
ICST Transactions on Mobile
Communications and Applications

01-12 2013 | Volume 01 | Issues 3 | e8EAI
European Alliance
for Innovation

ICST Transactions
on Mobile Communications and Applications Research Article

1

AIRS: A Mobile Sensing Platform for Lifestyle
Management Research and Applications

D. Trossen1,* and D. Pavel2

1TecVis LP, Colchester, UK
2TecVis LP, Colchester, UK

Abstract

Utilizing mobile devices for gaining a better understanding of one’s surrounding, physiological state and overall
behaviour has been argued for in many previous works. Despite the increasing usage of mobile devices for research in
this space, few platforms developed are readily available for supporting the wider research community. This paper
presents a mobile sensing platform that allows for exploiting the latest and ever-increasing capabilities residing in
mobile devices. While we highlight the main design and implementation characteristics of this solution, we also outline
our experiences with this platform for typical usage scenarios in lifestyle management.

Keywords: mobile sensing, gateway, platform, lifestyle management, context awareness.

Received on 02 April 2013; accepted on 05 September 2013; published on 16 December 2013

Copyright © 2013 D. Trossen and D. Pavel, licensed to ICST. This is an open access article distributed under the terms
of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/mca.1.3.e8

1. Introduction*

The importance of mobile devices and their capabilities
has long been recognized within research projects such as
[1-4, 22] as well as commercial solutions such as [5,6].
This is due to mobile devices becoming increasingly more
powerful in recent years. Processor speeds have exceeded
1GHz with storage capacities in the tens of GBs.
Connectivity options now span from short-range
Bluetooth over WLAN to high-speed cellular, while
capabilities to locate mobile devices are almost ubiquitous
nowadays. Furthermore, the penetration of smartphones
has surpassed 50% in some markets such as the US or the
UK throughout 2011.

Beyond hardware improvements, the mobile software
space has exploded as well, with applications created for
any possible usages. Such dramatic growth in mobile
applications is driven by easier to use development tools
as well as the support of an ecosystem provided by
companies such as Apple or Google. Using such tools, it
is possible to create applications capable of harvesting a

* Corresponding author. Email: dirk.trossen@cl.cam.ac.uk

growing pool of information that originates from or can
be collected through such devices.

There is no need to justify here the advantages of a
platform-based approach. Platforms are found now at
various levels within computing architectures and works
such as [7] discuss the advantages of this approach within
embedded systems. What we argue for is the need for an
open-source, widely available mobile sensing platform
that is flexible enough to be used for various purposes,
allows for both automatic and manual input and not only
enables new applications but provides valuable support
for user research. While other mobile-based sensing
platforms have been developed during the years (e.g.,
[1][3][4][29]), we think there is value in presenting our
platform, which can be immediately downloaded and used
by the research community, therefore minimizing the time
it takes to deal with sensing-specific issues and, instead,
focusing on developing advanced algorithms that make
use of such collected information. Our motivation behind
creating a mobile-based sensing platform and gateway
started a long time ago, with a Symbian-based platform
[2], when it became clear to us that mobiles will become
more pervasive computing devices, with ever-increasing
capabilities for collecting, processing and interacting with
end users. However, the more recent developments of
mobile devices, software development environments and

EAI
European Alliance
for Innovation

D. Trossen and D. Pavel

2

even user attitudes towards sensing, allowed us to greatly
improve the platform by making it easier to add new
sensors, functionalities and user interaction means.

Based on our work and experiments within the area of
lifestyle management applications, we have continuously
improved the platform to address requirements of such
application area, including allowing end users to get more
involved in collecting and interpreting information
through their mobiles.

In this paper, we discuss challenges, design solutions
and implementation issues as well as the scenarios and
experiments we have conducted to test our platform. For
this, we organize the remainder of the paper as follows.
We start by describing the setting in which we have been
using our platform; present the challenges we encountered
and the derived requirements while also including
references to related work. Such challenges and
requirements are important as they drive the design of our
platform, which we describe before presenting our current
implementation. We further include details about our
experiments with the platform and provide an outlook
how a platform like AIRS can contribute to the wider
understanding about one’s environment. We also briefly
provide two examples for using our platform, namely
processing and visualising recordings directly on a mobile
device as well as controlling device functions. We finally
conclude our paper and discuss future work.

2. Scenarios and challenges

Our recent platform development has been driven by our
activities within lifestyle management systems. For that,
we have used and further developed the mobile-based
platform as one main information provider within a larger
system, capable of collecting user information across
various context dimensions, such as physiological, spatial,
social, environmental, or emotional [17]. The main goal
of our system was to provide support for better
understanding what happened and why it happened by
allowing information correlation within a complex space.

The area of lifestyle monitoring is very well
represented both in research [1-4] as well as in the
commercial space [5][6][10-15], with mobile phones
providing means for data collection, processing and
remote access. Utilizing mobile devices for such
scenarios, however, comes with challenges, in particular
since the devices are not dedicated sensor platforms but
they are primarily meant for personal or professional use
[3]. Many of these challenges have been identified and
partially addressed within related work, with [20]
providing a particularly good overview.

The biggest challenge we have encountered is battery
life. While advances in processor speeds or storage
capabilities have largely been following Moore’s Law,
battery capacity has developed at a slower pace. Hence,
any solution for mobile sensing must be sensitive to
battery consumption. As mobile phones are still primarily
used for other purposes, any sensing platform must cater

to the need of an end user to sustain a certain level of
battery that can be used beyond the desired mobile
sensing task. One solution is the configurability of the
platform, allowing for setting larger intervals for polling
sensors, such as location and wireless connectivity (wifi,
signal strength, etc.). Such options allow the end users to
tradeoff the requirements of the experiments with their
own needs, e.g., regarding battery life or storage.

Within self-monitoring scenarios, even when end users
do not permanently record, there is still a considerable
amount of data being generated. Therefore, storing and
synchronizing recorded data has to be taken into account.
Here we encountered various models, such as remote
provisioning of such data [12][15] or utilizing the local
storage of the mobile device [10][13][14]. We found that
a platform created for self-monitoring has to provide
solutions for storing information both locally and
remotely. While local storage capacities have increased,
there is still the issue of safety of data when considering
how likely mobile devices are to be misplaced, stolen or
destroyed. Hence, any solution needs an easy way to sync
stored data, both within end user’s own data space and
with other trusted parties. This brings in the issue of
connectivity. While data connectivity has improved in
recent years, simply relying on always-on wireless
connectivity can limit the applicability of the sensing
platform. Instead, any solution should support a wide
range of syncing (and sharing) options, from real-time (if
the scenario demands it) to periodic.

Given the continuous addition of sensors on mobile
devices as well as external ones (which can use the
mobile device as a gateway), a mobile sensing platform
has to be designed with extensibility in mind, as also
argued in [8]. A challenge that comes from the increasing
complexity of mobile devices is the impossibility of
anticipating all malfunctioning scenarios. Therefore, it is
important to ensure persistence of the measurement itself
as well as for its recordings, e.g., through automatic
restarting in failure cases and emergency data saving. This
is particularly important for long-running experiments.

Beyond technical challenges involved in building such
platforms, using such mobile sensing platforms for
recording user information poses major challenges with
regard to user needs and concerns. A major challenge
relates to privacy, as most of the user information
collected is of a personal nature, as also discussed in [4].
Another important issue that arises from a sensing
solution running on a device with a different main
purpose as well as a (still) reduced screen capability is
related to user interactions. Any solution should blend
into the (device) platform-specific interaction model to
avoid overburdening the end user. However, within
scenarios such as the ones we have considered, purely
relying on automated data collection is not enough. For
instance, people like to add their own annotations, which
help them identify interesting moments during the day.
Therefore, we provide means for such interactions
allowing for exploiting user’s knowledge and enriching
automatic recognition algorithms such as [16].

EAI
European Alliance
for Innovation

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications

3

Social communication is an essential part of our lives
and we can observe the trend that people are willing to
share more and more information. Therefore, such
platforms have to provide means for sharing either
individual or aggregated information with various circles.
However, sharing must happen under the user’s control.

A specific challenge arises from our ambition to serve
the wider research community. While open sourcing is a
means to ensure platform extension, it is not enough.
Traditionally, many projects in this area have built their
own platforms, which survived for a number of years and
were then discontinued. We provide here an actively
growing Android-based mobile sensing solution that
allows for extensive sensing and is already available in
the application store, ready to be installed, configured and
used according to any research needs.

3. The AIRS platform

In this section, we describe the AIRS platform from
design to implementation. The design takes into account
the various challenges we encountered when building
lifestyle management applications.

We chose Android for a number of reasons, the main
ones being: (1) its flexibility in terms of customizing user
interfaces and interactions, as it allows for controlling font
and icon sizes (important in healthcare scenarios), as well
as easier interactions and increased awareness through
widgets and the notification bar; (2) allowing access to a
large number of sensors as well as system information
without requiring special root rights; (3) the potential for
integrating with future healthcare products through the
Bluetooth Health Device Profile (HDP), supported since
Android platform release 4.0.4 (Ice Cream Sandwich); (4)
a substantial user base, given the wide adoption of
Android as a smartphone platform.

The AIRS platform offers the following functionalities:
• Supporting and integrating a wide range of

current and future sensors
• Sensor configuration interface, allowing for

customizing certain platform settings and
behaviours, polling intervals and accuracy levels
for certain sensors as well as adding or removing
certain sensors

• Quick start mode from the main application
launcher screen, using the last selected sensors
(if they are still available)

• Inspecting and visualizing current recordings
through the notification bar

• Provide two widgets, one used for free-text user
annotations and one used for mood-related
annotations

• Local recording, where sensors values are stored
in a phone-local, secure database

• Remote recording, where data is sent to a remote
server for storage.

For simplicity, we describe in this paper only the local
recording mode.

3.1. Main abstractions

Let us refer to Figure 1 for the various classes being
realized in our platform and outline how this particular
design addresses the aforementioned challenges. The
sensors that can be recorded by the platform are
represented by Sensor objects and their values can be
provided by various resources, being physical (e.g., phone
microphone, light sensor) or virtual (e.g., calendar, user
annotations).

A sensor can be either simple (i.e., when using a single
resource) or complex (i.e., when using data from multiple
resources). The actual recording is realized through a
Handler class, which implements Discover() and
Acquire() methods that are specific to the set of sensors
included within that abstraction. The class also provides
interfaces for resource management (destroyHandler()) as
well as sharing of data (Share()). The extensibility
requirement is addressed by integrating the various
handlers into a HandlerManager class, which instantiates
the implementations at platform start.

The configurability challenge is addressed by
providing a HandlerUI implementation for certain
handlers. These implementations are made available
through the HandlerUIManager.

When starting the local recording, each Handler
implementation is instructed to discover the available
sensors it implements, creating a Sensor instance for each
available sensor. Each Sensor instance is inserted into the
SensorRepository, which allows for retrieving a value
instance at any time.

Since we directly base our platform on the Android
design and implementation guidelines, as outlined in the
SDK [19], any interaction with the end user is
implemented as a so-called Activity [19]. The Platform
class in Figure 1 is the main activity, which is started
through the icon in the application launcher of Android.
This activity provides access to the configuration for the
overall platform as well as the handlers that expose a
HandlerUI implementation. The main activity also allows
for launching the local recording. For this, a long-running
Local service is started, directly realizing the Android
concept of a Service [19]. Before the service is started, a
user dialogue allows for selecting the particular sensors to
be recorded or perform a quick start. The current
recording can be controlled by the Measurements activity,
launched when clicking on the appropriate icon in the
Android notification bar. The activity displays the latest
value for each recorded sensor and also allows for
pausing/resuming or exiting a recording.

EAIEuropean Alliancefor Innovation

D. Trossen and D. Pavel

Figure

3.2. Supported sensors

The number and type of sensors supported by our
platform have been increasing, driven by our applications
scenarios, any new needs found through user experimen
and through the growing ability of the Android system to
access information. As a consequence, our platform
currently supports a wide range of information to be
recorded. Apart from physical sensors that include
location (of various kind such as based o
information), gyroscope, accelerometer, pressure,
temperature as well as magnetometer, the platform
integrates a large variety of platform information such as
tasks running, RAM size (used memory), headset status,
battery status, cell information, and many more
not utilize the camera as a sensor since Android requires
the camera preview to be visible, which contradicts our
requirement of being able to use the device
Given the inherent challenges of determining
ambient temperature through the phone sensor as well as
our increased usage of data connectivity, we also utilize
web services for gathering information such as the local
weather, humidity, wind speed and so on. Furthermore,
we support sensors that can be attached via Bluetooth,
such as the Zephyr HxM heart rate monitor [9]. Figure 2
shows the various information types (left side) currently
supported by our platform, in relation to processed

4

Figure 1. AIRS implementation diagram

The number and type of sensors supported by our
platform have been increasing, driven by our applications
scenarios, any new needs found through user experiments
and through the growing ability of the Android system to
access information. As a consequence, our platform
currently supports a wide range of information to be
recorded. Apart from physical sensors that include
location (of various kind such as based on GPS or cell
information), gyroscope, accelerometer, pressure,
temperature as well as magnetometer, the platform
integrates a large variety of platform information such as
tasks running, RAM size (used memory), headset status,

tion, and many more. We do
not utilize the camera as a sensor since Android requires
the camera preview to be visible, which contradicts our
requirement of being able to use the device normally.

determining an accurate
ent temperature through the phone sensor as well as

our increased usage of data connectivity, we also utilize
web services for gathering information such as the local
weather, humidity, wind speed and so on. Furthermore,

ched via Bluetooth,
monitor [9]. Figure 2

shows the various information types (left side) currently
supported by our platform, in relation to processed

information derived from these sensors along several user
context dimensions, as implemented in work described in
[17]. Based on these types, the current platform
implementation exposes in excess of 60 sensor values.

As described above, all sensors are accessed through
Handler implementations. Usually, certain groups of
sensors are realized by a single Handler
common way of accessing this group. For instance, a
dedicated Handler implementation realizes the access to
the Zephyr heart rate monitor
particular BT-level protocol. This Handler
access to three different sensors

Furthermore, the design of the platform allows for
directly integrating information processing into the
platform through creating a hierarchy of Handler
implementations, if so desired. Such decision is driven by
factors such as disconnected operation, limiting the
amount of data to be sent off for processing purposes, on
the-phone visualizations, “abstract and discard”
operations, and so on.

Any addition or change to the suppor
requires re-compiling and re
order to address the extensibility as well as the battery life
requirements, we recommend two important best practice
guidelines. Firstly, Handler implementations should
access information through callbacks instead of polling,
making use of the various OS

ICST Transactions Preprint

information derived from these sensors along several user
emented in work described in

]. Based on these types, the current platform
implementation exposes in excess of 60 sensor values.

As described above, all sensors are accessed through
Handler implementations. Usually, certain groups of

ors are realized by a single Handler, providing a
common way of accessing this group. For instance, a
dedicated Handler implementation realizes the access to

monitor [9] by implementing the
level protocol. This Handler then provides
different sensors supported by the monitor.

Furthermore, the design of the platform allows for
directly integrating information processing into the
platform through creating a hierarchy of Handler

desired. Such decision is driven by
factors such as disconnected operation, limiting the
amount of data to be sent off for processing purposes, on-

phone visualizations, “abstract and discard”

Any addition or change to the supported sensor pool
compiling and re-installing the platform. In

order to address the extensibility as well as the battery life
requirements, we recommend two important best practice
guidelines. Firstly, Handler implementations should

ation through callbacks instead of polling,
making use of the various OS-level mechanisms that

EAI
European Alliance
for Innovation

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications

5

allow for minimizing overall battery consumption. With
this, we aim at providing information with minimal
resource consumption, similar to system-level logging and
analytic tools. Secondly, any Handler should verify the
existence of any necessary resource before using it,

catching any runtime exceptions when the resources are
not available. This is particularly important when
integrating a new sensor that might not be widely
available in most handsets.

Figure 2. Sensors supported by AIRS and types of processed information

3.3. Storing and sharing

Local recordings are stored in an Android database
within the local file system. This database approach
provides additional security since the underlying file is
only accessible to our platform, i.e., it cannot be read by
other applications. At any time, the recordings can be
synchronized via Android sharing options, such as
Bluetooth (transferring the files to a laptop), email
(sending the files over the Internet) or through any other
installed means (e.g., Facebook, etc.).

For this, the platform temporarily generates text files
that can be parsed at the receiving end. These temporary
files start with a timestamp that indicate the start of the
recording. Following this, every line carries three
different entries. The first one represents the time relative
to the initial timestamp, followed by the sensor ID as
given in the discovery of each sensor. Finally, the value of

the current reading is given in text-encoded format. If a
sensor produces a multi-line string, each line is separated
with a carriage return. Byte array recordings are written in
separate files with the file name being recorded in the
value field.

Once transferred, there are many possibilities to save
and work on the data. For instance, we provide a Java
program that parses the recordings and saves the data into
a MySQL database. Once in the database, the data can be
accessed and processed in any way desired. For example,
in the mentioned PAL project, data collected through the
AIRS platform is combined with data collected from other
sources, such as physiological sensors and desktop,
further interpreted and visualized through PHP-based
scripts, utilizing a story-based approach for depicting
interesting moments during a day [17].

Another way to share individual sensor values is
provided in the Measurements activity (started through

EAIEuropean Alliancefor Innovation

D. Trossen and D. Pavel

the notification bar). Here, individual readings can be
seen and shared through any system-internal content
provider, after long-pressing the particular sensor in the
list of values. While such provider could be Bluet
email, it also allows for sharing the value through social
networks like Facebook or Google+. To enable such
sharing, every Handler implements a human
for each individual sensor.

3.4. Addressing the battery consumption
issue

Let us now return to one of the most important issues
within the usage of platform, namely the battery
consumption. Within our platform, we rely on three
approaches for reducing battery consumption
handlers attempt to utilize callback functions where
provided by the Android operation system. For this, we
register a so-called broadcast receiver [19
event (e.g., the cellular signal level). An acquisition
thread for this particular sensor then simply sleeps until
the OS provides the most recent value through the
registered callback function. This significantly reduces
overall battery consumption compared to polling
mechanisms. In the current realization of the platform,
only five groups of information are realized through
polling, namely Bluetooth (for discovering surrounding
devices), audio (for surround noise measurements),
WLAN (for detecting SSID and signal strength of
surrounding access points) as well as the RAM size and
running tasks of the system. We consider the last two as
being less relevant for battery consumption since
retrieving this information consumes little power
(assuming polling intervals of several seconds and
beyond). WLAN and BT are power-expensive resources
(although the latest BT version 4.0 significantly red
consumption, according to specifications). The same
holds for noise level measurements, for which frequent
recordings through the local microphone are required.

For all polling mechanisms, the intervals for polling
can be configured by the end users, giving them control
over the overall consumption. In addition, WLAN
scanning can be aligned with the overall device policy, if
desired by the end user (i.e., on many devices, WLAN is
set to sleep once the screen is switched off). The end user
can also configure to only record values when there is
user activity, i.e., when the screen is turned on. This
provides significant control over the power usage of these
particular sensors, while still leaving the ability to set a
critical level for stopping the recording altogether.

Although not realised through polling, GPS is another
heavy battery consumer, when used i
especially when its availability varies and frequent signal
re-scanning is required. However, the configuration
settings allow for determining minimal intervals as well
as timings for recording new location values. This allows
for using efficient Android callback functions instead of
frequent polling. This results in no platform activity in

6

the notification bar). Here, individual readings can be
internal content

pressing the particular sensor in the
list of values. While such provider could be Bluetooth or
email, it also allows for sharing the value through social
networks like Facebook or Google+. To enable such
sharing, every Handler implements a human-readable text

Addressing the battery consumption

w return to one of the most important issues
within the usage of platform, namely the battery

Within our platform, we rely on three
consumption. For that, all

functions wherever
provided by the Android operation system. For this, we

19] to a particular
event (e.g., the cellular signal level). An acquisition
thread for this particular sensor then simply sleeps until

ost recent value through the
registered callback function. This significantly reduces the
overall battery consumption compared to polling
mechanisms. In the current realization of the platform,
only five groups of information are realized through

namely Bluetooth (for discovering surrounding
devices), audio (for surround noise measurements),
WLAN (for detecting SSID and signal strength of
surrounding access points) as well as the RAM size and
running tasks of the system. We consider the last two as
being less relevant for battery consumption since
retrieving this information consumes little power
(assuming polling intervals of several seconds and

expensive resources
(although the latest BT version 4.0 significantly reduces
consumption, according to specifications). The same
holds for noise level measurements, for which frequent
recordings through the local microphone are required.

For all polling mechanisms, the intervals for polling
giving them control

over the overall consumption. In addition, WLAN
scanning can be aligned with the overall device policy, if
desired by the end user (i.e., on many devices, WLAN is
set to sleep once the screen is switched off). The end user

figure to only record values when there is
user activity, i.e., when the screen is turned on. This

significant control over the power usage of these
particular sensors, while still leaving the ability to set a
critical level for stopping the recording altogether.

through polling, GPS is another
heavy battery consumer, when used in recordings,
especially when its availability varies and frequent signal

scanning is required. However, the configuration
settings allow for determining minimal intervals as well
as timings for recording new location values. This allows

ient Android callback functions instead of
frequent polling. This results in no platform activity in

cases where the end user remains stationary.
the GPS handler provides an
activity is entirely suspended when nearby kn
networks, which significantly reduces battery
consumption in stationary scenarios.

The platform also provides a setting that exits the
recording when a defined battery level is reached (e.g.,
30%). With that, users can define their desired amount
battery that should be preserved. The user is notified
through the Android notification bar once such killing
setting has been executed.

3.5. User interactions in AIRS

We have mentioned before that one crucial aspect in our
experiments was to allow for
(1) configure recording parameters according to various
needs and constraints; (2) interact with the running
recording for visualizing what is being recorded; (3) allow
end users to input their own annotations. We describe
here how the platform addresses all these aspects.

The configuration mode for setting up the various
recording parameters is enabled by the various
implementations that expose settings for certain sensors
(accessed through a Handler). Furthermore, t
itself provides settings for adjusting its overall operation.
Each HandlerUI implementation makes use of the
Android concept of a PreferenceActivity
minimizes any necessary code for the configurations.

The user can also interact wit
recording is running through the notification bar. The
Measurements activity allows for inspecting recent
recorded values as well as accessing certain visualizations
for certain sensors (by pressing on the corresponding
item), as seen in Figure 3(a).

Figure 3. AIRS Screenshots: (a) visualization; (b)(c)
annotation widgets

As part of our experiments with designing and building
lifestyle management systems, it was essential that we
better understand what people consider most inter
be captured within their daily stories. As the mobile

cases where the end user remains stationary. Furthermore,
the GPS handler provides an adaptive mode where GPS
activity is entirely suspended when nearby known WLAN
networks, which significantly reduces battery
consumption in stationary scenarios.

The platform also provides a setting that exits the
recording when a defined battery level is reached (e.g.,
30%). With that, users can define their desired amount of
battery that should be preserved. The user is notified
through the Android notification bar once such killing

User interactions in AIRS

We have mentioned before that one crucial aspect in our
experiments was to allow for user interactions in order to
(1) configure recording parameters according to various
needs and constraints; (2) interact with the running
recording for visualizing what is being recorded; (3) allow
end users to input their own annotations. We describe

e how the platform addresses all these aspects.
The configuration mode for setting up the various

recording parameters is enabled by the various HandlerUI
implementations that expose settings for certain sensors
(accessed through a Handler). Furthermore, the platform

or adjusting its overall operation.
implementation makes use of the

PreferenceActivity [19], which
minimizes any necessary code for the configurations.

The user can also interact with the platform while the
recording is running through the notification bar. The

activity allows for inspecting recent
recorded values as well as accessing certain visualizations
for certain sensors (by pressing on the corresponding

AIRS Screenshots: (a) visualization; (b)(c)
annotation widgets

As part of our experiments with designing and building
lifestyle management systems, it was essential that we
better understand what people consider most interesting to
be captured within their daily stories. As the mobile

EAI
European Alliance
for Innovation

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications

7

phone is one of the most likely devices to be used every
day and in multiple situations, we realized that the AIRS
platform would be best suited to collect such information,
especially in relation to the other recorded information.
For this, we utilize the concept of an Android Widget [19]
by directly placing a user interface element on the user’s
home screen. This interaction is one the closest
abstraction to pressing a button to annotate while also
allowing for adding a meaning to such operation. Figure
3(b) shows the interface for the user annotation, which
allows for any text to be inserted and even remembered
(by configuring the list size). The user can select a
previous annotation or add a completely new one. While
emotion recognition is making progress even on mobile
phones [16], humans are still better suited to recognize
and describe their own emotions. For this reason, we also
created a widget that allows for fast mood-related
annotations. The user can select from a set of 12 pre-
defined mood icons or use an own mood description.

These two widgets connect to two specific Handler
implementations of the platform. The value selected or
defined through these two widgets is treated the same as
any other platform sensor.

4. Usage-based experiments and their
challenges

While the previous sections focused on highlighting
certain aspects we consider essential in understanding our
platform, we describe next the experiments and
experience we have had with using this platform within
the lifestyle management setting. What is special about
such scenarios is that they usually require recording a
multitude of sensors (in order to create a diverse user
context picture) and for longer periods of time (in order to
cover more aspects of user’s daily activities and life).

However, with large amount of data comes the
challenge of making sense of it as well as identifying
what is really of interest to the end user. As mentioned
before, our experiments were mainly focused on better
understanding what people consider of importance during
the day. For this, we conducted recording experiments
with six end users over several days, followed by semi-
structured interviews.

We started our experiments by using available physical
annotation means provided by BT-attached sensors, such
as the Alive heart rate monitor [23] (via a binary button).
Based on the received feedback from experiments and
user interviews, we realized that there is a lot of value in
allowing end users to self-annotate their data with their
own words, as it makes it much easier to remember what
was going on at a certain moment as well as reflect on
what has happened before, after, who was there, why she
put that annotation and so on. This insight led us to
introduce the widget-based annotation means presented in
Section 3.5. While coming out of a need to identify
interesting moments in time, the interaction means
provided by our platform became an interesting study on

what goes on in the process of annotating, as users
became more aware of what was really the most
meaningful description of the situation at hand. Even
more, it became obvious that given such tool, end users
will try not to replicate information recorded through the
AIRS sensors, such as location, focusing instead of
descriptions hard to capture through automatic means.

Apart from this specific input regarding annotation, our
experiments generally showed the value of having an
extendable, controllable and interactive mobile-based
sensing platform, as it allowed us to collect and correlate
user meaningful lifestyle information both automatically
(objective) and human-driven (subjective) instead of
using commonly available methods, such as periodic
polling or questionnaires.

However, within such recording scenarios, battery
consumption becomes a real challenge as it affects the
length of the recording as well as the likelihood of users
performing recordings with their own mobile phones. An
obvious route to obtaining an insight into battery
consumption is through experiments but measuring
battery consumption within real-life scenarios is riddled
with challenges. Firstly, the used devices are of personal
nature (in contrast to purpose-built sensing devices) and
each user has different, often parallel usages. Also, each
user’s environment and movement patterns differ, making
statements about using features such as GPS, WLAN or
BT futile since the exact environment of the experiment
(defined by effort it takes to obtain a GPS fix, the number
of access points or BT devices as well as the frequency of
scanning) cannot be kept identical between users or even
the same user within different situations. Hence, battery
statistics are bound to vary significantly.

Furthermore, the variety of available handsets makes
any study regarding battery consumption difficult since
consumption will inevitably vary according to processor
generation, radio chipset and radio environment (such as
positioning of the antenna in the case of WLAN or BT)
and even OS configurations. Hence, battery statistics can
at best be given for certain (reference) devices.

Also, the general consumption caused by the various
callback sensors is very difficult to normalize since their
consumption will heavily depend on the particular rate of
triggering the callbacks. Given the nature of the
information (such as battery charging, handset plugged
in/out, change in radio signal), this rate inevitably
depends on the particular usage scenario and any
artificially defined usage scenario is therefore of little
value to understanding the overall consumption
expectation. In all this, the configurability of the platform
adds additional variance to any battery consumption.

For these reasons, we present here results from
experiments within a lifestyle recording scenario, where
the mobile is used by a single person within a realistic
setting over a month, in comparison with a more
controlled scenario that only focused on recording 3 of the
most battery consuming sensors: GPS, WiFi and
Bluetooth in relation to location (a ‘wardriving’ scenario
[18]). The lifestyle scenario involved one of the authors

EAIEuropean Alliancefor Innovation

D. Trossen and D. Pavel

using the platform during one month of usual usage of his
personal mobile phone. Information recorded included
GPS, BT, noise level as well cellular information (sig
strength, location area, cell identifier), activity
information (headset status, mood and event widget input,
call as well as SMS information) and system information
(RAM, battery, tasks running, music played, files
created). GPS and Bluetooth were con
seconds updates while surrounding noise was determined
every three seconds (recording for one second to
determine the noise level). With this, we generated a
moderate to heavy load created by our platform. The end
user made use of his handset within the typical range of
activities, including frequently synchronizing
during office hours (from 9am to 7pm). The data is
averaged over a month and includes activities from office
work over home working to international travel.
Recording was conducted from about 9am to 8pm, on
occasions longer when there were late evening activities.

Our diary experiment was conducted with a Galaxy
Nexus on Android 4.0.2, while two Samsung Galaxy S
with Android 2.3.6 were used for the ‘wardriving’
scenario, carried at the same time to encounter similar
environmental conditions. In the latter case, the handsets
differed in their polling interval (15 seconds for the
‘heavy’ and 30 seconds for the ‘light’ case). In order to
emulate a dedicated wardriving usage, the handsets were
not used throughout the measurements for anything else,
eliminating any variance through user usage.

Figure 4. Battery consumption in various scenarios

Figure 4 shows the battery consumption for these
usage-based experiments. The diary use case results in a
larger variance since the handset was normally used (the
maximum value, for instance, is caused by a prolonged
browsing session during a domestic travel). On average,
the platform consumed about 6.3% battery per hour for
the activity recording, with an average battery
consumption of the phone without recording at around
2.5%. With that, such recording is possible throughout a
normal working day (of, say, about 12 hours) without
recharging. Although less callback sensors are used in our
second scenario, the usage of WLAN (in exchange for the
noise recording) leads to an increase in consumption. We

8

using the platform during one month of usual usage of his
personal mobile phone. Information recorded included
GPS, BT, noise level as well cellular information (signal
strength, location area, cell identifier), activity
information (headset status, mood and event widget input,
call as well as SMS information) and system information
(RAM, battery, tasks running, music played, files
created). GPS and Bluetooth were configured for 30
seconds updates while surrounding noise was determined
every three seconds (recording for one second to
determine the noise level). With this, we generated a
moderate to heavy load created by our platform. The end

t within the typical range of
synchronizing content

during office hours (from 9am to 7pm). The data is
averaged over a month and includes activities from office
work over home working to international travel.

conducted from about 9am to 8pm, on
occasions longer when there were late evening activities.

Our diary experiment was conducted with a Galaxy
Nexus on Android 4.0.2, while two Samsung Galaxy S
with Android 2.3.6 were used for the ‘wardriving’

rried at the same time to encounter similar
environmental conditions. In the latter case, the handsets
differed in their polling interval (15 seconds for the
‘heavy’ and 30 seconds for the ‘light’ case). In order to

e handsets were
not used throughout the measurements for anything else,
eliminating any variance through user usage.

Battery consumption in various scenarios

Figure 4 shows the battery consumption for these
based experiments. The diary use case results in a

larger variance since the handset was normally used (the
maximum value, for instance, is caused by a prolonged

el). On average,
the platform consumed about 6.3% battery per hour for
the activity recording, with an average battery
consumption of the phone without recording at around
2.5%. With that, such recording is possible throughout a

, about 12 hours) without
recharging. Although less callback sensors are used in our
second scenario, the usage of WLAN (in exchange for the
noise recording) leads to an increase in consumption. We

explain this with the necessary
WLAN radio in order to perform the frequent scanning.
Hence, WLAN never switches off. We can see that
increasing the polling interval for WLAN only leads to a
small increase from 6.7 to 7.7%.

The takeaway from our experiments is that the battery
consumption of our platform is moderate even in
experiments that record a significant number of sensors.
Using wireless radio resources increases the overall
battery consumption, which is expected. This is even
more the case when using, e.g., BT
the ones in [9][23]. Their individual consumption,
however, heavily depends on the used radio protocol as
well as the rate of communication. Newer technologies,
such as BT 4.0, are expected to reduce power
consumption for these scenarios.

5. From recording to

We now present two examples for applications built on
top of the AIRS platform. Our first
move from recording lifestyle
understanding what and why something has happened.
For this, we extend our disc
that can be recorded in AIRS (see Figure 2) by elevating
the recorded information onto the level of possible
context information. This processing of information can
provide deeper insights into activities of users, their
surroundings and spatial context, their social interactions
as well as their emotional state. Information at that level
can be utilised for various scenarios. For instanc
user studies performed in [24
recordings† ranged from memory recollection over stress
management to outpatient-like monitoring. In all of these
scenarios, various context dimensions of Figure 5 were
utilised to help users understand the

Crucial to understanding the recorded information i
ultimately, its presentation to the en
[17][24] outlines a storytelling
lifestyle recordings to end-users that relies on a narrative
approach. Here, the various context dimensions shown in
Figure 5 are visualised to the user through a sequence of
meaningful events, each of these events enriched with
(processed) context information that aids the
understanding of the user as to what happened around this
event. The visualisation uses engaging multimedia
elements in the form of
backgrounds, complemented by textual descriptions of the
context information.

In an attempt to bring such processing and
visualisations means to mobile users, we have released th
mobile application Storica

† The experiments in [24] included information from other
platforms than AIRS, such as desktop activities as well as
stand-along physiological sensors. AIRS recordings,
however, were central to all user experiments.

explain this with the necessary wakelock [19] on the
radio in order to perform the frequent scanning.

Hence, WLAN never switches off. We can see that
increasing the polling interval for WLAN only leads to a
small increase from 6.7 to 7.7%.

The takeaway from our experiments is that the battery
our platform is moderate even in

experiments that record a significant number of sensors.
Using wireless radio resources increases the overall
battery consumption, which is expected. This is even
more the case when using, e.g., BT-attached sensors like

. Their individual consumption,
however, heavily depends on the used radio protocol as
well as the rate of communication. Newer technologies,
such as BT 4.0, are expected to reduce power
consumption for these scenarios.

5. From recording to understanding

present two examples for applications built on
. Our first one facilitates the

move from recording lifestyle-related parameters to
understanding what and why something has happened.

our discussion regarding the sensors
recorded in AIRS (see Figure 2) by elevating

information onto the level of possible
his processing of information can

provide deeper insights into activities of users, their
ndings and spatial context, their social interactions

as well as their emotional state. Information at that level
scenarios. For instance, in the

user studies performed in [24] the usages for AIRS
memory recollection over stress

like monitoring. In all of these
scenarios, various context dimensions of Figure 5 were
utilised to help users understand the recorded information.

Crucial to understanding the recorded information is,
ultimately, its presentation to the end user. The work in

storytelling approach for visualising
users that relies on a narrative

approach. Here, the various context dimensions shown in
sed to the user through a sequence of

, each of these events enriched with
(processed) context information that aids the
understanding of the user as to what happened around this
event. The visualisation uses engaging multimedia

n the form of icon graphics as well as
backgrounds, complemented by textual descriptions of the

In an attempt to bring such processing and
visualisations means to mobile users, we have released the

[25], which provides similar

The experiments in [24] included information from other

platforms than AIRS, such as desktop activities as well as
along physiological sensors. AIRS recordings,

however, were central to all user experiments.

EAI
European Alliance
for Innovation

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications

9

processing and visualisation as shown for the desktop
system in [24] but optimised for mobile devices. Figure 6
shows examples of the visualisation means that are
provided by Storica. Access to the AIRS data is provided
through a calendar-based entry screen (Figure 6a). For
each day, the user can visualise her personal story of
events (Figure 6b), display a track of movements (Figure

6c), enriched with context information for each position
along the track as well as enjoy her captured media in a
context-enriched manner. Around each event or position,
the user can view detailed information of the included
context through timeline graphs, tag clouds as well as call
and SMS logs.

Figure 5. Possible contexts to be determined from AIRS recordings

Figure 6. Visualisations in Storica: Calendar-based
entry (a), story-based view (b) and map-based view

with fly-over effects (c)

While being in an early stage of deployment, Storica
provides an insight how AIRS recordings can directly be
enjoyed by end users on their recording device, while
having the option to synchronise the information to their
laptop in order to integrate with the desktop system as
described in [24]. Storica supports experiences across
several user devices, the sharing across a user group
through available social networks as well as enriching the
personalisation of the experiences through changing the
settings of stories presented to end users by supporting so-
called diary modes. In the future, we will explore further
adaptations of the presentation to the user based on
dedicated application use cases, such as patient diaries,
mood diaries and alike.

EAI
European Alliance
for Innovation

D. Trossen and D. Pavel

10

6. From recording to controlling

Our second example of an application that can be
realised on top of the AIRS platform is a control
application, utilising the recorded information to vary
mobile device parameters and settings.

AIRS Ruler [26] is an application example in which
the end user can define simple rules that act upon AIRS
recordings with various system changes, such as
switching Bluetooth or WiFi radio or changing the
desktop wallpaper. Envisioned scenarios for such
application can be to show the AIRS annotated mood
information as a specific wallpaper (e.g., if mood is
happy, show wallpaper 1) or control the WiFi radio based
on user annotations (e.g., if event is travelling, then switch
off WiFi). Rules are defined through a graphical UI, which
allows for selecting supported sensors and actions as well
as combining conditions with AND/OR operators (see
Figure 7 for example screenshots).

Figure 7. Rule definition in AIRS Ruler (a) list of
rules (b) individual rule (c) templates for ease-of-use

In contrast to the Storica example in Section 5, AIRS
Ruler does not utilise the database of AIRS itself but
relies on so-called AIRS intents, based on common
Android system intents [19]. These intents are lightweight
Android mechanisms to carry data from one application to
another. In our case, AIRS sends one such intent message
for each recording‡, while AIRS Ruler only subscribes to
the intents of those sensors it needs to execute its rules.
With that, AIRS Ruler is only executed when a required
sensor has been recorded in AIRS and it demonstrates
how to easily implement applications on top of AIRS,
while leaving the efficient retrieval of the information to
the AIRS platform.

AIRS Ruler has been released to the public in addition
to the AIRS platform itself as a demonstrator for the
capabilities of AIRS.

‡ The end user agrees to the sending of these intents in the
AIRS settings and can therefore switch off this
mechanism, e.g., for privacy reasons.

7. Conclusions and future work

Given the almost ubiquitous availability of mobile
handsets as well as their ever-increasing capabilities,
utilizing their power is desirable for many mobile sensing
scenarios. This is especially the case within the lifestyle
management area that is concerned with increasing self-
awareness through self-monitoring, information
processing and visualizations. In order to focus research
and development on what matters, namely the intelligence
to make use of the increasing pool of information that
could be gathered, a platform approach is essential as it
can accommodate individual or group requirements.
Although we see the area of self-monitoring through
mobile phones taking off (both in research and the mobile
application area), mainly fragmented, short-lived or
purpose-oriented solutions are created.

There are currently few generic and widely available
mobile device based sensing platforms that provide the
wide range of features we have described, combining both
automatic as well as user-based information gathering,
perfectly suited for self-monitoring scenarios where not
everything of value to users can be sensed or recognized
automatically. In this paper we provided the main
challenges we have encountered in our work together with
several design and implementation choices we made in
order to address them. We specifically addressed one of
the essential challenges of any mobile-based sensing
platform, which is battery consumption. Our experiments
show that the platform allows for sustaining daily
recording activities over a wide range of information
without significantly degrading the device performance,
placing us on par with optimised system-level logging
capabilities such as Google Analytics, while enabling a
continuous monitoring of a wide range of information.

In order to establish the platform as a possible basis for
research and development activities, we released the work
to the open source community as well as to the general
software market [21] as free software. At the time of
writing, more than 12000 users have downloaded the
application with more than 1600 active installations. To
foster this engagement with the community, we have set
up a dedicated blog platform as well as an online manual
that is accessible through the mobile application. We also
released a comprehensive JavaDoc documentation [27] as
well as established a forum for developers and users alike
[28]. With the latter, we provide insight into example
handlers, provide the ability to issue feature requests and
send bug reports, all with the attempt to encourage the
development of extensions to the core platform. The most
important community engagement, however, is the usage
of the platform as well as the reporting of its usefulness
for which we utilise our blogging platform.

Apart from general application developers, we see the
research community at large as a beneficiary of our work
as the platform can be immediately downloaded and used,
allowing researchers to focus on processing recorded
information. We also see our support for interaction as

EAI
European Alliance
for Innovation

AIRS: A Mobile Sensing Platform for Lifestyle Management Research and Applications

11

being useful in various user research studies or even for
aiding automatic recognition of certain situations.

For our future work, we intend to extend the
information processing and visualization means already
provided by our Storica application as well as extend the
desktop-based system described in [24]. We also plan on
extending the support for the wider community by
enabling the addition of Handlers without the need to re-
compile and re-install the platform. These extensions are
planned in collaboration with the wider research
community, initiated through our software market and
open source release.

Acknowledgements.

Some of the work described in this paper has been funded by
EPSRC and TSB through the PAL project (grant number
TP/AN072C), a research project investigating future healthcare
services in the context of self-monitoring and lifestyle
management. Dirk Trossen was with Cambridge University and
Dana Pavel with University of Essex at the time of this research.

References

[1] Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.:
ContextPhone: A Prototyping Platform for Context-Aware
Mobile Applications, IEEE Pervasive Computing, vol. 04,
no. 2, pp. 51-59, Apr-Jun (2005)

[2] Trossen, D., Pavel, D.: NORS: An Open Source Platform
to Facilitate Participatory Sensing with Mobile Phones. In:
Conference on Mobile and Ubiquitous Systems:
Networking and Services, (2007)

[3] Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A.,
Moraveji, N., Reiger, K., Shaffer, J., Fei Lung Wong:
SenSay: A Context-Aware Mobile Phone. In: Seventh
IEEE International Symposium on Wearable Computers,
(2003)

[4] Sung, M., Pentland, A.: LiveNet : Health and Lifestyle
Networking Through Distributed Mobile Devices. In:
Workshop on Applications of Mobile Embedded Systems,
MobiSys, (2004)

[5] Sportstracker, http://www.sports-tracker.com/#/home,
(2010)

[6] Endomondo, http://www.endomondo.com, (2012)
[7] Carloni, L. P., De Bernardinis, F., Pinello, C.,

Sangiovanni-Vincentelli, A. L., Sgroi, M.: Platform-Based
Design for Embedded Systems. The Embedded Systems
Handbook, (2005)

[8] Trossen, D., Pavel, D., Singh, J., Bacon, J., Guild, K. M.:
Information-centric Pervasive Healthcare Platforms. In:
Pervasive Health Conference, (2010)

[9] Zephyr HxM heartrate monitor, http://www.zephyr-
technology.com/products/hxm-bluetooth-heart-rate-
monitor/, (2012)

[10] WristCare, http://www.istsec.fi/eng/Emikakoti.htm
[11] SenseWear BMS,

http://www.sensewear.com/BMS/solutions_bms.php
[12] Philips Lifeline solutions,

http://www.lifelinesys.com/content/home, (2010)
[13] iFall, http://www.imedicalapps.com/2010/04/ifall-android-

medical-app/, (2010)
[14] OBS, http://www.obsmedical.com/products, (2010)

[15] CardioNet patient solutions,
http://www.cardionet.com/patients_01.htm, (2010)

[16] Rachuri, K. K., Rentfrow, P. J., Musolesi. M., Longworth,
C., Mascolo, C., Aucinas, A.: EmotionSense: A Mobile
Phones based Adaptive Platform for Experimental Social
Psychology Research, In: ACM Ubicomp, (2010)

[17] Pavel, D., Callaghan, V., Dey, A. K.: Supporting
Wellbeing Through Improving Interactions and
Understanding in Self-Monitoring Systems. In: Handbook
of Ambient Assisted Living – Technology for Healthcare,
Rehabilitation & Well-being, IOS Press, Vol. 11, (2012)

[18] Wikipedia, “Wardriving”,
http://en.wikipedia.org/wiki/Wardriving, (2012)

[19] Android Developer online resources,
http://developer.android.com/index.html, (2012)

[20] Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury,
T., Campbell, A. T.: A Survey of Mobile Phone Sensing.
In: Comm. Mag., 48:140–150, (2010)

[21] AIRS: Android Remote Sensing platform,
https://play.google.com/store/apps/details?id=com.airs,
(2013)

[22] SENSEI FP7 project, available at http://www.sensei-
project.eu/, 2012

[23] Alive Technologies, “Alive Heart and Activity Monitor”,
http://www.alivetec.com/products.htm, (2010)

[24] D. Pavel, V. Callaghan, A. K. Dey, F. Sepulveda, and M.
Gardner, “The Story of Our Lives: From Sensors to Stories
in Self-monitoring Systems,” in 4th Computer Science and
Electronic Engineering Conference (CEEC’12), 2012.

[25] Storica: Experience your Life,
https://play.google.com/store/apps/details?id=com.storica,
(2013)

[26] AIRS Ruler,
https://play.google.com/store/apps/details?id=com.airsruler
, (2013)

[27] AIRS documentation,
http://tecvis.co.uk/software/airs/developer-information,
(2013)

[28] AIRS forum, http://tecvis.co.uk/forum, (2013)
[29] mCrowd, http://crowd.cs.umass.edu/team.php, (2013)

