
Evaluation Study of a Distributed Caching Based on Query
Similarity in a P2P Network

Mouna Kacimi
∗

Max-Planck Institut fur Informatik
66123 Saarbrucken, Germany
mkacimi@mpi-inf.mpg.de

Kokou Yetongnon
†

Laboratoire LE2I, University of Bourgogne
Dijon 21078 Cedex France

kokou.yetongnon@u-bourgogne.fr

ABSTRACT
Several caching techniques have been used to reduce the
bandwidth consumption and to provide faster answers in
P2P systems. In this paper, we address the problem of re-
ducing unnecessary traffic in the Hybrid Overlay Network
(HON), which consists in organizing peers and data in an
n-dimensional feature space for efficient similarity search.
We propose a distributed caching schema that group simi-
lar queries to increase the success hit and avoid redundancy.
We show through extensive simulations that caching in HON
decreases significantly the query scope improving search per-
formance.

General Terms
Measurement, Performance

Keywords
P2P Networks, Similarity Search, Caching

1. INTRODUCTION
P2P search has the potential to enhance large-scale IR, re-
liability and fault tolerance since it does not rely on any
centralized resource. Moreover, it offers the possibility to
exploit local content of any peer in the network breaking in-
formation monopolies. Thus, the design of an efficient P2P
search technique raises important issues such as finding the
appropriate answers for a given query, optimizing the search
cost by reducing the network traffic, and dealing with peers’
availability and autonomy.

Many search algorithms have been proposed for P2P systems
based on their overlay infrastructure that can be unstruc-
tured or structured. The search in unstructured networks
such as Gnutella [5] and KaZaA [8] is based on flooding,

∗Dr. Kacimi did this work during her PhD at the University
of Bourgogne in France.
†Professor Yetongnon is the supervisor of this research.

where each peer broadcasts the received query to directly
connected peers. A Time-To-Live (TTL) mechanism or a
random walk method [1, 3] can be used to reduce the num-
ber of peers that are involved in processing a query and avoid
overloading the network. Flooding techniques are efficient
for locating popular data objects for which several duplicate
copies exist in a large number of peers. On the other hand,
they can exhibit search quality and cost performance for
remote unpopular objects which may not be found if TTL
limit is reached, or may incur a high search cost if they are
found.

In structured P2P systems, search methods use peer content
localization information to direct queries to the appropriate
peers. DHT (Distributed Hash Table) techniques have been
used in several structured systems [9,13,15]. They organize
data in a key space for efficient data access. Unique identi-
fiers are assigned to the peers and the data. A data object
is mapped to the peer with the closest identifier. Each peer
maintains a routing table composed of its neighbors’ identi-
fiers. A lookup query is routed to and processed by the peer
that contains the corresponding data keys. DHT techniques
improves the search efficiency by providing a deterministic
routing and a high recall. However, the tight control of the
network by mapping data indexes to peers requires a high
maintenance cost in a highly dynamic network.

Many efforts have been made to avoid large volume of unnec-
essary traffic in unstructured networks, and to balance the
tradeoff between the indexing cost and searching in struc-
tured networks. In this paper, we focus on caching strate-
gies that have been a crucial part of these efforts. Various
caching techniques based on web proxies have been proposed
in the literature [2, 4, 12]. They consist in storing query re-
sults in web proxies for future use to reduce response delays
and network congestion. Similar techniques have been sug-
gested for P2P systems. However, caching query results in
P2P systems is in some way different from caching in web
proxy systems. The main difference is due to the fact that
in traditional web caching the stored data is kept on well
identified static web servers, whereas in P2P systems query
results are combination of partial results issued from one or
more peers which can frequently connect to and disconnect
from the network.

We have proposed in [7] a distributed caching schema to
improve the performance of information retrieval in HON
[6], a Hybrid Overlay Network for similarity search in a

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.963

P2P system. HON organizes both peers and data in an
n-dimensional feature space based on content description.
It is based on two key ideas. First it organizes peers sharing
similar contents in the n-dimensional feature space to limit
flooding overhead and send queries only to relevant peers.
Second, it organizes and places similar data objects in rel-
atively dense and adjacent regions of the feature space to
achieve efficient processing of complex queries such as range
and nearest neighbor queries. The feature space represents
particular attributes associated with data objects (e.g., color
for an image, concept or keyword for text document) and is
partitioned into cells obtained by dividing the range values
of each feature into a number of intervals. Two data are sim-
ilar if they are mapped to the same cell. The distribution
of data objects over the cells defines the similarity between
peers. Two peers are similar if their contents are distributed
on the same sub regions of the feature space.

Caching in HON consists in storing information about queries
descriptions and peers providing relevant answers. The main
idea is to assign a cache to each non empty cell of the feature
space. Queries that are mapped to the same cell are stored
and served from the same cache. Thus, similar queries are
always grouped in the same cache, which increases the suc-
cess rate and avoids redundancy. The focus of this paper
is on evaluating the caching performance in HON, study-
ing different replacement policies, and analyzing the impact
of caching on the query scope and the search performance.
The contributions of this work are three-fold:

1. we study the impact of caching on the search perfor-
mance in HON showing its efficiency in reducing the
query scope and providing a high success hit.

2. we evaluate the behavior of the cache using two differ-
ent query distributions, namely, uniform and zipfian.

3. we investigate two replacement policies: LRU and NFU,
and we analyze their impact on the recall. More-
over, we study their adaptability to dynamic change
of peers’ content.

The remainder of the paper is organized as follows. In the
next section, we give an overview about some P2P caching
approaches. In section 3, we give a brief description of HON.
Section 4 presents the distributed caching schema proposed
in HON. Section 5 describes the cache management policies.
Section 6 presents the evaluation results. And finally section
7 concludes the paper.

2. RELATED WORK
P2P caching techniques proposed in the literature can be
classified into three approaches. In the first approach, a
cache is placed in every peer. Each peer stores in its cache
query strings and the results that pass through it. Sri-
panidkulchai et al. have studied in [14] the popularity of
queries in Gnutella which follows a Zipf-like. Markatos et
al. in [10] have also studied the traffic of Gnutella and shown
that queries tend to be frequently and repeatedly submit-
ted. Moreover, Gnutella peers join and leave the network
very frequently. Thus, the query responses may become out-
of-date very quickly. To address this problem, the authors

proposed a Gnutella caching mechanism that caches query
response for only a small amount of time. The effectiveness
of Gnutella caching has been studied in both [14] and [10].
Wierzbicki et al. [18] have also evaluated different cache re-
placement policies that were successful for web traffic, and
have introduced new specific policies for FastTrack traffic in
KaZaA network.

The second approach is to use a centralized server to cache
data. In [11], Patro and Hu have shown that caching at the
gateway of an organization can be far more effective than
caching at individual peers behind the gateway because it
can keep the query traces of all peers. In this manner, if
a query Q is issued, it is more likely to find similar queries
stored in the cache.

In the third approach, the cache is distributed among se-
lected peers. Wang et al. have analyzed in [16] the Uni-
form Index Caching (UIC) that stores query results in the
peers along the returning path. The experiments show that
UIC causes large duplicated and unnecessary cache results
among neighboring peers. Therefore, Wang et al. [16] have
attempted to cache the responses in some selected peers.
The distributed caching DiCAS proposed by [16] is based
on hashing. Peers are organized into M groups, where each
has a group ID. When a query is issued, its hash code is
calculated as follows: query ID=hash (query) Mod M. The
query and the corresponding results are sent to the peers
with a group ID equal to the query ID. The experiments
results presented in [17] show that DiCAS protocol can sig-
nificantly reduce the network search traffic.

3. HYBRID OVERLAY NETWORK
The Hybrid Overlay Network (HON) organizes peers and
data to perform an efficient similarity search based on range
and nearest neighbor queries. The data contents of peers are
represented by n-element feature vector, where each element
is a particular feature or attribute associated with data ob-
ject (e.g., color for an image, concept or key word for a text
document). Since each data object is described by a feature
vector, it can be seen as a point in a n-dimensional feature
space.

The feature space is described by n features f1, f2, ...fn.
The basic idea is to define a partition of the feature space
into cells and use the distribution of data objects over the
cells as the basis for defining peer similarity, and comput-
ing query similarities to peers. Thus, two peers are con-
sidered similar if their contents are distributed on the same
sub regions of the feature space. To define a partition of
the feature space into cells, we evenly divide the range of
values [fmin

i , fmax
i] of a feature fi into mi intervals of size

d fmax
i −fmin

i
mi

e, for i = 1, 2...n. We denote the resulting set

of cells φ = {ϕ1, ϕ2, ..., ϕm}, where m is given by m =Qn
i=1 mi.

3.1 Data and Peers Organization
Two steps are required to build HON. The first step con-
sists in organizing data objects in the feature space. Each
data object is described by a feature vector and corresponds
to one point in the feature space. Therefore, it is mapped
to one cell. Figure 1a shows the partition cells of a 2-

(a) Data organization (b) Peers organization

Figure 1: Hybrid Overlay Network

dimensional feature space using the features f1 and f2. Data
of peers P1, P2 and P3 are distributed over cells according
to their description. For example, the data objects of P2 are
mapped to the cells 4, 13,14 and 15.

The second step consists in organizing peers in the feature
space. Each peer is mapped to a set of cells containing its
data objects. The mapping is done using a threshold value
T . A peer is mapped to a cell only if it has a number of
objects higher than T in the cell. Figure 1b shows that
using a threshold T = 1, the peer P2 is mapped only to the
cells 14 and 15 because the number of its data objects in
those cells is higher than 1.

3.2 Indexing and Searching
Each peer in HON maintains local links to its similar peers,
i.e., peers within the same cells. Moreover, it maintains
neighboring links to a random set of peers that belong to
its adjacent cells. Recall that two cells are adjacent if they
share (d − 1) hyperplane, where d is the dimensionality of
the feature space. In addition, a peer maintains shortcuts as
a separated layer, on top of local and neighboring links, to
optimize the search. Shortcuts are created in the following
manner. When a peer joins the system, it does not have any
information about distant peers. Its first attempt to locate
content using local and neighboring links. The lookup re-
turns a set of peers that hold relevant answers. These peers
are potential candidates to be inserted in the shortcut list.
These shortcuts can be ranked using several criteria such as,
utilization frequency, availability, etc. Figure 2 shows a peer
belonging to cell 8 and maintaining local links to peers of
the same cell and neighboring links to peers of adjacent cells
4, 7 and 12. In addition, it has a shortcut link to a peer in
cell 16.

Local links are used to serve queries in local cells of the re-
questing peer. By contrast, neighboring links and shortcuts
are used for routing queries from a group of similar peers to
a distant group. Let us assume that a query is described by
a set of values (vQ1, vQ2, ...vQn), where vQi is associated to
the ith feature. It corresponds to one point in the feature
space. When a peer initiates the query Q, it first defines the
cell where the query point falls, called target cell. A target
cell is the cell that contains the relevant answers to the query

Figure 2: Indexing in HON

Q. When the requesting peer defines the target cell, it for-
wards the query to one of its neighboring or shortcut peers
that is the closest to the target cell. The query is forwarded
form a peer to a neighboring peer till it reaches the target
cell. When the query reaches the target cell it is flooded to
all the contained peers to retrieve the relevant answers or
similar ones. We note that a query can be a range query
described by a set of range values [MinQi, MaxQi] for each
feature i. In this case, more than one target cell might be
selected. Thus, the query is processed for each target cell as
described previously.

The size of cells, described by cell granularity, has a great
impact on the search efficiency. The results presented in [6]
show that the higher the cell granularity is the more ac-
curate the similarity between data objects. On the other
hand, a low cell granularity provides less precise and simi-
lar results. Moreover, the flooding within target cells might
penalize the search performance if the cell has a high size
and contains a high number of peers. Therefore, a large por-
tion of irrelevant peers are involved in the query processing
which increases the search cost. To limit the flooding over-
head inside cells, we propose a caching mechanism that helps
storing queries results for future use.

4. DISTRIBUTED CACHING SCHEMA
To improve search performance in HON, we apply a caching
mechanism that reduces the flooding overhead inside cells.
We place a cache in each non empty cell of the feature space.
Therefore, the cache will keep trace of all the queries sent
to the same cell. Queries sent to the same cell are similar
and stored in the same cache. Unlike traditional caching
assumptions, a cache in HON does not store the retrieved
data objects. We assume that a cache stores the addresses of
the peers that answered each query. In this manner, further
queries generating a cache hit are not flooded to all peers in
the cell but only to those that contain the relevant answers.

A cache is assigned to one peer in the cell called active peer
(AP). Peers with no associated cache are called passive peers
(PP). Each passive peer is registered with the active peer of
its cell. When a given query is sent to the target cell, the
relevant active peer checks its cache. If there is a cache Hit,
the query is served from the peers whose addresses are stored
in the cache. Otherwise, if there is a cache Miss, the query

(a) Flooding inside target cells

(b) Cache impact of flooding overhead

Figure 3: Caching in HON

is sent to all the peers contained in the target cell. Figure 3
shows the placement of the cache in the feature space. In,
the first example illustrated in figure 3a, no cache is used, so
the query is flooded to all the peers contained in the target
cell. On the other hand, figure 3b shows the benefits of the
cache that limits the flooding to a selected number of peers
within the target cell.

The idea of placing the cache in each cell helps to collect all
the similar queries in the same cache. Two queries that are
mapped to the same cell are similar. Therefore, they share
common target peers that are supposed to hold the relevant
answers. In this way, similar queries are always sent to and
stored in the same cache which helps increasing the success
hit and avoiding redundancy.

A cache consists of a set of cached items, called Query Seg-
ments. They are used to record both queries and relevant
peers that provide results to queries.

Definition 1 (Query Segment)
Given a query Q = {vQ1, ..., vQn} defined over the set of fea-
tures {f1, ..., fn}. A Query Segment S, is a tuple 〈SQ, SP 〉,
where SQ is a submitted query and SP = {Pi}i=1,m is the
set of peers that provide results for SQ. An empty query
segment is defined by S=〈∅, ∅〉.

A complete formal description of HON caching is given in
our previous work [7].

5. CACHE MANAGEMENT
The granularity of cache management is at the query seg-
ment level. A query segment is stored and replaced as a

whole. In this section, we first discuss query admission pol-
icy and then we present the cache consistency and replace-
ment which are the two key components of cache manage-
ment.

5.1 Cache Admission Policy
When the cache receives a query Q, it computes the simi-
larity between Q and the queries stored in the cache using
an Euclidian distance and a predefined similarity threshold.
The result is the most similar query segment to the query Q
from which is extracted a set of peers {P} capable of answer-
ing the query Q. The requesting peer contacts all the peers
in {P} for results and selects the set of peers Sp that satisfy
the query Q. The cache management in HON is based on
two key points. First, on similarity that defines whenever a
query can be served from the cache or not. Second, on the
state of peer that can be online or offline. In the following,
we give the definitions of cache miss and hit.

Definition 2 (Cache hit)
There is a cache hit if at least one query segment in the
cache has a query that is similar to Q and if at least one
peer of the returned peers is connected. A formal definition
of the cache hit is given as follows: ∃ 〈SQ, Sp〉 ∈ C | SQ is
similar to Q AND ∃ P ∈ Sp | P is connected.

The similarity threshold for a cache hit is predefined. This
threshold has to conserve the precision of answers to not
decrease the search performance.

Definition 3 (Cache miss)
There is a cache miss if none of the query segment in the
cache contains a query similar to Q, or if there are query
segments in the cache with similar queries to Q but the cor-
responding peers are not connected. A formal definition of
the cache miss is given as follows: ∀ 〈SQ, Sp〉 ∈ C, SQ is
not similar to Q OR ∃ 〈SQ, Sp〉 ∈ C | SQ is similar to Q
and ∀P ∈ Sp | P is not connected.

A challenging issue in HON caching is the use of similarity
in defining the cache hit and miss. The similarity between
two queries does not mean that their answers are stored in
the same set of peers. Therefore, a cache hit might lead
sometimes to irrelevant peers or partial set of peers that
contains query answers. In this manner, we may loose a part
of the information and generate partial results to queries
which decrease the recall, i.e., the percentage of retrieved
answers out of the existing answers in the whole network.

5.2 Cache Replacement Policy
In our work we investigate two replacement policies to study
their impact on the search performance and particularly on
the recall. As described previously, the main idea in P2P
caching is to store the data in the cache for a short period
of time. The first replacement technique we use in HON
is LRU (Least Recently Used) which removes the data that
has not been used for the longest period of time. The second
policy is NFU (Not Frequently Used) which removes the less
popular data in the cache.

We study in our work the impact of the replacement poli-

cies LRU and NFU in HON. Both LRU and NFU have ad-
vantages and disadvantages. Depending on the cache size,
LRU helps to store the data in the cache for a short period
of time. LRU makes a considerable difference with NFU,
especially when new peers join the network providing new
content. Since LRU removes the oldest data, it helps to re-
fresh the content of the cache and take into account the new
content that might join the network at any time. Therefore,
the replacement policy LRU helps increasing the recall. By
contrast, NFU policy keeps the most popular data on the
cache. This helps to increase the success hit by providing
answers to a large portion of user queries. However, NFU
might ignore the network dynamicity and provide answers
without taking into account new contents.

6. EVALUATION
We have shown in our previous work [6] that HON provides
an efficient similarity search with a high success rate and
recall. In this paper, we focus on studying the impact of
caching on improving search performance and reducing the
query scope.

We have performed two main parts of simulation to evaluate
caching performance. In the first part we focus on studying
the success hit and the recall. In other words, how suc-
cessful is the use of the cache to answer the queries, and
how efficient it is in providing the maximum of the existing
answers in the network. In the second part we have stud-
ied both replacement policies LRU and NFU and run some
experiments to show their behavior.

6.1 Simulation Setup
We run our simulation using 10,000 peers with 1,500,000
data objects. The average number of objects per peer is
equal to 150. The feature space is divided into 10,000 cells.
We initiate 3,000,000 queries over the network and we ana-
lyze the cache behavior. We have used the following metrics
for the evaluation.

1. Success Hit : defined as the percentage of queries served
from the cache. Let QN be the total number of queries,
and CQN the number of queries served from the cache.
The success hit is computed by QN/CQN .

2. Query Scope: is the fraction of peers in the system that
is involved in the query processing. A smaller query
scope increases system scalability. The query scope is
computed by QP/N , where N is the total number of
peers and QP is the average number of peers involved
in the query processing.

3. Recall : represents the fraction of the relevant responses
that has been retrieved. If a search retrieves only one
hundred relevant responses out of three thousand avail-
able responses, then that search has a low recall. If it
retrieves all the available responses to the query Q, it
has a high recall. Let TR be the total number of the
relevant responses for a query Q and RR be the num-
ber of the retrieved responses. The recall is computed
by RR/TR.

We have used two different query distribution. the first one
is a Uniform distribution where each query has equal chance

(a) Impact of query distribution on success
hit

(b) Impact of caching on the query scope

(c) Impact of caching on the recall

Figure 4: Caching impact on search efficiency

to be mapped to any cell of the feature space. The second
one is a Zipfian distribution, where queries are mapped to
few cells of the feature space. Approximately, 80% of queries
are mapped (i.e, sent to and served from) 20% of cells.

6.2 Data Distribution Impact on Success Hit
We analyze the behavior of the cache using different query
distributions, and studying their impact on the success hit.
Figure 4 shows the evolution of the success hit according
to the the number of queries. At the begining, the cache
is mostly empty, therefore the percentage of queries gen-
erating a cache hit is close to zero. This value increases
when the cache starts storing queries’ information. Figure
4a shows that a Zipfian distribution of queries increases the
success hit. This is due to the fact that when using a uni-
form distribution, the queries are randomly chosen and they
are rarely repeated, while a Zipfian distribution of queries
provides 80% of similar queries increasing the success hit.
Recall that a cache hit is based on the similarity between
queries. Thus, when the number of similar queries increases,
the success hit increases.

6.3 Caching Impact on Query Scope
We have analyzed the efficiency of the cache in reducing the
flooding overhead inside cells. Thus, we have measured the
impact of the cache on the query scope. Figure 4b shows the
average query scope with and without using a cache. If we

(a) Uniform query distribution

(b) Zipfian query distribution

Figure 5: Impact of replacement policies on success hit

do not use a cache, we notice that the average query scope is
equal to 10% of peers that are involved in processing queries.
On the other hand, when we use a cache, we notice that the
average query scope decreases when the query hit increases.
In this experiment, the query scope decreases and reaches
5% of average query scope when the success hit is 60%. Here,
we can notice that the cache decreases significantly the query
scope which helps improving the search performance.

6.4 Caching Impact on Recall
To study the impact of the caching on the recall, we use
the same experiments presented above. Figure 4c shows
that the recall decreases when the success hit increases. At
the beginning, when queries are not served from the cache,
they are flooded to all the concerned peers and they retrieve
all the relevant answers generating a recall equal to 100%.
When the success hit increases, less precise answers are given
from the cache, decreasing the recall. Figure 4c shows that
the recall decreases and reaches 68% when the success hit
reaches 70%.

6.5 Replacement Policies
We have studied in our experiments the impact of two re-
placement policies on the success hit, the recall and the
query scope. Figure 5 illustrates the impact of the replace-
ment policies on the success hit using a uniform and a Zip-
fian query distribution. We notice that NFU policy helps
increasing the success hit by keeping popular queries in the
cache. The difference between LRU and NFU is significant
when the query distribution is Zipfian as shown in figure
5b. Using a Zipfian distribution, few queries are initiated
very often while many others are initiated rarely. There-
fore, keeping queries in the cache based on their popularity
increases the success hit comparing to the LRU policy. In
the case of using a uniform distribution, no popular queries
can be distinguished. Thus, we can hardly see the difference
between LRU and NFU (cf. figure 5a).

(a) Uniform query distribution

(b) Zipfian query distribution

Figure 6: Impact of replacement policies on success hit

We have analyzed both replacement policies using different
values of the cache size. Figure 5 shows that when the size
of the cache is small ranging from 0 to 2000 segments, mean-
ing that the replacement policies are actively used, we can
notice clearly that NFU performs the success hit comparing
to LRU. When the size increases, less replacement opera-
tions are processed, so the two replacement policies tend to
provide more or less the same success hit.

We have studied the impact of the two replacement policies
on the recall. Using LRU replacement policy and a small
cache size, the queries are kept in the cache for a short period
of time which is required in dynamic environments. There-
fore, queries can take advantage of new content provided by
new peers because the cache is refreshed frequently by re-
moving old information. However, when using NFU policy,
the popular queries results are kept in the cache for a long
period of time. If a query is popular, it is always served
from the cache even if more answers can be provided by
some new peers. Figures 6b and 6a show that NFU policy
decreases the recall comparing to LRU. The impact of the
two replacement policies makes difference when the query
distribution is Zipfian as shown in figure 6b, while using a
uniform query distribution, both policies provide the same
recall since they provide the same success hit as shown in
figure 6a.

The last set of experiments of caching focuses on the impact
of the replacement policies on limiting the flooding overhead
by decreasing the query scope. As presented previously, the
query scope is related to the success hit. When the success
hit increases, the query scope deceases. This means that
the flooding is limited when the query is served from the
cache. We have shown above that NFU policy performs the
success hit comparing to LRU. Therefore, the query scope is
smaller using NFU than using LRU. Of course the impact of
the replacement policies depends on the query distribution.
We can notice in figures 7a and 7b that using a uniform
distribution, the query scope provided by LRU and NFU is

(a) Uniform query distribution

(b) Zipfian query distribution

Figure 7: Impact of replacement policies on caching perfor-
mance

almost the same while using a Zipfian distribution the query
scope is decreased by NFU.

7. CONCLUSION
We have proposed in this paper a distributed caching schema
to improve the performance of information retrieval in HON,
a Hybrid Overlay Network for similarity search in a P2P sys-
tem. We have presented a caching architecture that consists
in assigning a cache to each non empty cell to collect sim-
ilar queries. Thus, we increase the success hit and avoid
redundancy. We have introduced new definitions for cache
admission policies taking into account the dynamic behav-
ior of P2P networks. Moreover, we have investigated two
replacement policies namely, LRU and NFU.

To study the performance of the query processing and caching,
we have run a set of experiments studying different metrics
such as query recall, query scope and success hit. We have
shown through these experiments that caching decreases sig-
nificantly the query scope allowing an optimal search. The
experiments have shown that LRU replacement policy helps
increasing the recall by keeping data for a short period of
time in the cache. On the other hand, NFU policy increases
the success hit by providing answers to a large portion of
user queries. However, it might ignore the network change
and provide answers without taking into account new con-
tents.

8. REFERENCES
[1] L. A. Adamic, R. Lukose, A. Puniyani, and

B. Huberman, “Search in power law networks,”
vol. 64, no. E, pp. 46 135–46 143, 2001.

[2] A. Chankhunthod, P. Danzig, C. Neerdaels,
M. Schwartz, and K. Worrell, “Hierarchical internet
object cache,” In Proceedings of the USENIX
Technical Conference, 1996.

[3] E. Cohen and S. Shenker, “Replication strategies in

unstructured peer-to-peer networks,” In Proceedings
of the 2002 conference on Applications, Technologies,
Architectures and protocols for computer
communications, pp. 177–190, 2002.

[4] L. Fan, P. Cao, J. Almeida, and A. Z. Broder,
“Summary cache: a scalable wide-area web cache
sharing protocol,” IEEE/ACM Transactions on
Networking, vol. 8, no. 3, pp. 281–293, 2000.

[5] Gnutella, “http://www.gnutella.com,” 2003.

[6] M. Kacimi and K. Yetongnon, “Density-based
clustering for similarity search in a p2p network,” In
proceedings of the 6th IEEE Symposium on Cluster
Computing and the Grid, 2006.

[7] M. Kacimi, K. Yetongnon, Y. Ma, and R. Chbeir,
“Distributed caching in a cluster-based hybrid overlay
network for p2p systems,” In the proceedings of the
18th International Conference on Parallel and
Distributed Computing Systems, 2005.

[8] KAZZA, “http://www.kazaa.com/,” 2002.

[9] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A
scalable and dynamic emulation of the butterfly,” In
Proceedings of the 21st annual ACM symposium, pp.
183–192, 2002.

[10] E. P. Markatos, “Tracing a large-scale peer to peer
system: An hour in the life of gnutella,” In
Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGRID’02), p. 65, 2002.

[11] S. Patro and Y. C. Hu, “Transparent query caching in
peer-to-peer overlay networks,” International Parallel
and Distributed Processing Symposium (IPDPD’03),
no. 32, 2003.

[12] S. Paul and Z. Fei, “Distributed caching with
centralized control,” Computer Communications
journal, vol. 24, no. 2, pp. 256–268, 2001.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,”
In Proceedings of ACM SIGCOMM, 2001.

[14] K. Sripanidkulchai, “The popularity of gnutella
queries and its implications on scalability,” Carnegie
Mellon University, Tech. Rep., Jan 2004.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup service for internet applications,” ACM
SIGCOMM, pp. 149–160, 2001.

[16] C. Wang, L. Xiao, Y. Liu, and P. Zheng, “Distributed
caching and adaptive search in multilayer p2p
networks,” In Proceedings of the 24th International
Conference on Distributed Computing Systems
(IDCS’04), 2004.

[17] S. Wang, L. Xiao, Y. Liu, and P. Zheng, “Dicas: An
efficient distributed caching mechanism for p2p
systems,” IEEE Transaction on Parallel and
Distributed Systems, 2006.

[18] A. Wierzbicki, N.Leibowitz, M.Ripeanu, and
R. Wozniak, “Cache replacement policies revisited:
The case of p2p traffic,” In Proceedings of the 2004
IEEE International Symposium on Cluster Computing
and the Grid, 2004.

