/
)
¥
Q

Towards a
Distributed Search Engine

Ricardo Baeza-Yates

Yahoo! Research Barcelona, Spain

Web Search

* This is one of the most complex data
engineering challenges today:

— Distributed in nature

—Large volume of data

— Highly concurrent service

— Users expect very good & fast answers

* Current solution: Centralized system

YaHoO! 5 9’

INFOSCALE 2008, June 4-6, Vico Equense, Italy
Copyright © 2008 978-963-9799-28-8
DOI 10.4108/infoscale.2008.31

lacerda
Typewritten Text
INFOSCALE 2008, June 4-6, Vico Equense, Italy
Copyright © 2008 978-963-9799-28-8
DOI 10.4108/infoscale.2008.31

lacerda
Typewritten Text

WR System Architecture

Web :
Text —=| Indexing [--|-»| Remking |=---- 03;“?’
[Model :
Crawlers — Text —s=] 1 o% Visual
e = =
Operations : Intexface Quary
Iser
YaHoO!) 9-’
Scaling Up From [Moffat and Zobel, 2004]
. Partitioning -
I \ l O
N
g | O - ~
5 L ¥
3 S Sy ™~
3 e | ~ |“‘"-~ .
5. —
el 2 computers — -
a P | 4 computers | S
S . ~ 5
i i
o
= | |
1 computer 2 computers
| | .

: Data volume (GB) m

Inverted Index

Dictionary

cold

Inverted Lists

hot

in

not

pease

porridge

pot

the

YaHoO!

System Size

» <2,1> | <4,1> | <5,1>

" <1,1> | <4,1> | <5,1> | <6,1>

" <3,1> | <6,1>

" <4,1> | <5,1>

" <1,1> | <2,1> | <3,1> | <4,2> | <5,2> | <6,1>
" <1,1> | <2,1> | <3,1> | <4,2> | <5,2> | <6,1>
» <3,1> | <6,1>

*" <3,1> | <6,1>

20 billion Web pages implies at least 100Tb of text

* The index in RAM implies at least a cluster of 3,000 PCs

* Assume we can answer 1,000 queries/sec

* 73 million queries a day imply 2,000 queries/sec

* Decide that the peak load plus a fault tolerance margin is 5

* This implies a replication factor of 10 giving 30,000 PCs

* Total deployment cost of over 100 million US$ plus
maintenance cost

* In 2010, being conservative, we would need over 1 million

computers!

YaHoO!

Questions

* Should we use a centralized system?

* Can we have a (cheaper) distributed search
system in spite of network latency?

* Preliminary answer: Yes

* Solutions: caching, pruned indexes, new ways
of partitioning the index, exploit locality when
processing queries, etc.

YAHOOI 10 9 _’

Advantages

* Distribution decreases replication, crawling, and
indexing and hence the cost per query

* We can exploit high concurrency and locality of
queries

* We can also exploit the network topology

* Main design problems:

— Depends upon many external factors that are
seldom independent

— One poor design choice can affect performance
or/and costs

YAaHoO! 1 9.’

Challenges

* Must return high quality results
(handle quality diversity and fight spam)

* Must be fast (fraction of a second)
* Must have high capacity

* Must be dependable
(reliability, availability, safety and security)

* Must be scalable

YAHOO! 12 9_’

Caching

* Caching can save significant amounts of
computational resources
— Search engine with capacity of 1000 queries/second

— Cache with 30% hit ratio increases capacity to 1400
queries/second

* Caching helps to make queries “local”
* Caching is similar to replication on demand

YAaHoO! 18 9.’

Caching basics

* A cache is characterized by its size and its
eviction policy

* Hit: requested item is already in the cache

* Miss : requested item is not in the cache

* Caches speed up access to frequently or
recently used data
— Memory pages, disk, resources in LAN / WAN

YaHOO! 19 9_’

Caching in Web Search Engines

* Caching query results versus caching
posting lists
* Static versus dynamic caching policies

* Memory allocation between different
caches

 Baeza-Yates et al, SIGIR 2007

YAaHoO! 20 9.’

Data characterization

* 1 year of queries from Yahoo! UK
* UK2006 summary collection

* Pearson correlation between query term frequency and
document frequency = 0.424

1

UK2006 summary term |

dist‘rib}ivf

01 ¢

0.01 /
0.001

Query distribution

cy (normalized)

1e-04

quen

1e-05

Fre

Query term

1e-06 + distribution

1e-07 . L L . L L .
1e-08 1e-07 1e-06 1e05 1e-04 0.001 0.01 01

Frequency rank (normalized)

-
S
1

YAHOO! 2 9_’

Caching query results or term postings

* Queries
— 50% of queries are unique
— 44% of queries are singleton (appear only once)

— Infinite cache achieves 50% hit-ratio
* Infinite hit ratio = (#queries — #unique) / #queries

* Query terms
— 5% of terms are unique (the vocabulary)
— 4% of terms are singleton
— Infinite cache achieves 95% hit ratio

YAaHoO! 23 9’

Static Caching of Postings

* Qrr for static caching of postings (Baeza-Yates
& Saint-dean, 2003):

— Cache postings of terms with the highest 7 (1)

- Tradeoff between f (f) and £ (1)
— Terms with high f (f) are good to cache
— Terms with high 7 (f) occupy too much space

* QrrDr: Static caching of postings
— Knapsack problem:
— Cache postings of terms with the highest £ (1)/1 (1)

YaHoO! 27 9_’

Evaluating Caching of Postings

* Static caching:

— QrF : Cache terms with the highest query log
frequency f (1)

— QreDr : Cache terms with the highest ratio £(1) / £ (1)

* Dynamic caching, we employ:
- LRU, LFU

— Dynamic QtrDr : Evict the postings of the term with
the lowest ratio £ () / (1)

YaroO! S~

Resulis

Caching posting lists

1 | I I I I
09 | — .
+,,___,
/ i
""i:?‘:f-ﬁ-ﬁf’-—-’-f - %
e]
% = //.//_
T 5 _
static QTF/DF —+— -
LRU v
LFU)
Dyn-QTFIDF o -
I 1 QTF ;7.777
04 0.5 0.6 0.7
Cache size
YA‘HOO!' 29

Combining caches of query results
and term postings

1 ! T T T T T T T T

09 F ’_——— ——-=--]
0.8 | /,/" |

o 07 F 4

: ,

5 06 F i

> /

>)

aj 0.5 — // _

] ; -

o o4+ ./ — i
0.3 T/ -
0.2k precomputed answers -

posting lists -------
0.1 L 1 1 1 1 I 1 1
0 01 02 03 04 05 06 07 08 09 1

Space
YaHoO! .

Experimental Setting

* Process 100K queries on the UK2006
summary collection with Terrier

* Centralized IR system
— Uncompressed/compressed posting lists
— Full/partial query evaluation

* Model of a distributed retrieval system

— broker communicates with query servers
over LAN or WAN

YAaHoO! 31 9.’

Parameter Estimation

* The average ratio between the time to return
an answer computed from posting lists and
from the query result cache is:

— TR, : when postings are in memory

— TR, : when postings are on disk

— M s the cache size in answer units
« A cache of query results stores N.=M queries

— L is the average posting list size
« A cache of postings stores N=M/L= N_/L posting lists

YaHoO! 32 9 _’

Parameter Values

Uncompressed Compressed

Postings (L=0.75) Postings (L’=0.26)
Centralized system TR, TR, TR, TR,
Full evaluation 233 1760 707 1140
Partial evaluation 99 1626 493 798
WAN system TR, TR, TR/ TR,
Full evaluation 5001 6528 5475 5908
Partial evaluation 4867 6394 5270 5575

YaHoO! 33 9 J

Centralized System Simulation

* Assume M memory units

. . Simulated workload -- single machine
— X memory units for static
1 I

cache of query results 1200 |+ ' fpll/unlc;ompr/1lG —
— M-x memory units for 1100 L partial / uncompr/1G ------—-

static cache of postings i \ par[;;{l f ggm{;”gjg 8 R
_ _ 900 | . — T
« Full query evaluation with 7 g

Y
o
o
o

uncompressed postings 80 .
— 15% of M for caching 700
query results e

* Partial query evaluation
with compressed postings wo b >

Averagk response time

— 30% of M for caching 0 0.2 0.4 06 08 1
query results Space (GB)

"YaxoO! . I

WAN System Simulation

Distributed search 6000

Simulated workload -- WAN

engine
— Broker holds query
results cache

— Query processors hold
posting list cache

Average response time
o
(9
o
o
I

Optimal Response

I I
full / uncompr/1 G
partial / uncompr /1 G
full / compr /0.5 G
partial / compr /0.5 G

time is achieved when 0 , 0a o6 os
most of the memory is Space (GB)
used for caching

answers

YaHoO!

Query dynamics

35

* Static caching of query results

— Distribution of queries change slowly
— A static cache of query results achieves high hit rate even

after a week

* Static caching of posting lists

— Hit rate decreases by less than 2% when training on 15, 6,

or 3 weeks

— Query term distribution exhibits very high correlation
(>99.5%) across periods of 3 weeks

YaHoO!

36

Why caching results can’t reach
high hit rates

» AltaVista: 1 week from Caching CaCh_i"Q
September 2001 Results | Posting
* Yahoo! UK: 1 year T

= 1
©
— Similar query length in I
words and characters E 0.1
g 0.01
* Power-law frequency & 0.001
distribution § '
- Many infrequent queries § 1e-04
and even singleton 2
queries § 1e-05
_ _ fe06
* No hits from singleton 1e-08 1e-06 1e-04 0.01 1
queries Query frequency rank (normalized)
YAaHoO! 9’

Benefits of filtering out infrequent
queries

* Optimal policy does not cache singleton queries

* Important improvements in cache hit ratios

Cache Optimal LRU
size AV UK AV UK
50k 67.49 32.46 59.97 17.58
100k 69.23 36.36 62.24 21.08
250k 70.21 41.34 65.14 26.65

YaroO! &)

Temporal locality across different

query logs

* Temporal locality

— Stack distance between
consecutive occurrences

* More locality
— Higher hit rate

Cumulative fraction

* AltaVista presents
significantly more locality

YaHoO!

0.8

0.7 r

05 |)
04
03 i
02}

0.1y AV
0

\UK\

Stack distance normalized

Admission Controlled Cache (AC)

0 0102 03040506 0708 09 1

* General framework for modelling a range of cache policies

q -
——— Apply admission

Cacheon CC

e

policy \
0
Cache on UC

* Split cache in two parts
— Controlled cache (CC)
— Uncontrolled cache (UC)
* Decide if a query q is frequent enough
— If yes, cache on CC
— Otherwise, cache on UC

YaHoO!

Baeza-Yates et al, SPIRE 2007

Why an uncontrolled cache?

* Deal with errors in the predictive part

* Burst of new frequent queries

* Open challenge:

—How the memory is split in both types of
cache?

YaHoO!

Features for admission policy

 Stateless features
— Do not require additional memory
— Based on a function that we evaluate over the query

— Example: query length in characters/terms
* Cache on CC if query length < threshold

« Stateful features
— Uses more memory to enable admission control

— Example: past frequency
* Cache on CC if its past frequency > threshold
* Requires only a fraction of the memory used by the cache

YaHoO!

Evaluation

* AltaVista and Yahoo! UK query logs

* Query logs split into 2 parts
— First 4.8 million queries for training
— Testing on the rest of the queries

* Compare AC with
- LRU
- SDC

YaHoO!

LRU and SDC policies

* Eviction policies
— Once the cache is full, decide which query to evict

* LRU : Evicts the least recent query results

« SDC : Splits cache into two parts
— Static: filled up with most frequent past queries
— Dynamic: uses LRU

YaHoO!

Results for Stateful Features

Altavista log
74 ¢
72 F
g 707 Infinite
o LRU, 100K ==
'}% 68| SDC, 100K -
~ 66 AC, 100K -oseseme]
T 6
62
60 ‘ ‘ ‘
1 2 3 4 5
Frequency threshold
YaHoO!

Hit ratio (%)

UK log

55
50 r

H Infinite |
° LRU, 500k =seseeeeeeen
40 + SDC, 500K e

AC, 500K =

M
35 s
30 F i E—
25 ‘

0 1 3 4

Frequency threshold

Results for Stateless features

* AC with stateless
features
outperforms LRU

» Stateless features

offer high recall
but low precision

YaHoO!

AV UK

Infinite 72.32 51.78
Sizes 50k 100k | 100k 500k
LRU 59.49 61.88 | 21.03 30.96
SDC 62.25 64.49 | 29.61 35.91
AC k=10 60.01 5953 | 17.07 27.33
AC k=20 58.05 62.36 | 22.85 32.35
AC k=30 56.73 61.91 | 21.60 31.06
AC k=40 56.39 61.68 | 21.19 30.53
AC k=2 59.92 62.33 | 23.10 32.50
AC k=3 59.55 61.96 | 21.94 31.47
AC k =4 59.18 61.60 | 21.16 30.51
AC k=5 59.01 61.43 | 20.81 30.02

Index Pruning (skobeltsyn et al, SIGIR08)

Query processing: | Main Index |
I

3 - frO m t h e run ed : Term cache| |Term cache| [Term cache i
H I

index '| Back || Back || Back ||

i end end end i

queri result i T T T i

e l i

|

Front | query | Results| mis S l

end cache Broker i

|

|

! hit] result i

|

T — — — —_ ————————————

* Results Caching and Index Pruning together

* ... toreduce latency and load on back-end servers
YAHOO! D!

All queries vs. Misses:
Number of terms in a query

* Average number of terms for all queries = 2.4
, for misses = 3.2

* Most single term queries are hits in the results cache

* Queries with many “

35

terms are unlikely
to be hits

mAll queries | |

B Misses

Fraction of queries (%)

1 2 3 a4 5 6 7 8
Number of terms in a query

YaHoO!

!

All queries vs. Misses:
Query result size distribution

* Randomly selected 2000 queries from all queries and misses:

* Avg. result size for misses is ~100 times smaller than for all

queries 108
18 £ === Al Queries, Yahoo! WSE
. 7 = Misses, Yahoo! WSE
Ap_prox' half Of the 10oM E | = =AllQueries, UK collection
misses returns less | '™ T | = =Misses, Uk collection
= IMm
than 5000 results — 8 o0 |
SMALL! g 10k | 7~
* Similar results witha = | / 2
“small” UK document 10! /‘//‘(
collection (78M) ! ‘ ‘
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Fraction of queries
YAaHoO! 9’

All queries vs. Misses:
Term popularity distribution

Each p0|nt -> avg. Log sizes: 185M — all queries, 41M - misses
popularity of 1000 1502 ¢ | |

consecutive terms + Terms from Misses (6.2M) | |
= Terms from All Queries (7.3M)

1,E03 4

* Popularity is nor-
malized by the size
of the log

1TE04 4 e

1,E-06 + ~
i o

* The order of terms for
misses is the same as

Avg. term popularity (normalized by the log size)

A
for all queries 1808 —
Term popularity does 1 - 100 000 oK
not Change muchl Terms taken from all queries (each point for 1000 terms)

YaroO! !

Static index pruning

* Smaller version of the main index, returns:
— the top-k response that is the same to the main index’s, or
— a miss otherwise.

* Assumes Boolean query processing
* Types of pruning:
— Term pruning — full posting lists for selected terms

— Document pruning — prefixes of posting lists
— Term+Document pruning — combination of both

Full index Term pruning Document pruning T+D pruning
t LT TTTTT] (LTI T 1117 t, I |) tfL LTI TTT]
L LT TTT] Lt L LT T TT] ol T[] o T [T}
N [[[T [T T[] (BT TT7] T TTTTT]
t, I (LT TT] t B T T t B [T
YAaHoO! 9’

Term Pruning: Performance

* Answers a query if all query terms are in the pruned index

UK document collection -

100%

78M documents o _—

» Term pruning based on oo yays
profit(t)=popularity(t)/df(t) /S //

» Performs well for all queries ;zj /,//

* For misses as well: o | —All queries
e.g., can process almost 20% —Misses
50% of the queries with Y
25% of the index 0 01 02 03 04 05 06 07 08 09 1

Storage required (fraction of full index)

YaHoO! 9_’

Term pruning:
Frequent terms in misses

* Misses are sorted by the result set size (dashed line)

* MaxDF (df of the most frequent query term) is high for most of the misses
MinDF (df of the least frequent query term) correlates to the result size

.

[y

* Many misses contain
at least one freque
term

-Y!v|GIeb Flavio Yassilis Ricardo | “+,]
* Thus, ml%ggrm pruned
index-has to inclu
| PP Gumareig. lists
/)

Flavio :
000000000 P . 10
Vassilis (R _.||' —0o—MinDF>1M .

R- rd |................... ‘ ; } 1
icardo wseeesseey J o o1 02 03 04 05 06 07 08 09 1
MaxDF Fraction of query misses (sorted by result set size)

YaHoO! 9’

- 10M

-~ 1M

th the
o
oo

- 100K

&’ |
P - 10K
» :
S - ;

- 1000

o
=

=]
B
n
[ol

Fraction of queries with the
Min / Max termDF > given constant

Fraction of queries w

o8 - 100
WL —=—MaxDF>1M | -

Resultset size (dashed line)

o
)

W
<

o

Document pruning

* Based on Fagin’s top-k intersection algorithm

* Keeps postings with high scores only:
— Sufficient to compute top-k results for some queries

* Determining correctness of the result requires computing
of a scoring threshold — LATENCY!

t1mm D, |..| | Top-2 results:
A o. [0, AN SD1 Dzh .

core threshold:
§ mm - ’ | | ‘ | $(Dy,t)+s(Dy,t,)+ s(D,,t;)

»

Posting list, sorted by score

YaHoO! 9’

Document pruning:
Experimental setup

. . (d)
° Sconng fu nc“on: score(d,q) = z (meS(t, d)+wp::i) n k)

YteEq

—pr(d) — query independent score of the document d
(pagerank)

— @ k — normalization constants:
* »=[0,10,20]
* k=1
* We only look at the upper bound for the hit rate:

— Whether the original top-10 results found in the top
portions of all PLs?

YaroO! !

Document pruning: performance

100 T T

b DOC w0 | gﬁcc;lifiztspmniﬂg; | I[\)Ac?;cst.lerzent pruning,
pruning o i
needs high = ..
weights of _«| ¢ 7
: =

pagerankto £ = 4 .
outperform = g™ =~
term "] e

. ——Documen
prunlng’ B 1 pruning:LkE:O
eSpeCIa”y 10 === Term pruning
for misses S w0 m m w w

Fraction of index (%)

YaHoO!

Term+Document pruning:

N . . 100 T T — I T —
;II-:- DbprL:rgn? IS % profit,(t) =m7,i):([;?(|?)rg1|(_t)) profit(t) = popzlf?tr)lty(t)
e pest bu 1 |
\ :
expensive 80 :
(high latency) 5
 profit, is better - 1
than profit, 2 0] % '
° However, the 0 "L‘ / —o—Term+Doc. J- ¥
. . / pruning: w=20 o
Impl‘ovemen’[IS 30 57 f ——Term+Doc. 7
:) pruning: w=10 | J! iy
marginal for g0 TR
misses (with high o pruning: w=0
. ===Term pruning
pagerank weights v
0+ : : 1
onIy) 0 0 20 30 40 50 0 10 20 30 40 50
Fraction of index (%) Fraction of index (%)

Analysis of results

 Static index pruning: addition to results caching, not replacement

— Term pruning performs well for misses also
=> can be combined with results cache

— Document pruning performs well for all queries, but requires high
pagerank weights with misses

— Term+Document pruning improves over document pruning, but has
the same disadvantages

* Pruned index grows with collection size

* Document pruning targets the same queries as result caching

* Lesson learned: Important to consider the interaction between the

components
YAaHoO! 9’

Locality

* Many queries are local
— The answer returns only local documents
— The user clicks only on local documents

* Locality also helps in:
— Latency of HTTP requests (queries, crawlers)
— Personalizing answers and ads

* Can we decrease the cost of the search engine?

YaHoO! 63 9 _’

Tier Prediction (Baeza-Yates et al, 2008)

* Can we predict if the query is local?
— Without looking at results
— or increasing the extra load in the next level

* This is also useful in centralized search engines
— Multiple tiers divided by quality

* Experimental results for
—WT10G and UK/Chile collections

YAHOO! 64 9 _’

Main path —>
Corpus A B Predicted -
_ Failed Prediction for B~ .
Query
1 1-F-FN
A Result
l Assessor ArLs e
Corpus ... FN F_FP F_FP
Predictor EN :
B " Merge
F F
Corpus B
~
YAaHoO! 9’
Experimental Results
* Centralized case:
Random Centralized
Classifier Accuracy || 0.714 £+0.008 | 0.78940.009
Precision n/a 0.983+0.006
Recall na 0.2651+0.022
* Distributed case:
Random Distributed
Classifier Accuracy || 0.539 +0.006 | 0.776+0.006
Precision n/a 0.675+0.006
Recall n/a 0.9914+0.003

YaHoO!

66

Tier Prediction Example

* Example:

— System A is twice faster than System B

— System B costs twice the costs of System A
* Centralized case:

—29% answer time improvement at 31% extra
cost

* Distributed case:

—12% answer time improvement at 18% exira
cost

Ya#HOO! C ~

Document Partitioning

Dictionary Inverted Lists
cold ‘
]
hot
in " <3,1>
not " <4.1>
pease <3.1>
porridge <3,1>
ot o <3,1>
the o <3,1>
YaHoO! 68 9_’

Term Partitioning

Dictionary Inverted Lists
P1
in " <3,1> | <6,1>
not » <4.1> | <5,1>
pot » <3,1> | <6,1>
the o <3,1> | <6,1>
YaHoO! 69 9_’

Partitioning the Indexing

* By documents * By terms

* Easy to partition * Random partition
* Easier to build * Hard to build

* No concurrency * Concurrent

* Perfect balance * Less balanced

* Less variance * Higher variance

Easier to maintain °* Harder to maintain

YaHoO! 70 9_’

Query Processing: Round Robin

Answer

|

N

ey

1 2 3 i P
Case of term partitioning
Marin et al, 2008
YAI—IOO') 9_’

Analysis

* BSP model
* Super-steps + synchronization

tp =rKD/P + rGK /P 4+ rRank(K) + L
tr=rKD + rGK + rRank(K) + L.

YaHOO! 73 9_’

Experimental Results

Normalized Running Time

1.2

0.8

0.6

0.4

0.2

12 GB 12 GB 1.5TB
m\‘g‘\ ’/;7 EH‘“\E ;{h—ﬁ v “ ‘::\ ..\" B
Q r\y 0 T “ ‘ = v

e B Koy - . 0 -
X%ix 5 E U
><.;§
Cl Cl1 2 Cl
q=128 q=32 q=256 q=32
P=4 -
8 S
16 & .
32 ——
150 ;--__vl___-- L 1 L 1 1 L 1 L 1
D DB T TB D T D T D T D T

Distributed Inverted Files

Model Comparison

Running Time (sec) / Max

1.2

1.0

0.8

0.6

0.4

0.2

12 GB 1.5TB
P
AN
LY
R \7 — 32 ;\7 Ve Ve
\\ ¥ ";\74 16 >C X i o lf
o T TR e S
L
Sy 4 \X N
= P,
BSP MPI PVM BSP MPI PVM
D T D T D T D T D T D T

Distributed Inverted Files

D!

Throughput Comparison

450 T T T T 1 L | & T 1 T T T T T T T I 1 T T

IA T T I 1I
H 13- =
| eI g=?6
I / ==> (=16 |
400 ; D ——> q-32
": E == q=64
F ==>q=128
350 = ! G ==3 q=255
o 300 | w’ o]
o Q Vi .
ﬁ 250 N '.:", I'|I ED P= 32 ; B
= A H’\ .'O '
= Y. | AN e 6 L
(=)} b .'-_ \Jg__ '
E 200 - \\\;K, Q - ‘ \'_‘3 G X i .f?\"‘&' i ﬁ(}-ﬂ} o
= e A v T
= ' S i - 8 = A =) - g 0]
@ ““+-..“\’5“~§.':' e Y s g e ® & o0 W
150 b i ATV 4 . o O .
3 —g A A : o = m = 5 QQ ' *
100 + Term Partition Doc Partition Term Partition ¢ Doc Partition -
50 f BSP MPI .
D L 1 1 L 1 L 1 1 L 1 1 L 1 L L 1 L 1 1 1 1 1 L 1 1 1 1 L
ABCDEFG ABCDEFG ABCDEFG ABCDEFG Y
Query Traffic
1.2 T T T T
DCR %
DDR = 1.5 TB
’c%‘ { FPDR % 4 i
2 TDR — ©
i TCR —+ e
= 0.8 WP s ta) iy
= -
%D e =
&, % st T e
= B
g 04y :
=
g
© 0.2 .
Z
D 1 1 L 1
4 8 16 32

E Number of Processors Y | I

Scalability

200.0 7

T
|
|
|
i
|_-L

D
200.0 B i N ____;\ C
== T) T

Running time (Secs)

200.0

Number of Processors

g

Star Topology (Baeza-vates et al, 2008)

n sites

Global queries

NN

Local queries (x)

YAHOO! 79 9_’

Cost Model

* Cost depends on Initial cost, Cost of Ownership over
time, and Bandwidth over time.

* Cost of one QPS

— n sites, x percentage of queries resolved locally, and relative cost
of power and bandwidth 0.1 (left) and 1 (right)

7

6 [+

5 N

4

XX % % X X X X X
11T
COOCO0O0O0000
voNOnRLNS

Query Processing

5 6

Number of sites

X% % X X X X X X
00T T T
OOOO0O0O0000
voNOORW

1 2 3 4 5 6 7 8 9 10

Numbe

r of sites

- Site S, knows the highest possible score b; that site S,
can return for a query
— Assume independent query terms

« Site S, processes query q:

Retrieve top-n
local results

—>

Find score s(d,q) of
n-th local result

* Optimizations:
— Caching
— Replication of set G of most frequently retrieved documents

— Slackness factor o replacing b; with (1- 2)b,

YaHoO!

True ﬁ

Forward query
to site S

—>

Return results
to users

I

Merge results

Query Processing Results

* Locality at rank n for a search engine with 5 sites

— For what percentage of query volume, we can return top-n
results locally

0.9 — ' !
BCGe0.9 +
08 F= 1 BCGe0.7
07 o ™ o | BCGe05
4‘* TR o Y BCGSO3 &
06|, **++++ 1 BCGe0.1 *
S o LEE S BCG
2 05¢ B
:T; l DDDD BC :
8 04ple, B
0-3 | o . L] :l ™ — . . Tage 4
0.2_ '...-.IICIII ----- -
0.1 .
0

10 12 14 16 18 20
rank

&)
B~
- F
oo

YaHoO!

Cost Model Instantiation

* Assume a 5-site distributed Web search engine in a star topology

« Optimal choice of central site S, : site with highest traffic in our
experiments

* Cost of distributed search engine relative to cost of centralized one

Query Processing Power Cost Bandwidth Cost ggz; Z; Z:;ZZZZZ

B 1.421 0.056 1.477

BC 1.254 0.046 1.300

BCG 1.131 0.040 1.171

BCG ¢ 0.1 1.078 0.036 1.114
BCG ¢ 0.3 0.945 0.028 0.973
BCG ¢ 0.5 0.807 0.020 0.827
BCG ¢ 0.7 0.698 0.014 0.712
BCG ¢ 0.9 0.634 0.011 0.645

YaHoO!

Conclusions

* By using caching (mainly static) we can increase
locality

* With enough locality we ma?/ have a cheaper
search engine without penalizing the quallty of the
results or the response time

* We can predict when the next distributed level will
be used to improve the response time without
increasing too much the cost of the search engine

* We are currently exploring all these trade-offs

YaHoO!
Mlog ern
iti nformation
Thank VOU! Second edition v

coming soon 77
= \\\{

Questions?

rbaeza@acm.org

Ya#HOO! O~

