A Performance Perspective on Choosing between Single Aggregate and Multiple Aggregates for GENI Experiments

Zongming Fei¹*, Ping Yi¹, Jianjun Yang²

¹Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA
²Department of Computer Science, University of North Georgia, Oakwood, GA 30566, USA

Abstract

The Global Environment for Network Innovations (GENI) provides a virtual laboratory for exploring future internets at scale. It consists of many geographically distributed aggregates for providing computing and networking resources for setting up network experiments. A key design question for GENI experimenters is where they should reserve the resources, and in particular whether they should reserve the resources from a single aggregate or from multiple aggregates. This not only depends on the nature of the experiment, but needs a better understanding of underlying GENI networks as well. This paper studies the performance of GENI networks, with a focus on the tradeoff between single aggregate and multiple aggregates in the design of GENI experiments from the performance perspective. The analysis of data collected will shed light on the decision process for designing GENI experiments.

Keywords: GENI, network testbed, network measurement, experiment design

1. Introduction

The Global Environment for Network Innovations (GENI) is a project sponsored by the National Science Foundation (NSF) with the aim to provide a collaborative environment to build a virtual laboratory for exploring future internets at scale [1, 2]. It has been transitioning from the development phase to the stage in which we pay more attention to deployment and adoption to provide support for research and educational experiments. It has attracted many universities and industrial partners to contribute their efforts towards developing a global federated network testbed. An experimenter can reserve both computing resources (such as PCs, virtual machines (VMs)), and networking resources (such as ION links, OpenFlow switches, VLANs, and GRE tunnels). GENI consists of many aggregates, each of which manages a set of resources [3]. Typically, a GENI aggregate is administrated and controlled by an institution which can impose its own policies about the allocation of the resources. As more GENI racks are deployed on university campuses across the United States, GENI has grown to have tens of aggregates with resources available for network experiments [4].

In designing a GENI experiment, we have to make a decision on whether to use resources from one aggregate or from multiple aggregates. It depends on the types of experiments to be performed. Some experiments such as multimedia applications may have a strict end-to-end delay requirement that cannot be satisfied by nodes distributed over a wide area. They may have to get resources from a single aggregate. On the other hand, there are experiments that need to test the behavior of protocols on how they react to the cross traffic from the real world. It may be preferable to have resources from multiple aggregates. There is also a question about which aggregates to choose to put the experimental nodes.

To make this decision, it is essential to have a good understanding of underlying networks. For example, what exactly can we get from links within an aggregate versus from cross-aggregate links? How different are the bandwidth and latencies of links within an aggregate versus cross-aggregate links? What are their behaviors over a long period of time? We collect and analyze the measurement data and try to answer these questions. We expect that the analysis will provide helpful hints to the design of GENI experiments.

We understand that the distinction between single aggregate and multiple aggregates is not absolute. In a single aggregate experiment, the links generally have lower latencies and higher bandwidth. To make them suitable for an experiment that needs more realistic topology that has a wide variety of delays and bandwidth, we can add delay nodes in the middle of the topology to do traffic shaping, increasing the delay or reducing the bandwidth, or both. This added an element of simulations/emulations, instead of pure experimentations. The resulting topology will have some characteristics of multi-aggregate experiments. On the flip
side of the coin are experiments using multiple aggregates. For large network experiments, the number of nodes usually exceeds the number of aggregates available. We have to allocate multiple nodes within an aggregate. Thus, even in a multi-aggregate experiment, we may still have links within an aggregate. In either case, we need to have an idea about delays and bandwidth of both single-aggregate links and cross-aggregate links.

In this paper, we present our study on performance of GENI networks, with a focus on the tradeoff between single aggregate and multiple aggregates in the design of GENI experiments from the performance perspective. We will analyze how the links behave differently over a period of time. The data collected will shed some light on the design process for choosing where the nodes in the experiment should be located.

The rest of the paper is organized as follows. Section 2 presents related work and some background concepts. Section 3 describes the experiments we used to collect performance data. Section 4 presents the results about the latencies and bandwidth of the links within an aggregate and across aggregates. Section 5 concludes the paper.

2. Related Work

GENI has involved many universities and industry partners and grown significantly in recent years [5]. It consists of multiple control frameworks [6, 7] and has resources mainly on university campuses in the United States and several sites in other countries. It developed many tools supporting experimenters, such as Flack [8, 9] of ProtoGENI [6]. It has been used both in education for teaching networking and distributed systems classes [10, 11] and in research for exploring future Internet architectures and protocols [12]. Measurement for cross-layer communications has been studied in the GENI context [13]. It focused on embedding real-time measurement mechanism in the substrate, especially in the optical networks. Several early GENI projects investigated performance measurement [14–18] in the GENI environment. They have different focuses and generally emphasize on developing tools to enable users to collect performance data.

More recently, two major instrumentation and measurement efforts are under way in GENI. One is the Large-scale GENI Instrumentation and Measurement Infrastructure (GIMI) project [19], which makes use of OML library to...
instrument resources based on the ORBIT control framework. It can filter and process measurement flows, and consume measurement flows. The other is the GENI Measurement and Instrumentation Infrastructure (GEMINI) project [20–22]. It is based on earlier INSTOOLS system [14] and perfSONAR system [23]. It started with supporting ProtoGENI, but can now support nodes from other control frameworks as well. All these GENI measurement systems emphasize on building tools to support users to collect measurement data after their experiments have been set up. In contrast, this paper focuses on examining behaviors of different kinds of links in GENI networks and help users in the design process of their experiments.

3. Experiments for Data Collection

To measure the performance of links within an aggregate, we design a 11-node topology as shown in Figure 1. In GENI, multiple virtual machines (VMs) can be allocated from a single raw physical machine/computer (PC). We want to measure both the links that connects two VMs from the same physical machine and the links that connects two VMs from two different physical machines. Theoretically, three VMs are enough because we can have two VMs from the same physical machine and the other one from a different physical machine. We can create both kinds of links with these three machines. However, if we create a topology with three VMs, most likely we will end up with three VMs from the same physical machine due to the allocation algorithm used in GENI aggregates. Even though we can bind a VM to a specific physical machine, the submission through the GENI Flack interface was not well supported at the time of our experiments. Our strategy is to specify a topology as shown in Figure 1 with enough number of nodes so that they have to be allocated to different physical machines. We understand that we do not have to measure all the links. Rather we select four links as representatives.

We obtained the bandwidth and latency data for these four links using iPerf [24] and ping over 10 days. One measurement (both bandwidth and latency) is taken for every hour, with 10 ECHO_REQUESTs for each ping. We want to inspect whether there is a pattern depending on the time of a day or the day of the week. We understand that a longer duration will give us a more thorough picture of performance of the links. However, that is something we want to pursue in the future and is beyond the scope of this paper.

To measure the performance of links from different aggregates, we select 10 aggregates and set up a mesh topology as shown in Figure 2. We request one VM from each aggregate and use GRE tunnels for the links connecting these VMs.

4. Performance Results

We collected both latency and bandwidth information from these two experiments. Links in these two experiments can be divided into three categories:

Category 1 (Same PC): the links connecting two VMs that are allocated from the same physical machine;

Category 2 (Same Aggregate): the links connecting two VMs that are allocated from two different physical machines located in the same aggregate; and

Category 3 (Different Aggregates): the links connecting two VMs that are allocated from two different physical machines located in two different aggregates.
Table 1. Average latency and bandwidth

<table>
<thead>
<tr>
<th>Category</th>
<th>link</th>
<th>Avg. Latency (ms)</th>
<th>Avg. Bandwidth (Mbits/second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Same PC</td>
<td>VM-0 to VM-1</td>
<td>0.045</td>
<td>97.3</td>
</tr>
<tr>
<td></td>
<td>VM-6 to VM-7</td>
<td>0.042</td>
<td>97.4</td>
</tr>
<tr>
<td>2. Same Aggregate</td>
<td>VM-0 to VM-6</td>
<td>0.115</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td>VM-3 to VM-4</td>
<td>0.116</td>
<td>469</td>
</tr>
<tr>
<td>3. Different Aggregates</td>
<td>21 links from 3 to 60</td>
<td>from 34 to 94</td>
<td></td>
</tr>
</tbody>
</table>

The first experiment covers the first two kinds of links (category 1 and category 2), while the second experiment covers the third kind of links (category 3). We first calculate the averages of latencies and bandwidths over the 10 day period for each link. The results are summarized in Table 1.

The links in the Same PC category have similar performance. So we only choose two links (from VM-0 to VM-1, and from VM-6 to VM-7) as representatives. For the same reason, we only choose two links (from VM-0 to VM-6, and from VM-3 to VM-4) as representatives for the Same Aggregate category. However, the performance of the links from the Different Aggregates category varies a lot. We summarize the results for the links in the second experiment in the table.

As expected, the average latencies for the links in the Same PC category are the smallest, measured at 0.042ms and 0.045ms. The latencies for the links in the Same Aggregate category are about 2.5 times as large, but still in the range of one tenth of a second. They are both much smaller than the links connecting VMs from two different aggregates.
A Performance Perspective on Choosing between Single Aggregate and Multiple Aggregates for GENI Experiments

While the average latencies give a general idea about the tradeoff between using nodes from a single aggregate versus from multiple aggregates, it is more interesting to observe how they change over time. Figure 3(a) shows how the latency of the link from VM-0 to VM-1 in the first experiment change over the 10 day period. We can see that it always hovers around 0.045ms, with the highest at 0.084ms at one time and with the lowest at 0.034ms three times. It is relatively stable and close to its average value. Figure 3(b) shows that the link from VM-6 to VM-7 displays the similar pattern.

The latencies for the links connecting two VMs from two different PCs within an aggregate are larger than that of category 1 links as shown in Figure 3(c) and (d). Also larger is the range these latencies change. However, we still see a very stable pattern in terms how they change over time.

The latencies for category 3 links demonstrate a wider variety of patterns. For lack of space, we cannot present all of them in this paper. Instead, we choose two as representatives here to show how they can be quite different. Figure 4(a) shows how the latency of the link from Kentucky to Missouri change over time. The absolute range of the

We use abbreviations here to indicate the VMs from a certain aggregate. “Kentucky” means the VM allocated from the University of Kentucky GENI aggregate. Similarly, “Missouri” means the VM allocated from the University

Figure 4. Latency of the links connecting two VMs from two different aggregates

Figure 5. cdf of latency of links within an aggregate

The lowest latency we got is the link connecting VMs from the Northwestern aggregate and the UIUC aggregate, measured at 3ms, which are 30 times as large as that of the links from the Same Aggregate category. We see a wide variety of latencies measured for different cross-aggregate links, ranging from 3ms to 60ms. When designing a GENI experiment, we may take the difference in latencies into consideration for reserving GENI resources.

While the average latencies give a general idea about the tradeoff between using nodes from a single aggregate versus from multiple aggregates, it is more interesting to observe how they change over time. Figure 3(a) shows how the latency of the link from VM-0 to VM-1 in the first experiment change over the 10 day period. We can see that it always hovers around 0.045ms, with the highest at 0.084ms at one time and with the lowest at 0.034ms three times. It is relatively stable and close to its average value. Figure 3(b) shows that the link from VM-6 to VM-7 displays the similar pattern.

The latencies for the links connecting two VMs from two different PCs within an aggregate are larger than that of category 1 links as shown in Figure 3(c) and (d). Also larger is the range these latencies change. However, we still see a very stable pattern in terms how they change over time.

The latencies for category 3 links demonstrate a wider variety of patterns. For lack of space, we cannot present all of them in this paper. Instead, we choose two as representatives here to show how they can be quite different. Figure 4(a) shows how the latency of the link from Kentucky to Missouri change over time. The absolute range of the
change is larger than those links from categories 1 and 2. However, the percentage of the change is not large. It is a totally different story for the link from Utah to Georgia Tech (Gatech) as shown in Figure 4(b). Notice that the scales on y-axis in the figures are different. The range of the change in this case is almost 10 times as large as the average value. We can end up with a much more unpredictable behavior if we have VMs allocated from different aggregates.

To better understand the characteristics of the links from different categories, we plot the cumulative distribution functions (cdfs) of the latencies of these links in Figure 5 and Figure 6. Since the two links from category 1 has similar behavior, we only include the cdf for the link from VM-0 to VM-1. We can see that most values are evenly distributed between 0.038ms and 0.05ms in Figure 5(a). For the same reason, we only include the cdf for the link from VM-0 to VM-6 as the representative for category 2 links. We can see in Figure 5(b) that most values are evenly distributed between 0.105ms and 0.125ms. In contrary, the cross-aggregate links have a different distribution. They have a lot of measured values close to a certain bottom value. In the case of the link from Kentucky to Missouri, more than 90% the latencies are between 46ms and 47ms, as shown in Figure 6(a). The latency of the link from Utah to Gatech is between 49.5ms and 52.5ms in more than 75% of the cases, as presented in Figure 6(b). These two links also have an obvious difference in that the cdf of the latency of the link from Utah to Gatech has a long tail because there are a significant number of values that are substantially larger than the average.

The latency of the links is only one factor to consider in designing GENI experiments. The other factor is the bandwidth of the links. From Table 1, we can see that category 1 links have a measured bandwidth of 97.3 Mbps. It can be higher because the two VMs these links attached to are located within the same physical machine. However, due to rate limit of the VMs, they are most likely capped at 100 Mbps. Figure 7(a) and (b) shows how the bandwidth of these links change over time. Similar to the latency case, it stays close to the average level, appearing almost like a straight line.

Category 2 links achieve higher bandwidth, having average values at 474 Mbps and 469 Mbps. VMs in this case are connected with a gigabit switch. Because of the traffic from other experiments or load on the shared physical machines, the measured bandwidth is smaller than the maximal possible value. For the similar reason, we can see in Figure 7(c) and (d) that it oscillates quite a lot over time, ranging from 347 Mbps to 533 Mbps. However, the bandwidth of category 2 links is still much larger than that of both category 1 links and category 3 links.

We get a totally different picture for the links connecting two VMs from different aggregates. Depending on the links, we can get an average bandwidth as low as 34 Mbps and as high as 94 Mbps. They also change more wildly over time, as shown in Figure 8. This is because these links are cross-Internet links that will compete with traffic from other applications. Their behaviors are much more unpredictable than those links within a single aggregate. For the same link from Utah to Gatech, we can get a bandwidth measure as low as 8.5 Mbps and as high as 90.5 Mbps. If we want to observe how a protocol performs and reacts to the real world traffic, this may be the link we should include in the experiment.

In Figure 9, we use the link from VM-0 to VM-1 as the representative for category 1 links and the link from VM-0 to VM-6 as the representative for category 2 links. We draw the cdf of the bandwidth of these links. It is clear that the bandwidth of the links connecting two VMs from the same PC is distributed in a very narrow range, from 96Mbps to 98Mbps, as shown in Figure 9(a). The bandwidth of category 2 links has a wider range, from 380Mbps to 530Mbps.
A Performance Perspective on Choosing between Single Aggregate and Multiple Aggregates for GENI Experiments

Figure 7. Bandwidth of the links connecting two VMs from the same Aggregate

Figure 8. Bandwidth of the links connecting two VMs from two different aggregates

However, it is still relatively concentrated, as shown in Figure 9(b). The bandwidth for the links connecting VMs from different aggregates is distributed in a much wider range.

The pdfs in Figure 10(a) and (b) demonstrate a different pattern than those in Figure 9(a) and (b). About 20% of the values are not so close to the average value.
In summary, from the data we collected, we can see significant differences between single-aggregate links and cross-aggregate links in terms of latency and bandwidth. Not only the average values are significantly different, but their behaviors over time can be quite different as well. In general, the latencies of single-aggregate links are less than 0.2 ms while the latencies of cross-aggregate links are order of magnitude larger. For example, the latency between nodes from Utah to Georgia Tech can be somewhere between 50ms to 400ms. The bandwidth of single-aggregate links ranges from 97Mbps to close to 500Mbps. The bandwidth of cross-aggregate links is in the range from 34Mbps to 94mbps. More importantly, the latency and bandwidth of single-aggregate links are more stable over time. In contrast, the latency and bandwidth of cross-aggregate links can go wildly and are more unpredictable. When designing a GENI experiment, we can make use of performance data to decide where the nodes in the experiment should be located to meet the requirement.

5. Conclusion

Understanding the GENI networks is an important step in making a good design for GENI experiments. We focus on the performance aspect of the GENI networks by collecting latency and bandwidth data from two experiments. The results from this paper are only a snapshot of the GENI networks over a short period of time. However, it showed the essential differences of latency and bandwidth between single-aggregate links and cross-aggregate links. Our contribution is that we explore the behaviors of different links over time. The observed behaviors and the collected performance data of the links from different categories provide helpful information for GENI experimenters. As more researchers and educators use the GENI network testbed, there is a growing need to better understand all aspects of GENI.
Acknowledgements. We would like to thank Dr. Jim Griffioen for his comments on our earlier work on this topic. We also want to thank Mr. Hussamuddin Nasir and other members of the GEMINI project team for their help during the design and implementation of this project.

This material is based upon work supported in part by the National Science Foundation under Grant No. CNS-0834243 and CNS-1346688 Subcontracts 1925 and 1928. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of BBN Technologies Corp, the GENI Project Office, or the National Science Foundation.

References

[16] Leveraging and abstracting measurements with perfSONAR(LAMP). Http://groups.geni.net/wiki/LAMP.