
A Framework of Semantic Cache for Secure XML Query
Answering: an Interesting Joint and Novel Perspective

Jianhua Feng, Na Ta, Guoliang Li , Yu Liu, Dapeng Lv
Department of Computer Science and Technology

Tsinghua University, Beijing 100084, China
{fengjh, liguoliang}@tsinghua.edu.cn, {dan04, liuyu-05, lvdp05}@mails.tinghua.edu.cn

ABSTRACT
Secure XML query answering to protect data privacy and
semantic cache to speed up XML query answering are two hot
spots in current research areas of XML database systems. While
both issues are independently explored in depth, these two have
not been studied together, that is, the problem of semantic cache
for secure XML query answering has not been addressed yet. In
this paper, we present an interesting joint of these two aspects and
propose an efficient framework of semantic cache for secure XML
query answering, which can improve the performance of XML
database systems under secure circumstances. Our framework
combines access control, user privilege management over XML
data and the state-of-the-art semantic XML query cache
techniques, to ensure that data are presented only to authorized
users in an efficient way. To the best of our knowledge, the
approach we propose here is among the first beneficial efforts in a
novel perspective of combining caching and security for XML
database to improve system performance. The efficiency of our
framework is verified by comprehensive experiments.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – query processing.

General Terms
Performance, Security.

Keywords
XML, Semantic Cache, Security

1. INTRODUCTION
XML has become more and more popular as the de facto standard
of data representation, data exchange and storage on the Internet
and in a number of applications these days. With large amount of
XML data accessed and exploited by different organizations and
individuals, the problem of access control over these XML data
and privacy preservation of their corresponding owners has been
attracting more and more attentions from the research community.
How to provide information safely so that only secure data are
presented to authorized user while the data intended to be hidden
are not revealed? This problem makes one major discussion of this

paper.
Currently, secure XML query answering is a hot joint of data
security and XML databases. For a given XML document, there
may be different groups of users granted different access
privileges to the content of this document. In order to protect
sensitive data from intended or accidentally unauthorized accesses,
access control policy is used to define what elements are granted
access to which users. There are challenges for secure XML
querying, however. As Fan, Chan and Garofalakis pointed out in
[7], firstly it is non-trivial to construct a sound and complete
security view with respect to a given security policy. Secondly,
for a large XML document, materializing and maintaining
multiple user views may introduce expensive cost and degrade the
performance of the system consequently. A third challenge is how
to design effective algorithms to transform a query within the
constraints of a certain access level into a safely equivalent query
over the original XML document, which will affect the safety and
correctness of the final result.
There are a number of recent research works [2, 3, 5, 6, 8, 9, 15]
on access control of XML data, but each of them has some
shortcomings. For example, [5, 6] make use of materialized views
which are expensive to maintain, [8, 15] may reject certain user
queries because of denial of access to some elements, [3] needs
expensive integrity check due to its access annotation in each
element, while [9] involves costly runtime security checks.
On the other hand, time efficiency is a critical performance
requirement for the database when retrieving XML data to answer
a query. This requirement has initiated the boom of research of
query caching techniques, including the recent semantic cache, to
help XML databases answer queries faster. A semantic cache for
an XML database contains materialized views, which are
evaluated XML queries combined with their corresponding result
node sets. When a query Q is submitted, the cache lookup process
first tries to find a materialized view which contains the result of
Q. If one such view exists, there is no need to fetch data from the
underlying storage, the system simply returns the part of the
matching view’s result which is the result of Q so that the
evaluation step is completed quickly.
We choose XPath [17] as the query language in our framework.
XPath is a W3C recommendation for navigating XML documents
and selecting a set of element nodes. It composes the core of the
more complicated XML query language XQuery [18]. We
concentrate on a major subset of XPath, XP{/, //, [], *}, which is
defined as:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

p ::= n | * | . | p/p | p//p | p[p]
XP{/, //, [], *} covers the child axis “/”, the descendant axis “//”, the
predicate filter “[]” and the wildcard “*”. And “n” is a tag’s name,

Infoscale 2007, June 6–8, 2007, Suzhou, China.
Copyright 2007 ACM 978-1-59593-757-5…$5.00.

fezzardi
Text Box
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.975

“.” represents the context node itself and can be omitted if there is
no ambiguity.
Existing semantic XML query cache proposals and techniques
mainly focus on XPath query caching based on tree pattern query
containment relationship between the view and the query. These
caching methodologies fall into two major categories: one caches
XML queries as tree structures [1, 4, 19]; the other caches XML
queries as strings [12]. The latter method can achieve high
efficiency but is not good at handling deep XPath query trees,
therefore, it does not scale very well.
Thus, the other aspect we study in this paper is the caching
algorithm which follows the sequential style of [12]. Our
sequential algorithm translates XPath queries into equivalent
sequential forms and makes use of Main Path containment and
Predicate Condition Sets containment (to be defined and
discussed in detail in Section 4) to determine whether some
materialized view in the cache can answer a query Q or not. Then
it constructs the compensation query CQ for Q and executes CQ
on the result of the matching view to finally answer Q.
In a nutshell, what we focus in this paper is efficient XPath query
evaluation under secure circumstances. We propose a framework
characterized by three highlights: (1) It grants access privileges to
different users at the level of document DTD to ensure secure
XML query answering, which protects sensitive data at a more
abstract level; (2) It caches the submitted queries for each user
group separately to speed up query evaluation; (3) Moreover, it
takes into consideration the mutual relationship between different
user access levels, which may be containment, overlapping or
disjointness, to share cached data among different groups to
further utilize the cache. In other words, our algorithm not only
explores the probability of reuse cached data within one group of
users, but also considers data sharing among different user groups
with different privileges.
The main contributions of our work include:

• We conduct one of the first research works trying to combine
the issues of semantic cache for XML query and secure XML
query answering together to provide a safe and prompt query
answering mechanism.

• We propose a novel framework of semantic cache for secure
XML query answering, in which the concepts of safe path,
user DTD path set and user DTD path sets hierarchy are
applied to ensure the safety of sensitive data.

• We design an efficient semantic cache architecture which takes
into consideration cache organization, fast cache lookup,
compensation query construction for query evaluation under
the secure circumstance.

The remainder of the paper is organized as follows. Section 2
reviews related work. Overview of the framework, preliminaries
and definitions are given in Section 3. Section 4 illustrates the
algorithms in detail. Section 5 gives experimental analysis of
performance of the framework and Section 6 concludes the paper.

2. RELATED WORK
2.1 Secure XML Query Answering
[8] and [15] both consider general access control policy for XML
documents, not only XML queries. The decision procedure

determines whether to grant access of the required data or not
upon submission of a request. If there are sensitive data in the
result of a user query, this query is denied. [5, 6] study access
policy for XPath queries where a particular view is assigned to
each user. Such views are constructed by an algorithm based on
tree labeling. [9] answers a query by checking each element and
returning the accessible ones. A static optimization algorithm
checks the safety of a query, where a safe query is a query which
only returns accessible elements. In contrast, unsafe queries still
have to go through run-time security check.
Different from these general-purposed methods, [3] mainly
concentrates on secure answering of twig queries and proposes a
multi-level security model. Annotations of accessibility are
attached to elements, and only elements labeled as accessible can
appear in the result. But the fine granularity of secure annotation
at the element level also introduces some problems. For instance,
when adding new nodes to the XML document, it is rather
expensive to define and maintain the secure policy. To solve the
problem of costly materialized view maintenance, [7] proposes an
algorithm for deriving security views for different user groups
from security policies at the DTD level. Algorithms for XPath
query rewriting and optimization are developed to answer queries
without materializing the views.

2.2 Semantic XML Query Caching
A related work of exploiting semantic cache to accelerate XML
query answering is query rewriting which in turn depends on
query containment estimation between views and queries. XPath
query containment has attracted a lot of attention these years [10,
13, 16]. [1, 4, 19, 12] propose some frameworks and prototypes of
organizing semantic cache in XML databases. [4] studies caching
the result of XQuery queries at the client side. The cached views
have smaller results because of the characteristic of the XQuery
queries, but optimizing the lookup process is harder accordingly.
When there are a large number of views in the cache, lookup
becomes the bottleneck. In [19], frequently submitted tree pattern
queries are mined and maintained to answer new queries. [1]
materializes XPath queries into views containing XML fragments,
data values, full paths and node references to assist query
processing. However, this work does not address the problem of
speeding up the cache lookup process when the cache has a large
number of views. Exact containment is used in matching queries
and views. [12] gives the state-of-the-art algorithm to achieve fast
cache lookup. By regulating XPath queries and views into strings,
the lookup process is simplified into efficient string matching to
find appropriate views.

3. OVERVIEW OF THE FRAMEWORK
AND PRELIMINARIES
In this section we present a whole image of our secure query
caching framework and give definitions and theorems which form
the foundation of this paper.

3.1 Overview of the Cache Framework
The cache framework runs in four major steps: (1) Accept a user
query Q, check the safety of Q according to the user DTD path set
Du to determine if Q needs rewriting, that is, whether the result
node set or the predicate condition set of Q contains some
inaccessible elements; (2) If rewriting is needed, record
inaccessible sub-elements of the output node, which will be used
in the final evaluation step; refine predicate conditions, so that the

terminal node of each predicate condition is an accessible element
to the current user, this step generates a safe query Qs; (3) Execute
cache lookup, if there is some materialized view which can
answer Qs, construct the compensation query Qc for Qs(a
compensation query is executed on the result of the matching
view and returns the exact result of the original query executed on
the database); (4) Evaluate Qc by the cache if there is a matching
view or evaluate Qs by the underlying storage, filter out all
inaccessible sub-element of the output node in the result to give
the answer of Q.
There are three major structures in our framework. One is the user
DTD path set hierarchy, which is organized as a tree and
composes of all the user DTD path sets. A user’s join and leaving
processes map to appending and deleting a user DTD path set
node in the hierarchy. When a new user joins the system, the user
DTD path set Du is inserted to an appropriate position in the
hierarchy so that its parent node Dp contains all the safe paths of
Du and no child node of Dp satisfies this condition. The leaving of
a user is processed in a similar way, with all the child nodes of Du
changed to children of Dp. In this way the user management
mechanism is very flexible.
The second structure is the semantic cache containing
materialized views which are evaluated XPath queries with result
node sets. The cache is partitioned into nu parts, one for each of
the totally nu users. Since the cache has limited space to share
among all users, it has to be allocated reasonably. We use weight
values to guarantee this. A weight is assigned to a user according
to the position of his/her DTD path set node in the hierarchy.
Users at higher levels get greater weights and accordingly more
cache space. Before user queries are actually answered, the system
runs a warm-up process to generate a bunch of potentially
frequently submitted queries and load their result node sets into
the cache for later query answering. In the cache lookup step, if
there is no matching view of a query in its user’s caching part, we
resort to the hierarchy to find this user’s parent user Up or ancestor
user Ua in a bottom-up manner, and check whether their caching
parts contain a matching view or not. If there is a matching view,
we have a hit and this view is used to answer the query; otherwise,
this query is evaluated against the underlying database storage.
The third structure is the blocking set, which records at runtime all
the inaccessible sub-elements of the output node of a query.
Blocking set is used at the last step of query processing to filter
out sensitive data in the result set to ensure the security of the
XML data. We will give an example of blocking set later in this
section.

3.2 Document Type Definition, Safe Path (Set)
A DTD (Document Type Definition) defines the structure of an
XML document with a list of legal building blocks composed of
simple blocks such as element, attribute, entity, PCDATA and
CDATA, etc. We model a DTD graph as a triple of a root
element, a node set and an edge set, D=(r, V, E), which is a
variant of finite node-labeled DAG [3] such that: (1) r is a special
node which defines the root element of XML documents
conforming to this DTD; (2) each node in V is labeled by an
element tag; and (3) each edge in E has a label from the set {+,
*, ?, 1}.
An element v in V may contain attributes to which we grant the
same accessibility as v for simplicity. An edge e in E connects an
element to one of its sub-elements. The number of a certain sub-

element can be “one or more” with e labeled “+”, “zero or more”
with e labeled “*”, “zero or one” with e labeled “?” or “exactly
one” for the “1” edges whose labels are usually omitted. We give
an example DTD in Figure 1. A company document conforming
to this DTD consists of a group of projects and the staff which
includes the manager and the employee. One project has a
manager who can access its three sub-elements, namely, p-id,
duration and budget while an employee only knows the p-id and
the duration of the project he/she is working for.

company

projects staff

manager employee

id name salary phone

project

p-id duration budget

++

*
+

Figure 1. Example DTD

We define user access privilege by the concept of User DTD path
set on the DTD level to grant access of elements in XML
documents to different user groups. There are three kinds of
relationship among different users’ DTD path sets, namely
containing, overlapping and disjoint, which are used for query
containment estimation in the cache lookup process to efficiently
reuse cached data for different users.

Definition 1. (User DTD) A user DTD Du=(UID , r, Vu, Eu) is a
subset of the original DTD graph D in which (1) UID is the unique
identifier for a user; (2) r is the same root element as the root of
D; (3) Vu is a subset of V and contains the accessible elements of
this user; and (4) Eu is a subset of E where edges connect elements
in Vu. □
Figure 2 gives an example of user DTD for users of the employees
type.

company

projects stuff

manager employee

id name salary phone

project

p-id duration

++

*

Figure 2. User DTD for employee

User DTD is checked to return accessible data and hide private
information in query evaluation step. To simplify the process, we
devise a sequential representation of user DTD graph. The
sequential representation is composed of a set of safe paths which
help rewrite user queries into safe queries. The checking and

rewriting algorithms will be presented and discussed in detail in
Section 4.

Definition 2. (Safe Path) A safe path sp in a user DTD Du is a
path from e1, the root element of Du, to a deepest accessible
element ek granted to a certain user, sp is in the form of e1/e2.../ek,
where ei (1≤i≤k) is the i-th element along sp. □
For example, path “company/projects/project/duration” whose
edges are marked bold in Figure 2, is a safe path in the user DTD
for employee. Definition 2 implies the following property:

Property 1. The parent element of an accessible element is also
accessible, but the sub-elements of an element may have different
accessibility, that is, some sub-elements may be accessible while
others may be not. □

Definition 3. (User DTD Path Set) A user DTD path set, denoted
as {p | p∈Du}, is a set of all safe paths in a user DTD Du and p is
any safe path for a certain user. □
For instance, user DTD path set for employee in Figure 2 is
{company/projects/project/p-id,company/projects/project/duration,
company/staff/manager/id, company/staff/manager/name,
company/staff/manager/phone, company/staff/employee/id,
company/staff/employee/name, company/staff/employee/phone,
company/staff/employee/salary}.

Dm

{company/project/budget,

...,

company/staff/manager/id,

...,

company/staff/employee/id,...}

De

{company/projects/project/p-
id,

...,

company/staff/manager/id,

...,

For estimating the query containment relationship in the cache
lookup step we propose a hierarchy to organize all the user DTD
path sets. First we assign full access to a root user whose user
DTD Dr equals to the original unrestricted DTD. User DTD path
sets of all the other users are subsets of Dr. The idea of reusing
cached data is like this: if user u1, whose DTD path set DPS1
contains DTD path set DPS2 of user u2, then the cached view
results for u1 have the potentiality to answer queries submitted by
u2. We will discuss this in detail later in Section 4.
Definition 4. (User DTD Path Sets Hierarchy) A user DTD path
sets hierarchy H=(H , {(PS , PS)}) is composed of a root element
H which is the root user’s DTD path set and a set of tuples (PS ,
PS) declaring the containing relationship between a parent user
DTD path set PS and a child user DTD path set PS . Containing
implies that for each safe path sp in PS , sp has an instance in PS .

r p c

r p

c

p c

c p
□
Suppose a manager has the root user’s privilege, let his user DTD
path set be Dm, and there is a human resource specialist user who
can access the name and phone sub-elements of manager and
employee, whose user DTD path set Ds=
{company/staff/manager/name, company/staff/manager/phone,
company/staff/employee/name, company/staff/employee/phone}.
Then the user DTD path sets hierarchy for manager, employee and
specialist is (Dm, {(Dm, Ds), (Dm, De)}) as depicted in Figure 3.

3.3 Cache-based XPath Query Containment
Estimation and Answering
We model XPath queries to be tree-structured patterns, which is
denoted as a tree (Vp, Ep, rp, op) over Σ∪{*}, where: (1) Vp is the
set of vertices, Ep is the set of edges and Σ is the set of all tag
names; (2) rp∈Vp, op∈Vp, are the root and output vertices of the
tree pattern respectively; (3) each vertex v has a label in Σ∪{*};
and (4) an edge e can be either a child edge “/” or a descendant

Figure 3. User DTD Path Set

company

projects staff

manager

id

>3 months

project

duration

Man-101
(a) Qm: manager query

company

projects staff

manager

id

=4 months

project

duration

Man-101
(b) Qe: employee query

company

staff

name

(c) Qs: specialist query

Figure 4. Example XPath Tree Patterns

project

p-id duration budget
(blocked)

Figure 5. Accessibility for different sub-

elements

company/staff/employee/id,...}

Ds

{company/staff/manager/id,

...,

company/staff/employee/id,

...}

edge “//”, representing the parent-child or the ancestor-descendant

ased query rewriting and answering process, query

ition 5. (Sequential XPath) A sequential XPath SXP is an

 sequential XPath of the query in Figure 4(a) is

nment) A single XPath

ntained in

quential XPath Containment) A sequential

ine to determine whether materialized

erability) A query Q can be

S OF THE SECURE

thms used to implement the

firstly to ensure the safety of the query

quential XPath

4, suppose Qm is
ev

icate

relationship between two vertices respectively.
Figure 4 gives examples of XPath queries. Suppose a manger with
id “Man-101” asks for all the project elements with a duration
longer than three months that he/she takes charge of, the
corresponding query is: company[staff/manager[id=“Man-
101”]]/projects/project[duration>3months] as Qm shown in
Figure 4(a), where output nodes are marked by ellipses.
Here we give an example of blocking sub-elements of the output
node in Figure 5, where accessible elements are labeled by solid
circles while inaccessible ones by dotted circles. Suppose an
employee submits a query with element project being the output
node. From the user DTD of an employee E, E knows that a
project has p-id and duration sub-elements, but E has no idea that
a project has a budget sub-element. So the final result to such a
query should not contain any budget element. To achieve such
goals, algorithm 3 is proposed to block inaccessible data to ensure
safety of the final result. Compared with the use of dummy
elements in [7], refining the result of a query is semantically more
clear and straightforward than presenting dummy elements in the
query result.
In the cache-b
pattern containment estimation is an important issue. If a query is
contained in some materialized view in the semantic cache, we
have a hit and only need to construct the compensation query to
answer this query by cached result of the matching view. Since it
is expensive to determine the containing relationship between
tree-structured patterns while containment test of sequences is less
costly and more efficient, we transform tree patterns into an
equivalent sequential representation defined in Definition 5. For
more detailed studies on XPath containment please refer to [10, 13,
16].

Defin
equivalent representation of an XPath query Q, SXP=(MP, {(ni,
PCSi) | 1≤i≤l}), where (1) MP is the Main Path of Q which is the
path from the root to the output element; ni is the i node of MP, l
is the number of nodes along MP;

-th

(2) PCSi is the Predicate
Condition Set of ni which includes all the sequential predicate
conditions of ni; (3) a Predicate Condition of a path node ni is a
sequence which starts from ni and ends at one of ni’s non-output
leaf nodes. □
For instance,
(company/projects/project, {(company,
{company/staff/manger/id[=”Man-101”]}), (projects, Φ), (project,
{project[duration>3months]})}), where Φ is the empty set.
Specifically, company/staff/manger/id[=”Man-101”] is a predicate
condition for path node company, {project[duration>3months]} is
the predicate condition set for path node project and this set
contains only one predicate condition.

Definition 6. (Single Path Contai
S1=n1n2...nk is contained in a single XPath S2=n1’n2’...nl’ if: (1)
k≥l; and for 1≤i≤l: (2) if ni and ni’ are tags, they have the same tag
name or ni’=“*”; (3) if ni and ni’ are axis symbols, both are “/” or
ni=“/” or “//” while ni’=“//”; (4) if ni and ni’ are value expressions,
condition in ni has equal or stricter limit than in ni’. □
For example, single path S1=a/b[d>60]/c//e is co
S2=a//b[d>50]/c.
Definition 7. (Se

XPath S =(MP , {(n , PCS)1 1 i i }) is contained in another sequential
XPath S2=(MP , {(n ’, PCS ’)2 i i }) if (1) MP1 is contained in MP2; (2)
each predicate condition in PCS of n is i i contained in a predicate
condition in PCS ’ of n ’i i . □
Definition 7 gives the guidel
views in the cache can answer a query or not. Accordingly, one
can prove the following theorem:

Theorem 1. (View/Query Answ
answered by a view V if the sequential XPath of Q is contained in
sequential XPath of V. □

4. ALGORITHM
CACHE FRAMEWORK
In this section we present the algori
cache framework and illustrate the whole query answering process
in detail. Note that the problem of secure XML query answering is
different from general-purposed query answering in that the user
might ask for inaccessible data. So we take a best-effort strategy,
that is, the inaccessible sub-elements of a query’s output node are
removed from the result set.

4.1 Algorithm 1: Security Test and Safe
Query Generation
Security test is carried out
result. In this step main path and predicate condition sets of a
sequential XPath query are examined and processed in different
manners. Inaccessible sub-elements of the output node are
recorded in the blocking set with main path unchanged.
Meanwhile, predicate conditions are refined to ensure that each
predicate condition’s terminal node and all of its sub-elements are
accessible. The sequential XPath query is compared with the user
DTD path set Du. These processes are sequence set containment
test. This algorithm is shown in Figure 6. It runs within O(n3) time
bound, where n is the total number of nodes in the query.

 4.2 Algorithm 2: Cache Lookup and
Compensation Query Construction
The view/query answerability ensures that if the se
of a view V contains a sequential XPath query Q, Q can be
answered by the cached result of V. The cache lookup process
runs in a bottom up manner: caching part of the user, the parent
and ancestor DTD path sets in the hierarchy are checked one by
one until a matching view is found or until the root user’s DTD
path set is reached without a matching view. Figure 7 depicts the
algorithm which runs within O(n4) time bound.

We give an example here. Recall Figure
aluated and cached as Vm in the caching part for manager. If a

specialist user submits Qs as shown in Figure 4(c) and there is no
view in the caching part for specialist containing Qs, as the
hierarchy in Figure 3 implies, the manager’s user DTD path set is
the parent set of that of the specialist, so we go on to check if the
cached result in the caching part of manger has a matching view
of Qs. If there is still no matching view, a cache miss happens and
Qs has to be evaluated using data in underlying storage.

4.3 Algorithm 3: Secure Query Answering
The running results of the previous two algorithms ind
whether a query can be answered by the cache. We discuss the
case of cache hit. Now the known information includes the
compensation query, the caching part containing the matching

view and the blocking set for the output node, the evaluating
algorithm can be devised accordingly as shown in Figure 8. This

algorithm has polynomial time complexity.

Alg. 1. Security Test and Safe Query Generation

Input: UID (user id), SXP (sequential XPath), H (user DTD path set Hierarchy)

Output: Qs (safe query in the form of sequential XPath), BS (blocking set)

BEGIN
Let no be the output node of SXP, Dr be root user’s user DTD, SXP.MP be main path of SXP;
1. Find the user DTD path set Du in H, whose user id is UID;
2. If (#(safe paths containing no in Dr) > #(safe paths containing no in Du))
 /* there are some inaccessible sub-elements of no for this user */
3. Put sub-elements of no in Dr which do not appear in Du as sub-elements of no into BS,

Qs.MP = SXP.MP;
4. For predicate condition set of every node nMP on SXP.MP {

5. For each predicate condition p=t1t2...tp with terminal node tp {
6. If (#(safe paths containing tp in Dr) ≠ #(safe paths containing tp in Du))

7. For each safe path sp=n1n2...nitpnj...nk containing tp in Du do {

8. f=nj...nk, pr=p+f=t1t2...tpnj...nk, put pr into predicate condition set of nMP in Qs; } } }
9. Return Qs and BS.

END

Figure 6. Algorithm 1. Security Test and Safe Query Generation

Alg. 2. Cache Lookup and Compensation Query Construction

Input: UID (user id), Qs (sequential safe query generated by Alg. 1), H (user DTD path set Hierarchy), SC
(semantic cache)

Output: Ans (boolean flag indicating whether Qs can be answered by SC), CPtr (pointer to the caching part
containing the matching view), Qc (compensation query)

BEGIN
1. Ans = FALSE; let CPtr point to caching part of the user whose id is UID;
2. While (Ans = = FALSE) do {
3. MV = CL(Qs, CP); /* Call procedure 1 to do cache lookup and find the matching view MV */
4. If MV ≠ NULL /* A matching view is found */
5. Ans = TRUE;
6. Qc = CQC(Qs, MV); /* Call procedure 2 to produce the compensation query Qc*/
7. Else If CPtr does not point to the root user’s DTD
8. Let CPtr point to the caching part of current user’s parent user;
9. Else /* there is no matching view for Qs in the whole cache */
10. Qc = NULL, CP = NULL;}
11. Return Ans, Qc and CP.

END

Procedure 1. Cache Lookup CL(Q, CP)
Input: Q (a sequential XPath), CP (a caching part to search)

Output: V (matching view of Q, NULL if there is none)

Begin
1. V = NULL;

2. Find a view V whose main path contains the main path of Q;
 /* “contains” conforms to Definition 7 */
3. If V ≠ NULL {
4. If the predicate condition set of V contains the predicate condition set of Q
 /* “contains” conforms to Definition 7 */
5. Return V;
6. Else If there are views in CP which are not checked
7. Go to 2; }
8. Return V.

End

Procedure 2. Compensation Query Construction CQC(Q, V)
Input: Q (a sequential XPath query), V (a matching view of Q)

Output: Qc (compensation query of Q with respect to V)

Begin
1. Let MPc be the main path of Qc, MPc = Q.MP;
2. Let V.MP = n1n2...nvo, MPc = n1n2... nvo...nm;
3. For (ni = nvo to nm in MPc) do {
4. Let PCSNC(ni) be predicate condition set of ni in Qc, PCSNC(ni) = Φ;
5. For (each predicate condition pj in PCSNQ(ni) in Q)) do {

6. If NOT (pj∈PCSNC(ni))

7. PCSNC(ni) = PCSNC(ni) ∪ {pj}; } }

8. Return Qc.

End

Figure 7. Algorithm 2. Cache Lookup and Compensation Query Construction

Alg. 3. Secure Query Answering

Input: Qc (compensation query), V (matching view), BS (blocking set)

Output: RS (result set of Q)

BEGIN
1. Evaluate Qc on the result of V, get RS;
2. If BS ≠ Φ
/* there are inaccessible data in the current result set*/
3. Delete sub-elements of the output node in RS which appear in BS;
4. Return RS.

END

Figure 8. Algorithm 3. Secure Query Answering

5. EXPERIMENTAL STUDY
We have conducted a performance study of the efficiency of our
cache framework on a 300MB XML document generated by the
XMark [14] generator using the DTD depicted in Figure 1. The
algorithms were implemented in Java and were run on an AMD
Athlon 2000+ computer running Windows 2000 with 768MB
memory. We used three different user characters, namely,
manager, employee, human resource specialist as introduced in

Section 3. The testing queries were generated by a carefully
designed procedure to ensure that elements appear at a reasonable
frequency.
Experiment 1. This experiment compared three cache policies for
the manager user group, namely, (1) no cache(NC), (2) simple
cache(SC) where only exact sequence equality is considered as
cache hit, and (3) our secure semantic cache(SSC), in which an
XPath query is composed of a Main Path and several Predicate

Condition Sets. We give the average query processing time of the
manager user in Figure 9.

Figure 9. Average Query Processing Time of Three Caching

Mechanisms

Experiment 2. This experiment compared two cache policies
namely, (1) no hierarchy and exact sequence equality for cache
hit(NoH) and (2) SSC for three different user groups. Figure 10
shows the average query evaluation time for different users.

Figure 10. Average Query Processing Time of Two Caching

Mechanisms for Different User Groups

6. CONCLUSTION
What we would like to emphasize in this paper is that
performance improvement is everywhere in database systems, and
a study of semantic cache techniques under secure query
answering circumstance provides a good example of
accomplishing such goals in a particular application environment.
We have proposed a framework of semantic cache for secure
XML query answering. Such an attempt is beneficial in search of
new research directions and application fields. The framework
explores the joint of the semantic caching technique and the
secure constrains. Specifically, by combining together the two-
folds, requested accessible data can be retrieved quickly while
sensitive data are protected from unauthorized access. Theoretical

and experimental analysis both prove the efficiency of our
algorithms.

7. REFERENCES
[1] A. Balmin, F. Ä Ozcan, K. S. Beyer, R. J. Cochrane and H.

Pirahesh. A Framework for Using Materialized XPath Views
in XML Query Processing. In VLDB, 2004

0

200

400

600

800

SSC SC NC

Average
Processing
Time
(ms)

[2] E. Bertino and E. Ferrari: Secure and Selective.
Dissemination of XML Documents. TISSEC, 5(3):290–331,
2002

[3] S. Cho, S. Amer-Yahia, L. Lakshmanan, and D. Srivastava.
Optimizing the Secure Evaluation of Twig Queries. In VLDB,
2002

[4] L. Chen, E.A. Rundensteiner. ACE-XQ: A Cache-aware
XQuery Answering System. In WebDB, 2002

[5] E. Damiani, S. di Vimercati, S. Paraboschi and P. Samarati.
Securing XML Documents. In EDBT, 2000

[6] E. Damiani, S. di Vimercati, S. Paraboschi and P. Samarati.
A Fine-grained Access Control System for XML Documents.
TISSEC, 5(2):179–202, 2002

[7] W. Fan, C. Chan and M. Carofalakis. Secure XML Querying
with Security Views. In SIGMOD, 2004

[8] S. Hada and M. Kudo. XML Access Control Language:
Provisional Authorization for XML Documents.
http://www.trl.ibm.com/projects/xml/xacl/xacl-spec.html

Average Processing

Time (ms)

0

10
0

20
0

30
0

40
0

50
0

NoH

Manager
Employee

Specialist

SSC

[9] M. Murata, A. Tozawa and M. Kudo. XML Access Control
Using Static Analysis. In CCS, 2003

[10] G. Miklau and D. Suciu. Containment and Equivalence for
an XPath Fragment. In PODS, 2002

[11] G. Miklau and D. Suciu. Controlling Access to Published
Data Using Cryptography. In VLDB, 2003

[12] B. Mandhani and D. Suciu. Query Caching and View
Selection for XML Databases. In VLDB, 2005

[13] F. Neven and T. Schwentick. XPath Containment in the
Presence of Disjunction, Dtds and Variables. In ICDT, 2003

[14] A.R. Schmidt, F. Waas, M.L. Kersten, D. Florescu, I.
Manolescu, M.J. Carey and R. Busse. The XML Benchmark
Project. Technical Report INS-R0103, CWI, 2001.

[15] Oasis. eXtensible Access Control Markup Language
(XACML). http://www.oasis-
open.org/committees/xacml/repository/

[16] W. Xu and Z. M. Ozsoyoglu. Rewriting XPath Queries
Using Materialized Views. In VLDB, 2005

[17] XPath2.0: http://www.w3.org/TR/xpath20/
[18] XQuery 1.0: http://www.w3.org/TR/xquery/
[19] L. Yang, M. Lee and W. Hsu. Efficient Mining of XML

Query Patterns for Caching. In VLDB, 2003

	1. INTRODUCTION
	2. RELATED WORK
	2.1 Secure XML Query Answering
	2.2 Semantic XML Query Caching
	3. OVERVIEW OF THE FRAMEWORK AND PRELIMINARIES
	3.1 Overview of the Cache Framework
	3.2 Document Type Definition, Safe Path (Set)
	3.3 Cache-based XPath Query Containment Estimation and Answering

	4. ALGORITHMS OF THE SECURE CACHE FRAMEWORK
	4.1 Algorithm 1: Security Test and Safe Query Generation
	4.2 Algorithm 2: Cache Lookup and Compensation Query Construction
	4.3 Algorithm 3: Secure Query Answering

	1.
	5. EXPERIMENTAL STUDY
	6. CONCLUSTION
	7. REFERENCES

