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Web Search

• This is one of the most complex data 
engineering challenges today:

– Distributed in nature

– Large volume of data

– Highly concurrent service

– Users expect very good & fast answers

• Current solution: Centralized system
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WR System Architecture

Crawlers

Web
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Scaling Up From [Moffat and Zobel, 2004]
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System Size

• 20 billion Web pages implies at least 100Tb of text

• The index in RAM implies at least a cluster of 3,000 PCs

• Assume we can answer 1,000 queries/sec

• 73 million queries a day imply 2,000 queries/sec 

• Decide that the peak load plus a fault tolerance margin is 5 

• This implies a replication factor of 10 giving 30,000 PCs

• Total deployment cost of over 100 million US$ plus 

maintenance cost

• In 2010, being conservative, we would need over 1 million 

computers!
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Questions

• Should we use a centralized system?

• Can we have a (cheaper) distributed search 
system in spite of network latency?

• Preliminary answer: Yes

• Solutions: caching, pruned indexes, new ways 
of partitioning the index, exploit locality when 
processing queries, etc. 
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Advantages

• Distribution decreases replication, crawling, and 

indexing and hence the cost per query

• We can exploit high concurrency and locality of 

queries

• We can also exploit the network topology

• Main design problems:

–  Depends upon many external factors that are 

seldom independent

–  One poor design choice can affect performance 

or/and costs
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Challenges

• Must return high quality results  

(handle quality diversity and fight spam)

• Must be fast (fraction of a second)

• Must have high capacity

• Must be dependable

(reliability, availability, safety and security)

• Must be scalable
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Caching

• Caching can save significant amounts of  
computational resources
– Search engine with capacity of 1000 queries/second

– Cache with 30% hit ratio increases capacity to 1400 
queries/second

• Caching helps to make queries “local”

• Caching is similar to replication on demand
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Caching basics

• A cache is characterized by its size and its 
eviction policy

• Hit : requested item is already in the cache

• Miss : requested item is not in the cache

• Caches speed up access to frequently or 
recently used data
– Memory pages, disk, resources in LAN / WAN
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Caching in Web Search Engines

• Caching query results versus caching 
posting lists

• Static versus dynamic caching policies 

• Memory allocation between different 
caches

• Baeza-Yates et al, SIGIR 2007
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Data characterization

• 1 year of queries from Yahoo! UK

• UK2006 summary collection 

• Pearson correlation between query term frequency and 
document frequency = 0.424

Query distribution

Query term 

distribution 

UK2006 summary term 

distribution 
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Caching query results or term postings

• Queries
– 50% of queries are unique

– 44% of queries are singleton (appear only once)

– Infinite cache achieves 50% hit-ratio 
• Infinite hit ratio = (#queries – #unique) / #queries

• Query terms
– 5% of terms are unique (the vocabulary)

– 4% of terms are singleton

– Infinite cache achieves 95% hit ratio
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Static Caching of Postings

• QTF for static caching of postings (Baeza-Yates 
& Saint-Jean, 2003):
– Cache postings of terms with the highest fq(t)

• Tradeoff between fq(t) and fd(t)
– Terms with high fq(t) are good to cache

– Terms with high fd(t) occupy too much space

• QTFDF: Static caching of postings 
– Knapsack problem:
– Cache postings of terms with the highest fq(t)/fd(t)
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Evaluating Caching of Postings

• Static caching:
– QTF : Cache terms with the highest query log 

frequency fq(t)

– QTFDF : Cache terms with the highest ratio fq(t) / fd(t)

• Dynamic caching, we employ: 
– LRU, LFU

– Dynamic QTFDF : Evict the postings of the term with 
the lowest ratio fq(t) / fd(t)
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Results

 30

Combining caches of query results 
and term postings
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Experimental Setting

• Process 100K queries on the UK2006 
summary collection with Terrier

• Centralized IR system 

– Uncompressed/compressed posting lists

– Full/partial query evaluation

• Model of a distributed retrieval system

– broker communicates with query servers 
over LAN or WAN
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Parameter Estimation

• The average ratio between the time to return 
an answer computed from posting lists and 
from the query result cache is:

– TR1 : when postings are in memory

– TR2 : when postings are on disk

– M is the cache size in answer units

• A cache of query results stores Nc=M queries

– L is the average posting list size

• A cache of postings stores Np=M/L= Nc/L posting lists



 33

Parameter Values

Compressed 
Postings (L’=0.26)

Uncompressed 
Postings (L=0.75)

5575527063944867Partial evaluation

5908547565285001Full evaluation

TR2’TR1’TR2TR1WAN system

798493162699Partial evaluation

11407071760233Full evaluation

TR2’TR1’TR2TR1Centralized system
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Centralized System Simulation

• Assume M memory units
– x memory units for static 

cache of query results

– M-x memory units for 
static cache of postings

• Full query evaluation with 
uncompressed postings
– 15% of M for caching 

query results

• Partial query evaluation 
with compressed postings
– 30% of M for caching 

query results
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WAN System Simulation

• Distributed search 
engine
– Broker holds query 

results cache

– Query processors hold 
posting list cache

• Optimal Response 
time is achieved when 
most of the memory is 
used for caching 
answers
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Query dynamics

• Static caching of query results
– Distribution of queries change slowly
– A static cache of query results achieves high hit rate even 

after a week

• Static caching of posting lists
– Hit rate decreases by less than 2% when training on 15, 6, 

or 3 weeks
– Query term distribution exhibits very high correlation 

(>99.5%) across periods of 3 weeks



 

Why caching results can’t reach 
high hit rates

• AltaVista: 1 week from 
September 2001

• Yahoo! UK: 1 year
– Similar query length in 

words and characters

• Power-law frequency 
distribution
– Many infrequent queries 

and even singleton 
queries

• No hits from singleton 
queries

Caching

Results

Caching

Posting

Lists

Do not

Cache

 

Benefits of filtering out infrequent 
queries

26.6565.1441.3470.21250k

21.0862.2436.3669.23100k

17.5859.9732.4667.4950k

UKAVUKAV

LRUOptimalCache 
size

• Optimal policy does not cache singleton queries

• Important improvements in cache hit ratios



 

Temporal locality across different 

query logs

• Temporal locality
– Stack distance between 

consecutive occurrences

• More locality
– Higher hit rate

• AltaVista presents 
significantly more locality

 

Admission Controlled Cache (AC)

• General framework for modelling a range of cache policies

• Split cache in two parts

– Controlled cache (CC)

– Uncontrolled cache (UC)

• Decide if a query q is frequent enough

– If yes, cache on CC

– Otherwise, cache on UC Baeza-Yates et al, SPIRE 2007



 

Why an uncontrolled cache?

• Deal with errors in the predictive part

• Burst of new frequent queries

• Open challenge: 

– How the memory is split in both types of 
cache?

 

Features for admission policy

• Stateless features
– Do not require additional memory

– Based on a function that we evaluate over the query

– Example: query length in characters/terms

• Cache on CC if query length < threshold

• Stateful features
– Uses more memory to enable admission control

– Example: past frequency

• Cache on CC if its past frequency > threshold

• Requires only a fraction of the memory used by the cache



 

Evaluation

• AltaVista and Yahoo! UK query logs

• Query logs split into 2 parts

– First 4.8 million queries for training

– Testing on the rest of the queries

• Compare AC with

– LRU

– SDC

 

LRU and SDC policies

• Eviction policies
– Once the cache is full, decide which query to evict

• LRU : Evicts the least recent query results

• SDC : Splits cache into two parts
– Static: filled up with most frequent past queries

– Dynamic: uses LRU



 

Results for Stateful Features

 

Results for Stateless features

• AC with stateless 
features 
outperforms LRU

• Stateless features 
offer high recall 
but low precision

30.0220.8161.4359.01AC kw=5

30.5121.1661.6059.18AC kw=4

31.4721.9461.9659.55AC kw=3

32.5023.1062.3359.92AC kw=2

30.5321.1961.6856.39AC kc=40

31.0621.6061.9156.73AC kc=30

32.3522.8562.3658.05AC kc=20

27.3317.0759.5360.01AC kc=10

51.7872.32Infinite

UKAV

500k100k100k50kSizes

35.9129.6164.4962.25SDC

30.9621.0361.8859.49LRU
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Index Pruning (Skobelt syn e t  a l,  SIGIR08 ) 

• Results Caching and Index Pruning together

• … to reduce latency and load on back-end servers
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Query processing:
3 .  from  the pruned 

index

query miss

hit

query

All queries vs. Misses: 

Number of terms in a query

• Average number of terms for all queries = 2.4

• Most single term queries are hits in the results cache

• Queries with many 

terms are unlikely 

to be hits

5 0

, for m isses =  3 .2



All queries vs. Misses: 

Query result size distribution 
• Randomly selected 2000 queries from all queries and misses:

• Avg. result size for misses is ~100 times smaller than for all 

queries

• Approx. half of the

misses returns less

than 5000 results –

SMALL!

• Similar results with a

“small” UK document

collection (78M)
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All queries vs. Misses: 

Term popularity distribution
• Each point -> avg. 

popularity of 1000 

consecutive terms 

• Popularity is nor-

malized by the size   

of the log 

• The order of terms for 

misses is the same as 

for all queries

• Term popularity does 

not change much!

5 2

Log sizes: 185M – all queries, 41M - misses



Static index pruning

• Smaller version of the main index, returns:
– the top-k response that is the same to the main index’s, or

– a miss otherwise.

• Assumes Boolean query processing

• Types of pruning:
– Term pruning – full posting lists for selected terms

– Document pruning – prefixes of posting lists

– Term+Document pruning – combination of both
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Term pruningFull index Document pruning T+D pruning

Posting list

Term Pruning: Performance

• Answers a query if all query terms are in the pruned index

• UK document collection -

78M documents

• Term pruning based on 

profit(t)=popularity(t)/df(t)

• Performs well for all queries

• For misses as well:

e.g., can process almost 

50% of the queries with 

25% of the index

5 4



Term pruning: 

Frequent terms in misses
• Misses are sorted by the result set size (dashed line)

� MaxDF (df of the most frequent query term) is high for most of the misses

MinDF (df of the least frequent query term) correlates to the result size

• Many misses contain 

at least one frequent

 term

• Thus, the term pruned   

index has to include 

large posting lists
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Document pruning

• Based on Fagin’s top-k intersection algorithm

• Keeps postings with high scores only: 

– Sufficient to compute top-k results for some queries

• Determining correctness of the result requires computing 

of a scoring threshold – LATENCY!
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D 1 D 5 D 3 D 2 D 4 …

D 2 D 1 D 5 …

D 4 D 1 D 2 D 3 …

t1

t2

t3

Posting list, sorted by score

Top-2 results:

D1 D2

Score threshold:
s(D2,t 1)+ s(D1,t 2)+ s(D2,t3)



Document pruning: 

Experimental setup

• Scoring function:

– pr(d) – query independent score of the document d 
(pagerank)

–�, k – normalization constants: 
• �=[0,10,20] 

• k=1

• We only look at the upper bound for the hit rate:

– Whether the original top-10 results found in the top 

portions of all PLs?  
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• Doc. 

pruning 

needs high 

weights of 

pagerank to 

outperform 

term 

pruning, 

especially 

for misses

Document pruning: performance
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• T+D pruning is 

the best but  

expensive     

(high latency)

• profit2 is better 

than profit1 

• However, the 

improvement is 

marginal for 

misses (with  high 

pagerank weights 

only)

Term+Document pruning: 

performance

5 9

Analysis of results

• Static index pruning: addition to results caching, not replacement 

– Term pruning performs well for misses also 

=> can be combined with results cache

– Document pruning performs well for all queries, but requires high 

pagerank weights with misses

– Term+Document pruning  improves over document pruning, but has 

the same disadvantages

• Pruned index grows with collection size

• Document pruning targets the same queries as result caching 

• Lesson learned: Important to consider the interaction between the 
components

6 1
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Locality

• Many queries are local

– The answer returns only local documents

– The user clicks only on local documents

• Locality also helps in:

– Latency of HTTP requests (queries, crawlers)

– Personalizing answers and ads

• Can we decrease the cost of the search engine?
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Tier Prediction (Baeza-Yates et al, 2008)

• Can we predict if the query is local?

–  Without looking at results

–  or increasing  the extra load in the next level

• This is also useful in centralized search engines

– Multiple tiers divided by quality

• Experimental results for

– WT10G and UK/Chile collections
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Experimental Results

• Centralized case:

• Distributed case: 
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Tier Prediction Example

• Example:

– System A is twice faster than System B

– System B costs twice the costs of System A

• Centralized case: 

– 29% answer time improvement at 31% extra 

cost

• Distributed case:

– 12% answer time improvement at 18% extra 

cost
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Document Partitioning

<6,1>

cold

hot

in

not

pease

porridge

pot

the

<1,1> <2,1> <3,1> <4,2> <5,2>

Dictionary

<2,1> <4,1>

<1,1> <4,1> <5,1> <6,1>

<3,1> <6,1>

<4,1> <5,1>

<6,1><1,1> <2,1> <3,1> <4,2> <5,2>

<3,1> <6,1>

<3,1> <6,1>

Inverted Lists

<5,1>
P1

P1

P3

P3

P3

P3



 69

Term Partitioning 
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Partitioning the Indexing

• By documents

• Easy to partition

• Easier to build

• No concurrency

• Perfect balance

• Less variance

• Easier to maintain

• By terms

• Random partition

• Hard to build

• Concurrent

• Less balanced

• Higher variance

• Harder to maintain
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Query Processing: Round Robin

Marin et al, 2008

Case of term partitioning
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Analysis

• BSP model 

• Super-steps + synchronization
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Experimental Results

 75

Model Comparison
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Throughput Comparison
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Speedup 
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Scalability
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Star Topology (Baeza-Yates et al, 2008)

Local queries (x)

Global queries
n sites



 

Cost Model

• Cost depends on Initial cost, Cost of Ownership over 
time, and Bandwidth over time.

• Cost of one QPS 
– n sites, x percentage of queries resolved locally, and relative cost 

of power and bandwidth 0.1 (left) and 1 (right)

 

• Site Si knows the highest possible score bj that site Sj 

can return for a query
– Assume independent query terms

• Site Si processes query q:

• Optimizations:
– Caching

– Replication of set G of most frequently retrieved documents

– Slackness factor � replacing bj with (1-�)bj

Query Processing

Retrieve top-n 
local results

Find score s(d,q) of 
n-th local result

s(d,q)� bj

Forward query
to site Sj

Return results
to users

True

Merge results

False



 

Query Processing Results

• Locality at rank n for a search engine with 5 sites
– For what percentage of query volume, we can return top-n 

results locally

 

Cost Model Instantiation

• Assume a 5-site distributed Web search engine in a star topology

• Optimal choice of central site Sx : site with highest traffic in our 

experiments

• Cost of distributed search engine relative to cost of centralized one

0.6450.0110.634BCG�0.9

0.7120.0140.698BCG�0.7

0.8270.0200.807BCG�0.5

0.9730.0280.945BCG�0.3 

1.1140.0361.078BCG�0.1

1.1710.0401.131BCG

1.3000.0461.254BC

1.4770.0561.421B

Cost of distributed

Cost of centralized
Bandwidth CostPower CostQuery Processing
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Conclusions

• By using caching (mainly static) we can increase 
locality

• With enough locality we may have a cheaper 
search engine without penalizing the quality of the 
results or the response time

• We can predict when the next distributed level will 
be used to improve the response time without 
increasing too much the cost of the search engine

• We are currently exploring all these trade-offs
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Thank you!

Questions?
rbaeza@acm.org

Second edition

coming soon




