodes in that
level and the total number of nodes.

4.2 Trivial mesh
The algorithm represents a really simple streaming dis-

tribution system based on mesh topologies. Specifically,
the stream source generates chunks at rate R [chunk/sec]
and it uploads S chunks simultaneously to S nodes. All
other nodes (i.e. excluding the source node) maintain S
connections for downloading chunks and S connections for
uploading chunks, and they use them simultaneously to up-
load/download different chunks. Thus nodes form groups
of S nodes. The first S nodes are connected directly with
stream source and download the stream chunks from it. The
second group of S nodes opens a connection with each node
of the first group to download available chunks, and so on.
In such a way, if we further assume that the total number of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  2  4  6  8  10  12  14  16

C
D

F
 o

f a
ve

ra
ge

 c
hu

nk
 d

el
ay

 (
pe

r 
no

de
)

Chunk play delay [sec]

255 nodes
2047 nodes

16383 nodes
131071 nodes

Figure 5: Cumulative distribution function of aver-
age chunk delay at a given level

nodes is N = L · S + 1, it is possible to identify L different
levels, each consisting of a group of S nodes. The previous
assumption implies also that all levels are complete. Figure
6 shows the trivial mesh topology corresponding to N = 17
and S = 4.

Building the overlay topology according to the above triv-
ial mesh scheme is not smart, as the underlying algorithm
does not allow to increase the number of peers at each level:
the tree depth increases linearly with the node number and
the chunk transfer delay increases as well. Anyway, the pur-
pose of our work now is just to check OPSS capability of
producing the expected results, and we are going to provide
an analytical model of this trivial mesh. Like in the previous
experiment, we assume that nodes persist through the whole
simulation time. Moreover, with regard to access link upload
and download capacities, the condition W = Wup = Wdown

[chunk/s] holds. There is however one exception: the stream
source has a capacity that is S times the capacity of other
nodes. This means that the S nodes connected to the stream
source download chunks at rate W . The other nodes may
download S chunks in parallel from S different suppliers,
and each chunk is downloaded at a rate of W/S [chunk/s].
We will focus on the case W = R.

Since all nodes in a level perceive the same chunk delay,
we can refer to levels instead of individual nodes. With re-

Figure 6: Trivial mesh with N=17 nodes and S=4



gard to the observation window, we assume that i) wstart =
t1 = 0, ii) the creation time of the generic c-th chunk is
tc = (c − 1)/R. In addition, we assume that source node
and nodes at level 1 join the system at time wstart, while
all other nodes join the system simultaneously at time in-
stant tS = S/R, i.e. when the first S chunks have already
been created and transferred to nodes at level 1. Therefore,
at instant tS each node of level 2 will open S connections
to download the first S chunks from the S nodes at level 1.
The download of these S chunks will last S/W [s]. As in our
hypothesis, the downloads will last exactly S/R or equiva-
lently ST [s]. When such downloads end, there will be S
new chunks available at nodes at level 2 and nodes at level
3 will start S new downloads from nodes at level 2. This
procedure is straightforwardly replicated in all levels below.

Given the level l, l = 1, 2, · · ·, L, and the chunk c, the
corresponding chunk delay is

d(c, l) =
S

R
+

�
ceil

�
c

S

�
+ l − 1

�
S

W
−

c − 1

R
(14)

This delay will be periodic of period S, as a burst of S
chunks will be received at the same time by nodes at same
level. In particular, the most recent chunk of the burst will
experience the lowest delay, the oldest chunk of the burst
will experience the highest delay and the delay difference
among two next chunks in the burst is T .

The average chunk delay for the chunk c is

d
chunk

(c) =

PL
l=1 S · d(c, l)PL

l=1 S
(15)

=
S

2W
(L − 1) +

S

W
ceil

�
c

S

�
−

c − 1 − S

R

The average chunk delay perceived by a generic node at
level l is evaluated under the assumption that the number C
of observed chunks is an integer multiple of S, e.g. C = J ·S
with J ∈ Z+. Specifically, it results:

d
node

(l) =
1

C

CX
c=1

d(c, l) (16)

=
S [R (J − 1 + 2l) − W (J − 1)]

2RW

At this point we report the experimental results we achieved
by setting S = 4. The node number ranges from 101 to 3601
passing through 1001 and 3401. Observation end time was
set to wend = 3600. Moreover, W = R = 1 [chunk/s].

The chunk delivery ratio is shown in Figure 7. According
to formula (16), the average chunk delay at level l is linearly
dependent of l. This means that, due to the fixed observa-
tion window, when the node number and consequently the
level number grow, an ever increasing number of chunk re-
ception events will be lost. When the node number is 3601,
the first created chunk is received only by nodes in the first
(L − 1) levels. In reason of this, simulating a higher node
number does not make sense if the observation window is
not accordingly increased.

The cumulative distribution of the average chunk delay for
a given chunk is illustrated in Figure 8. As it can be seen,
each curve is characterized by two different parts: the first
one grows almost linearly and accounts for the chunks that
are not received by all nodes within the observation window;
the second one relates to the chunks that all nodes receive

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  500  1000  1500  2000  2500  3000  3500  4000

C
hu

nk
 D

el
iv

er
y 

R
at

io

Chunk number

101 nodes
1001 nodes
3401 nodes
3601 nodes

Figure 7: Chunk delivery ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  500  1000  1500  2000

C
D

F
 o

f a
ve

ra
ge

 c
hu

nk
 d

el
ay

 (
pe

r 
ch

un
k)

Chunk play delay [sec]

101 nodes
1001 nodes
3401 nodes
3601 nodes

Figure 8: Cumulative distribution function of aver-
age chunk delay for a given chunk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  500  1000  1500  2000  2500  3000  3500  4000

C
D

F
 o

f a
ve

ra
ge

 c
hu

nk
 d

el
ay

 (
pe

r 
no

de
)

Chunk play delay [sec]

101 nodes
1001 nodes
3401 nodes
3601 nodes

Figure 9: Cumulative distribution function of aver-
age chunk delay at a given level

within the observation window and it is almost vertical (ac-
tually there are S different values separated by 1 second, as
the average chunk delay is periodic with period S and the
values it may take increase by step T = 1/R).



Figure 9 shows the cumulative distribution function of av-
erage chunk delay at a given level. The reported curves ex-
hibit a step trend with each step corresponding to a specific
level, even if it is difficult to appreciate the step trend, as the
node number and consequently the level number grow. This
complies with equation (16), even if the last one has been
derived under the approximation of observed chunk number
multiple of S.

4.3 Simulator performance
Just to give an idea about OPSS performance, we provide

some details about the simulation computational load on
the pc-desktop we used for our experiments. Specifically,
the pc was equipped with a 3.2 GHz bi-processor CPU and
4 Gigabyte RAM. Table 1 refers to the binary tree algorithm
and shows, for a given node number, the time necessary to
complete the simulation, the resulting log file size and the
time necessary to analyze log file with an our own C++
application. The analysis results have been then used to
achieve the previously reported graphs.

Binary tree algorithm
Nodes Simulation time Log file size Analysis time
131071 ∼ 6h 15.6GB ∼ 5h

Table 1: Main computational load parameters

5. CONCLUSIONS
In this paper we have presented OPSS, a tool for the

simulation of large-scale P2P streaming networks, and we
tested it by using two reference algorithms for building a
live streaming P2P distribution system. The simulator has
produced consistent results, perfectly aligned with the an-
alytical models of the reference algorithms. Our current
works concern first the extensions to the network part of
the simulator, in order to consider more complex topology
with respect to the “bottleneck-in-the-access” approach that
is currently implemented. The second direction of work is
to use OPSS for performance evaluation of mesh-based al-
gorithms for a live streaming P2P distribution systems. As
we have shown that there are no tools allowing to make this
evaluation for large scale P2P systems and considering the
problem of resources utilization at network transport level,
we believe that OPSS will be able to provide interesting in-
sights on the problem.

6. REFERENCES
[1] C. Diot, B. Levine, B. Lyles, H. Kassem, D.

Balensiefen, Deployment issues for the IP multicast
service and architecture, in IEEE Network, vol. 14 (1),
10-20, 2000

[2] Y. Chu, S. G. Rao, H. Zhang, A case for end system
multicast, in Proceedings of ACM SIGMETRICS 2000,
Santa Clara, CA,USA, 2000

[3] B. Zhang, S. Jamin, L. Zhang, Host multicast: a
framework for delivering multicast to end users, in
Proceeding of IEEE INFOCOM, New York, NY, USA,
2002

[4] S. Banerjee, B. Bhattacharjee, C. Kommareddy,
Scalable application layer multicast, in Proceedings of
ACM SIGCOMM, Pittsburgh, PA, USA, 2002

[5] D. A. Tran, K. A. Hua, T. Do, ZIGZAG: an efficient
peer-to-peer scheme for media streaming, in Proceedings
of IEEE INFOCOM, San Francisco, CA, USA, 2003

[6] V. N. Padmanabhan, H. J. Wang, P. A. Chou,
Distributing streaming media content using cooperative
networking, in Proceedings of NOSSDAV, Miami
Beach, FL, USA, 2002

[7] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A.
Rowstron, A. Singh, SplitStream: high-bandwidth
multicast in cooperative environments, in Proceedings of
the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), The Sagamore, Bolton Landing,
NY, USA, 2003

[8] X. Zhang, J.C. Liu, B. Li, P. Yum,
CoolStreaming/DONet: A data-driven overlay network
for efficient live media streaming, in Proceedings of
IEEE INFOCOM, Miami, FL, USA, 2005

[9] M. Zhang, L. Zhao, Y. Tang, J. Luo, S. Yang,
Large-Scale Live Media Streaming over Peer-to-Peer
Networks through Global Internet, in Proceedings of
ACM Multimedia 2005, Singapore, Singapore, 2005

[10] OPSS simulator, http://netgroup.uniroma2.it/
twiki/bin/view.cgi/Netgroup/OpssPublicPage

[11] A.J. Ganesh, A.M. Kermarrec, L. Massoulie,
Peer-to-peer membership management for gossip-based
protocols, in IEEE Transactions on Computers, 52(2),
2003

[12] PlanetLab testbed, http://www.planet-lab.org/

[13] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, M. Bowman, PlanetLab: An Overlay
Testbed for Broad-Coverage Services, in ACM
Computer Communications Review, vol. 33, no. 3, 2003

[14] M. Zhang, Y. Xiong
”

Q. Zhang, S. Yang, On the
Optimal Scheduling for Media Streaming in Data-driven
Overlay Networks, in Proceedings of IEEE Globecom
2006, San Francisco, CA, USA, 2006

[15] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy,
A.E. Mohr, Chainsaw: Eliminating Trees from Overlay
Multicast, in Proceedings of 4th International
Workshop on Peer-to-Peer Systems (IPTPS’05), Ithaca,
NY, USA, 2005

[16] K. Calvert, E. Zegura, S. Bhattacharjee, How to Model
an Internetwork, in Proceedings of IEEE INFOCOM,
San Francisco, CA, USA, 1996

[17] PPLive web site, www.pplive.com/en/index.html

[18] SopCast web site, http://www.sopcast.org/

[19] X. Hei, C. Liang, J. Liang, Y. Liu, K. Ross, Insights
into PPLive: A Measurement Study of a Large-Scale
P2P IPTV System, in Proceedings of IPTV Workshop,
International World Wide Web Conference, Edinburgh,
Scotland, 2006

[20] S. Ali, A. Mathur, H. Zhang, Measurement of
Commercial Peer-To-Peer Live Video Streaming, in
Proceedings of Workshop on Recent Advances in P2P
Streaming, Waterloo, ON, Canada, 2006

[21] Aurora simulator, http:
//freenet.cvs.sourceforge.net/freenet/aurora/

[22] Serapis simulator, http:
//freenet.cvs.sourceforge.net/freenet/Serapis/

[23] T. M. Gil, F. Kaashoek, J. Li, R. Morris, J. Stribling,
P2Psim simulator,



http://pdos.csail.mit.edu/p2psim/

[24] Rice University, FreePastry simulator,
http://freepastry.org/FreePastry/download.html

[25] I. Stoica, M. Walfish, Chord simulator,
http://cvs.pdos.csail.mit.edu/cvs/~checkout~/

sfsnet/simulator/

[26] Neurogrid simulator,
http://www.neurogrid.net/php/simulation.php

[27] S. Joseph, An extendible open source P2P simulator,
P2P Journal, 1-15, 2003

[28] N. S. Ting, R. Deters, 3LS - A Peer-to-Peer network
simulator, in Proceedings of 3rd International
Conference on Peer-to-Peer Computing, Linköping,
Sweden, 2003

[29] M. Jelasity, G. P. Jesi, A. Montresor, S. Voulgaris,
PeerSim simulator,
http://peersim.sourceforge.net/

[30] M. Jelasity, A. Montresor, O. Babaoglu, A modular
paradigm for building self-organizing peer-to-peer
applications, in Proceedings of the International
Workshop on Engineering Self-Organising Applications
(ESOA’03), Melbourne, Australia, 2003

[31] Q. He, M. Ammar, G. Riley, H. Raj, R. Fujimoto,
GnutellaSim simulator, http://www-static.cc.
gatech.edu/computing/compass/gnutella/

[32] Q. He, M. Ammar, G. Riley, H. Raj, R. Fujimoto,
Mapping peer behavior to packet-level details: a
framework for packet-level simulation of Peer-to-Peer
systems, in Proceedings of MASCOTS 2003, Orlando
(FL), USA, 2003

[33] The Network Simulator ns-2,
http://www.isi.edu/nsnam/ns/

[34] D. Bertsekas, R. Gallager, Data Networks, Prentice
Hall, Englewood Cliffs, NJ, 1987

[35] M.Baker, T. Giuli, Narses: a scalable flow-based
network simulator, Technical report, Stanford
University, 2002, available on line at http:
//arxiv.org/PS_cache/cs/pdf/0211/0211024v1.pdf

[36] W. Yang, N. Abu-Ghazaleh, GPS: A General
Peer-to-Peer Simulator and its Use for Modeling
BitTorrent, in Proceedings of MASCOTS 2005,
Atlanta, GA, September 2005

[37] F. Lo Piccolo, G. Bianchi, S. Cassella, Efficient
simulation of bandwidth allocation dynamics in P2P
Networks, in Proceedings of Globecom 2006, San
Francisco, CA, USA, 2006

[38] D.Qiu, R.Srikant, Modeling and Performance Analysis
of BitTorrent-Like Peer-to-Peer Networks, in
Proceedings of ACM SIGCOMM’04, Portland, OR
(USA), September 2004

[39] M. Schlosser, T. Condie, S. Kamvar, Simulating a P2P
file-sharing network, in Proceedings of 1st Workshop on
Semantics in P2P and Grid Computing, Budapest,
Hungary, May 2003


