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ABSTRACT
In recent years, wireless sensor networks have been used in appli-
cations of data gathering and target localization across large geo-
graphical areas. In this paper, we study the issues involved in ap-
plying wireless sensor networks to search and rescue of lost hikers
in trails and focus on the optimal placement of sensors and access
points such that the cost of search and rescue is minimized. Partic-
ularly, we address two problems: a) how to identify the lost hiker
position as accurately as possible, i.e., obtain a small trail segments
containing the lost hiker; and (b) how to search efficiently in trail
segments for different trail topologies and search agent capabilities.
For the optimal access point deployment problem, we propose the-
oretical models that consider both efficiency and accuracy criteria
and present analytical results for simpler trail topologies. For com-
plicated graph topologies, we develop efficient heuristic algorithms
with various heuristics. After access point deployment is decided,
the actual cost of search in individual trail segment can be com-
puted. We analyze four different types of search and rescue agents,
present algorithms to find the optimal search pathes for each one
of them, and compute their search costs. The algorithms are de-
veloped based on solving Chinese Postman problems. Finally, we
present extensive experimental results to examine the accuracy of
the mathematical models and compare the performances of differ-
ent methods. A heuristic method, divide-merge, is shown to out-
perform all others and finds near-optimal solutions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent systems;
C.2.1 [Network Architecture and Design]: Distributed networks;
G.2.2.2 [Graph Theory]: Graph algorithms, Path and circuit prob-
lems
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1. INTRODUCTION
In recent years, wireless sensor networks have been applied to many
data gathering and target localization and tracking applications over
large geographical areas [8, 9].These sparsely deployed sensor net-
works maintain connectivity through the use of mobile agents that
help transfer data from sensors to access points so as to increase
communication bandwidth and reduce power consumption at sen-
sor nodes.

One representative example of sparse sensor networks is CenWits
(Connection-less Sensor-Based Tracking System UsingWit nesses),
which is proposed for search and rescue of subjects (e.g. people or
wild animals) in emergency situations in wilderness areas [8]. In
CenWits, each hiker wears a battery-powered small device (called
sensor nodes) with integrated computation, wireless communica-
tion, and positioning (via GPS) capabilities. Access points (APs)
are placed at popular locations like the trail heads/ends, intersec-
tions, scenic view points, or resting/camping areas. When two hik-
ers with their sensor nodes come close enough to establish a wire-
less communication, they store each other’s presence as a witness
record and also exchange previous witness records. When a hiker
with a sensor node enters the range of an AP, the presence of the
hiker is recorded. In addition, the sensor node uploads all its wit-
ness records to the AP. APs are connected to a processing center via
another long-range wireless network (e.g. a satellite network) so
that the witness information is transmitted to the processing center
to be used for various applications, such as search and rescue lost
hikers.

While it provides a general framework and prototype system, Cen-
Wits does not consider the optimization problem of minimizing the
search cost given a limited number of APs, or given the maximal
tolerated search cost, what is the minimal number of APs need in
a trail. This is important because the AP equipped with long range
(several miles) communication is much more expensive than a sen-
sor node, which make it unfeasible to deploy a dense AP network.

In this paper, we study several issues raised in the design of CenWits-
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Figure 1: A map for trails outside Boulder, Colorado.

like systems for finding lost hikers. Particularly, we address two
problems: a) how to identify the lost hiker position as accurately as
possible, i.e., obtain a small trail segments containing the lost hiker;
and (b) how to search efficiently in trail segments with different
topologies. The system is a multi-agent system in which hikers are
mobile agents. Together with APs, they form a dynamic and par-
tially connected network that supports cooperative agent tracking.
Furthermore, we propose methods for optimal search path planning
for a single or multiple search and rescue agents.

The paper is organized as follows. In Section 2, we present prob-
lem formulation. We define two objectives, search cost and location
uncertainty, and discuss their trade-offs. In Section 3, we solve the
AP placement problem based on the location uncertainty objective.
We derive theoretical results on simpler trail topologies and present
efficient heuristic algorithms for more complicated trail topologies.
In Section 4, we discuss four different types of search and rescue
agents, present algorithms to find the optimal search pathes for each
one of them given a trail segment, and compute their search costs.
In Section 5, we present experimental results to examine the accu-
racy of the mathematic models and compare the performances of
different methods. Finally, we discuss related work in Section 6
and summarize the paper in Section 7.

2. PROBLEM STATEMENT
A typical scenario of finding a lost hiker using the wireless sensor
network system is as follows. A hiker’s movement is recorded by
other hikers and APs as witness records. The lost case is assumed
to be non-moving accident, such as being injured, sick, or stuck,
along the trial. When a hiker is determined to be lost, e.g., based
on the time the hiker has not been witnessed, the hiker’s lost region
is decided based on the witness records for him, which is a trail
segment. One or more search and rescue agents are sent out to the
trail segment to find the lost hiker.

We represent the trails as a weighted undirected planar graphG =
(V, E) with vertices for intersections, edges for direct paths, and
edge weightsw(e), e ∈ E for distances. Letl denotes the total
weights of the graph wherel =

∑
e∈E w(e). Fig. 1 shows an

example of a trail map near Boulder, Colorado.

Supposem APs ({A1, A2...Am}) are deployed along the trails.
They divide the graph into non-overlapping subgraphs calledtrail
segments. A trail segment is bounded by APs and denoted by
Gi = (Vi, Ei), i ∈ [1, ms], wherems is the total number of trail
segments. Assuming the sensor network system can determine the
hiker’s moving direction. Once a hiker passes an AP, we know
which trail segment he is entering and thus the location estimate is

Figure 2: An example of AP placement in a trail graph. The
three squares represent APs.

narrowed down to the trail segment rather than the entire trail map.
An example is shown in Fig. 2 with two trail segments{(A1, b)
(b, c) (b, d) (c, d) (c, A2)} and{(A2, f) (f, e) (f, g) (g, A3)}.

The probability of a hiker getting lost in a trail segment can be
derived as follows. Letwi, i ∈ [1, ms] denotes the total weight of
Gi. Suppose the hiker has an equal chance to get lost at any point
along the trail, i.e., the lost probability is uniform in the trails. Let
p(Gi) be the probability of a hiker being lost in segmentGi, we
have

p(Gi) =
wi

l
(1)

Let c(Gi) denotes the search and rescue operation cost function in
Gi. The expected search cost of all trail segments is

C =

ms∑
i=1

p(Gi)c(Gi) =

ms∑
i=1

wi • c(Gi)

l
(2)

Thus, the problem of deploying APs such that the expected cost of
finding a lost hiker is formulated as follows:

min C subject to
ms∑
i=1

wi = l (3)

Under different scenarios, we may have different definitions ofc(Gi).
For example, some applications ask for minimizing the average
search cost, whereas others may impose a maximal search cost it
can afford. We use expected search costcE(Gi) for the first case
and maximal search costcM (Gi) for the second case. IfGi is
as simple as a single edge, the expected search cost and maximal
search cost is simplycE(Gi) = wi

2
andcE(Gi) = wi. However,

for a trail segment of a general graph, depending on how the differ-
ent search agents operate, such as ground vs. air, the search costs
will be different and computing their exact costs can be expensive.
We address the issues in more details later in Section 4.

To simplify the problem, we use another metric,location uncer-
tainty, in place of the search costC, which can be computed in
linear time. LetYi denote the location at which the hiker is lost in
trail segmentGi. Let σi be the standard deviation ofYi. Assume
Yi follows a uniform distribution, we have

σi =
1

2
√

3
wi (4)

Location uncertainty,U , is defined based on the expected value of



the standard deviation

U =
√

3E(σi) (5)

Now, the new objective is to find an AP placement that minimizes
U . Specifically, we solve the following problem

min U subject to
ms∑
i=1

wi = l (6)

In our approach of solving the AP deployment problem, i.e., plac-
ing APs so that the expected cost of finding a lost hiker by a par-
ticular type of search and rescue agent is minimized, we divide the
problem into two simpler sub-problems: solving Eq. (6) and then
minimizingcE(Gi) andcM (Gi) for a given trail segmentGi. This
approach is much more efficient than solving the original problem
in Eq. (3) directly, which requires expensive calls to compute either
cE(Gi) or cM (Gi). In contrast,U can be computed efficiently and
also enables theoretical analysis. Empirically, the results of using
U are very close to those of usingC, as shown in our experimental
results in Section 5.

3. ACCESS POINT PLACEMENT
Based on the trail structure, we divide the problem into two cate-
gories: a simple edge or a graph. The single hiker case is investi-
gated first, followed by the multiple hikers case.

3.1 Trails of a single path
We start with a simple case: a single path with two trail headsA1

andAm. Let the trail bel miles. m APs (A1, A2, . . . , Am) are
depolyed along the trail. To determine whether it contains a hiker,
each trail segment needs two APs on its two end points. Therefore,
with two AP deployed on the two trail heads,ms = m− 1. From
Eqs. (4) and (1), we have

U =
√

3E(σi) =
√

3

ms∑
i=1

σip(Gi) =
1

2l

ms∑
i=1

w2
i (7)

From Eq. (7) and by means of Lagrange function, we can solve
the optimization problem in Eq. (6). The location uncertaintyU
has the minimal value if and only ifwi = l

ms
for all i ∈ [1, ms].

Therefore, in a single path scenario, the optimal solution is to place
the access points evenly along the trail.

3.2 Trails of a graph
For a trail segmentGi with total lengthwi, we have

σi =
wi

2
√

3
=

∑
e∈Ei

w(e)

2
√

3
, p(Gi) =

wi

l
=

∑
e∈Ei

w(e)

l
(8)

The uncertaintyU is

U =
1

2l

ms∑
i=1

w2
i =

1

2l

ms∑
i=1

(
∑
e∈Ei

w(e))2 (9)

Let F = {wi|i ∈ [1...ms]}, then

V ar(F ) = E(w2
i )− (E(wi))

2 =

∑
w2

i

ms
− (

∑
wi

ms
)2 (10)

Thus, we can simplifyU as

U =
ms

2l
E(w2

i ) =
msV ar(F )

2l
+

l

2ms
(11)

When the number of APs,m, is given, ifms is fixed (like a single
path wherems = m−1), U is minimal whenV ar(F ) = 0, which
means the APs are placed at the same interval. However, whenms

is not fixed, seeking a even placement may not result in an optimal
solution. Generally speaking, a closed form solution does not exist
for Eq. (11), and we can only use computational methods to find
the optimal solution. The optimal solution balances betweenms

andV ar(F ).

For graph topologies, we propose a two-phase method to solve the
AP placement problem. In the first phase, the optimal solution of
deploying APs on a subset of the vertices is sought; In the second
phase, the solution is improved by allowing the APs to be moved
to edges. The method is presented in the next two sub-sections.

3.3 AP placement on vertices
The objective is to find a subsetV ′ of m vertices withinV that par-
titions G into ms disjoint subgraphs such that the value of Eq. (9)
is minimal. Enumerate all combinations requiresO(|V | • C

|V |
m )

time. Here, we present four efficient methods:

1) Local Search. It minimizesU via a typical local search tech-
nique. It starts with a random AP placement such thatA1, A2...Am

are at distinct vertices. At every iteration, it tries to move one AP
to a neighboring vertex with the maximal reduction on the uncer-
tainty U . It stops as soon as it reaches a local optimal. The time
complexity isO(|V |2). In our experiments, we observed that the
search space ofU is very rugged with many local minimal. Thus,
the performance of local search is not very good.

2) Min-max Local Search. It tries to minimizemax(wi). The
search space ofmax(wi) is smoother and the local search algo-
rithm usually runs more iterations than method 1 (7.5 vs. 1.8 on
average on our test cases). In addition, it also helps to reduce
V ar(F ), which is proportional toU according to Eq. (11). It usu-
ally finds better solutions than method 1. The time complexity is
O(|V |2).

3) Divide and Merge Algorithm. It starts with a full AP placement
where each vertex has an AP. At every iteration, it removes an AP
that results in the minimal increase ofU . After |V | −m iterations,
it stops with a solution ofm APs. The time complexity isO(|V |2).

4) Hyper-edge K-partitioning (HKP) Algorithm. The graph par-
titioning problem, in general, is studying how to achievek balanced
partitions and the total number of edges connecting any two adja-
cent partitions is minimal. We exchange the vertices and edges in
the trail map so that we can adopt existing algorithms. The trans-
formed graph is no longer a simple graph and therefore we need to
use the algorithms designed for hypergraph.

We first transform the trail mapG into a hyper graphGh = (V h, Eh)
where the vertices and edges are exchanged, and the weight of the
vertices inGh are the edge weight inG. Let |Eh

c | denotes the to-
tal number of edges connecting any two adjacent partitions. The
problem becomes

min |Eh
c | subject to∀i ∈ [1...ms] wi ≤ α • l

k
(12)
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Figure 3: An example of moving an AP,A3, from a vertex to an
edge point,A′3.

wherel is the total weight ofGh, wi is the weight of partitionGh
i ,

andα is a tolerance factor usually set to 1.05.

Next, we use the algorithm proposed in [10] based on greedy graph
growing partitioning to obtain the partition on the transformed graph.
The algorithm starts with|V h| partitions each of which containing
only one vertex of the hypergraph. At every iteration, the algo-
rithm selects a random partitions whose size is smaller thanα • l

k
and joins the partition with an adjacent partition that results in the
minimal increase or maximal decrease in|Eh

c |. Usuallyt multiple
trails are need to obtain a reasonable good solution butt ¿ |V h|
([11]). The algorithm requiresO(t • |V h|2) tries where|V h| is
the number of vertices in the hypergraph. Because the original trail
graph is planar,we have|V h| = O(|V |), and because each try calls
the subroutine of computingU whose time complexity isO(|V |),
the overall complexity isO(|V |3).

Finally, we exchange the vertices and edges again to get the AP
placement on the original trail map.

3.4 Edge refinement - moving APs to edges
The solution of any of the methods presented in the last sub-section
restricts the placement of APs to vertices. In this section, We im-
prove the solution by moving APs onto edges.

Given an initial placement of APs, consider an AP,Ai ∈ V , and the
setΩ of all adjacent trail segments{Gj = (Vj , Ej)| Vj ∩ {Ai} 6=
φ}. We have

W =
∑

Gj∈Ω

∑
e∈Ej

w(e) (13)

Assume we can improve the solution by movingAi to one of the
adjacent trail segmentGj . Let G′ denotes the trail segment en-
closed by the newAi position and the original position. An exam-
ple is shown in Fig. 3. Letwj =

∑
e∈Gj

w(e), w′ =
∑

e∈E′ w(e)

andk = |Ω|. When we moveAi to one edge, there are two and
only two trail segments adjacent toAi’s new position. LetG0 and
G1 denotes the two new trail segments with weightsw0 andw1,
respectively. The uncertainty of the new placement is

U ′ =
1

2l
(w0+w1) =

1

2l
[(

∑

x∈{1...k}−{j}
wx +w′)2+(wj−w′)2],

(14)

whereas the uncertainty of the original placement is

U =
1

2l

∑

x∈{1...k}
w2

x (15)

The difference between the new placement and the original place-
ment is

∆U = U ′−U =
1

2l
(w′2+(W−2wj)w

′+
x,y∈{1...k}−{j}∑

x6=y

wxwy)

(16)

Take the derivative of Eq. (16) and set it to 0, we can compute the
w′ value for the minimal uncertainty (if exists), which is

w′ = wj − W

2
for wj ≥ W

2
(17)

There are two important properties of the new placement found by
Eq. (17): the new placement is both half-divided and unique. They
are important in proving the correctness of the algorithm. (The
proofs are omitted due to the space limit.)

THEOREM 3.1. For a subgraphG− of G composed of an ac-
cess pointv and its adjacent trail segments, the new location of ac-
cess pointv′ found by Eq. (17) dividesG− into two equal graphs
G−1 , G−2 with w(G−1 ) = w(G−2 ) wherew(Gx) is the sum of all
edge weights of graphGx. We say thatv′ half-dividesthe graph
G−.

THEOREM 3.2. There is at most one new placement found by
Eq. (17). The solution isunique.

According to Theorem 3.1, the new location can be determined
by examining whether there is a place that half-divides the trail
segment. In addition, Theorem 3.2 guarantees the new placement
we found is unique and local-optimal.

The algorithm is developed based on the theorems is as follows.

1. Start with an initial placement.

2. At every iteration, move one AP in order to achieve the max-
imal reduction in the overall uncertainty.

3. Stop when no further improvement is possible.

In practice, the improvement quickly becomes insignificant after a
few iterations. Thus we set the maximal number of iterations to be
relatively small, e.g., 10.

3.5 Multiple Hikers
When there are multiple hikers coming across each other, they pro-
vide more location information of each other. Letx be the number
of other hikers that a hikerh runs into before he gets lost. For a
single path trail, if the hikers are randomly distributed in the trail,
then the average uncertainty of the lost hiker location is

U =
l

ms + x + 1
(18)



For graph topologies, it is

U ≈ l

ms + ms
m
• x

(19)

The detailed derivations are omitted due to space limit.

Given the expected number of hikers on each trail segment, we use
Eq. (19) with local search techniques to improve the AP placement
solution found in the single hiker case. The result is that fewer APs
are deployed in trail segments containing more hikers and more
APs in the ones with fewer hikers to achieve smallerU .

4. SEARCH AND RESCUE
Once an AP placement solution is found and the trail segment con-
taining the lost hiker is identified, search and rescue agents are sent
to find the lost hiker with the lowest cost, e.g., shortest amount of
time. The problem of minimizing the maximal or expected search
cost is equivalent to finding an optimal search path in a graph. Let’s
take a look of the following four types of search and rescue (SaR)
agents that result in different definitions of the search cost.

1. A single ground SaR agent (S-GSA): A single rescue team
using a ground vehicle capable of traveling along the trails
only.

2. Multiple ground SaR agents (M-GSA): A number of ground
rescue teams perform the SaR mission separately.

3. A single air SaR agent (S-ASA): A single rescue team us-
ing an aerial vehicle capable of traveling along the trails and
jumping from one trail branch to another.

4. Multiple air SaR agents (M-ASA): Several air SaR agents
operate separately.

The SaR mission consists of two steps. First, the agents take a
shortest path to the trail segment. Then they take the shortest search
trajectory based on their capabilities to scan through all the edges
belonging to trail segment.

4.1 Single ground SaR agent (S-GSA)
In the worst case, a single ground SaR agent travels all edges of the
trail segmentGi at least once and the cost is:

cM (Gi) = c′(P ) +
∑
e∈Ei

n(e)c(e) (20)

whereEi is the set of all edges inGi, n(e) is the times an edge
is visited,c(e) is the cost to search the edge, andc′(P ) is the cost
to travel toGi along shortest pathP . AssumeP is fixed, then
this problem is a Chinese Postman Problem (CPP) [12] on an undi-
rected graph. There exist polynomial time algorithms to find the
optimal solution. Letwi denotes the total weight ofGi. The maxi-
mal travel length is betweenwi (whenGi is an Euler tour) and2wi

(whenGi is a tree).

While the CPP algorithm helps to minimize the maximal search
cost by constructing an Euler path, minimizing the expected search
cost is more important in practical sense. In order to compute the
expected search costcE(Gi), we categorize the traveled path inGi

into two types: tour segments and redundant segments. A tour seg-
ment is a path(e1, e2, ..., en) whose edges have not been visited
before. A redundant segment is a path whose edges have all been
visited for at least once. For simplicity, we use the edge weight
as the search cost in the rest of the discussion. The total weight
of all tour segments iswi and the total weight of all redundant
segments represents the overhead cost. Letlt, (t = 1, ..., n) de-
notes then tour segments. Letrj , (j = 1, ..., (n− 1)) denotes the
n − 1 redundant segments. The search path is a sequence of seg-
ments alternating between tour segments and redundant segments
(l1, r1, l2, r2, ..., rn−1, ln). Let w(lt) denotes the weight of tour
segmentlt andw(rj) denotes the weight of redundant segmentrj ,
the expected search cost when the lost hiker is found in tour seg-
mentlt is

cE(lt) = c′(P ) + W b(lt) +
w(lt)

2
(21)

whereW b(lt) =
∑t

j=2 (w(lj−1) + w(rj−1)) is the total weights

of the path traveled before reaching the tour segmentlt, and w(lt)
2

is the expected search distance in segmentlt. Let p(lt) denotes
the probability of a hiker being lost in segmentlt. Assumep(lt)
follows uniform distribution inGi,

p(lt) =
w(lt)

wi
(22)

Therefore, the expected search cost inGi is

cE(Gi) =

n∑
t=1

p(lt)c
E(lt) (23)

= c′(P ) + 0.5wi +

n∑
t=1

w(lt)

wi
[

t∑
j=2

w(rj−1)] (24)

The detailed derivation is omitted due to space limit.

WhenGi is an Euler path and we start from an end point, we only
have one tour segment andcE(Gi) = c′P + 0.5wi.

We propose a heuristic method to reduce the expected search cost
that performs a greedy walk on the Euler graph found by the CPP
algorithm. The method always chooses unvisited edges when pos-
sible. This is based on the observation from Eq. (24) that the early
tour segments have less previous redundancy

∑t
j=2 w(rj−1) and

the increase of their lengthes results in higherp(lk) = w(lt)
wi

. Fur-
ther improvements can be made by a local search process that ex-
changes edges between adjacent tour segments and redundant seg-
ments. Our experimental data show that the heuristic method out-
performs the classic Fleury’s algorithm with respect to achieving
lower expected search cost.

4.2 Multiple ground SaR agents (M-GSA)
With multiple search agents, the problem becomes Min-Max k-
Chinese Postman Problem (MM k-CPP), in whichk, k ≥ 2, post-
men have to search the graph with a search cost for each edge and
the maximal search cost for any agents is minimal, which is given
by

cM (Gi) = c′(P ) + max
x=[1...k]




∑

e∈E
T (x)
i

n(e)w(e)


 (25)



whereE
T (x)
i is the set of edges travelled by agentx in Gi. A

solution can be found using a fairly recent algorithm [1] that utilizes
the principle of tabu search.

The expected search cost for M-GSA is

cE(Gi) = c′(P ) +
wi

2
+ max

x=[1,...,k]

(
nx∑
t=1

w(lxt )

wi
[

t∑
j=2

w(rx
j−1)]

)

(26)

wherelx1 , ..., lxnx andr1, r2, ..., rnx−1 are thenx tour segments and
the (nx − 1) redundant segments traveled by agentx, respectively.
We use the same greedy heuristic method as in the single ground
SaR agent scenario to plan the search trajectory.

If we have very large number of ground SaR agents to search every
branches in parallel, then breath-first search (BFS) optimizes both
maximal and expected search cost. Assume BFS starts from vertex
u. We have the search cost

cM (Gi) = c′(P ) + w(Li,u) (27)

whereLi,u is the longest path inGi starting fromu. If Gi is a tree,
w(Li,u) simply represents the height of the tree. IfGi contains at
least one cycle, the search may end at the middle of some edge. For
example, ifGi is a simple cycle, there are two branches atu and
the two search agents separate and meet again when they all travel
wi
2

distance. The final meeting point may be in the middle of some
edge and in this special case,w(Li,u) = wi

2
.

The expected travel time of BFS is

cE(Gi) = c′(P ) + 0.5w(Li,u) (28)

Whenu is fixed, we use BFS to findw(Li,u) and the algorithm
runs in linear time (O(|Ei|)) whereEi is the set of edges inGi.

4.3 Single air SaR agent (S-ASA)
The problem of minimizing the search cost of a S-ASA is quite
similar to that of a single ground agent except that a S-ASA is ca-
pable of crossing from one trail to another. Assume the crossing
is only allowed between any two vertices, then we can transform
the problem to classic Rural Postman Problem (RPP) by adding
dummy edges in the originalGi to obtain the complete graphKi.
We categorize the edges inKi into required edge setEKi+, whose
edges have a corresponding edge inGi, and non-required edge set
EKi−, whose edges are all dummy edges. The objective of RPP is
to visit all edges inEKi+ with the minimal cost, which is

cM (Gi) = c′(P ) +
∑

e∈ET
i

n(e)w(e) (29)

whereET
i is the set of all edges (include dummy edges) traveled.

Eq. (29) can be computed using existing algorithms, such as the
one based on local search in [5].

In order to compute the expected search cost, we re-define a redun-
dant segment as a path whose edges have either been visited before
or are dummy edges inEKi−. The expected cost is given by

cE(Gi) = c′(P ) +
wi

2
+

n∑
t=1

w(lt)

wi
[

t∑
j=2

w(rj−1)] (30)

which is similar to Eq. (24). The method proposed for S-GSA can
also be applied here.

4.4 Multiple air SaR agents (M-ASA)
Performing the same graph transformation onGi as in single air
SaR agent, we can solve the problem as the Min-Max k-RPP. The
maximal cost and the expected cost follow the same definition as
in Eq. (25) and Eq. (26). Solving the problem of minimizing
maximal search cost is similar to solving the MM k-CPP in the
sense that they both use local search techniques to obtain solutions
based on heuristics for a single agent case. We use the same greedy
method as for the other scenarios to find a search path with minimal
expected cost.

5. EXPERIMENTAL RESULTS
In the first set of experiments, we show that the objective of location
uncertaintyU is a good approximation to the real search costC as
in Eq. (2). Random trail maps are generated by placing 10 vertices
randomly inside a square region of size50 × 50. Nearby vertices
are first connected by edges with the lengthes uniformly distributed
in region(0, 5). When two edges cross over, one is selected to be
removed probabilistically. The result is a connected planar graph
with the maximal node degree no more than 5. For the single hiker
and single ground SaR agent case, we ran different algorithms with
varying number of access points. Each data point is the average of
30 runs of random instances.

Using the results of the divide-merge (DM) algorithm, Fig. 4(a)
compares their location uncertainty valueU , half of the maximal
search costCM/2, and the mean search costCE . U is a lower
bound ofCM/2 andCE since it does not include the redundant

search segments.U = CE = CM

2
if and only if the non-redundant

trail segments form an Euler path. All three curves show the same
decreasing trend as the number of access points increases. This is
because more APs divide the trails into more trail segments.

Using the results of divide-merge (DM) and min-max local search
(MMLS), we again show thatU is effective and its values are very
close to those ofCM/2 andCE as in Fig. 4(b). The y-axis is the
normalized difference between the MMLS results and the corre-
sponding DM results:

y =
QMMLS −QDM

QDM
(31)

whereQMMLS denotes the average value of MMLS results from
30 runs andQDM denotes that of DM. As we can observe from the
figure, the three performance metrics show similar increasing trend
toward 5, which is half of the total vertex number|V |, and start to
decrease afterwards. When the number of access pointsm is larger
than 70% of|V |, the two algorithms show little difference for all
the three metrics. In the rest of the experiments, we useU as the
performance metric for its simplicity and efficiency.

In the next set of experiments, we compare the results of five al-
gorithms: divide-merge (DM), local search (LS), min-max local
search (MMLS), the optimal solution of placing APs on vertices
only, and the divide-merge with refinement (DMR). The first four
algorithms restrict the placement of APs to vertices, whereas the
last one can place APs on edges.

Fig. 4(c) shows the location uncertainty values of the results found
by the five algorithms for different number of access points. Local
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Figure 4: (a) Comparison of values of three difference metrics,U , MAX(C)/2, andE(C), on the solutions of DM. (b) The differences
of U , MAX(C)/2, and E(C) values between MMLS and DM normalized over DM solutions, respectively. (c) Comparison of four
methods for placing AP on vertex and DM with edge refinement that allows APs being placed on edges. (d) Comparison of DM
without and with edge refinement of different iterations. (e) Comparison of DM, HKP, and HKP with hyper edge refinement.

search is the worst, while the others are similar. Between the two
local search algorithms, MMLS achieves better solution by reduc-
ing the variance of the edge lengths of all trail segments (V ar(F )
in Eq.(11)) and producing a smoother search landscape that allows
more hill-climbing iterations (7.5 iterations of MMLS vs. 1.8 iter-
ations of LS on average).

The solutions of DM and MMLS are very close to the optimal so-
lutions and DM is slightly better. Furthermore, DM is scalable and
runs the fastest, very fast even when the number of vertices is large.
In addition, the data shows a trend that the more APs deployed,
the lower the location uncertainty is. The curves become flat after
m ≥ 70%×n. It corresponds to the percentage of the deploying an
AP on a degree 1 vertex will not reduce the uncertainty because it is
already the boundary of a connected component. To the contrary,
if we relax the constraint of vertex-only, the AP on the 1-degree
vertices can be moved to achieve lower uncertainty. This is why
the curve of the solutions with edge refinement by DMR continue
to improve afterm = 7.

The benefit of edge-refinement in DMR is significant when the
number of APs is large, as shown in Figs. 4(c) and 4(d). In Fig. 4(d),
the solutions of DM and DMR with different iterations (1, 10, or
20) are normalized over the corresponding optimal vertex-only so-
lutions. The data shows that DMR improves DM even with only
one iteration. Running the edge-refinement for 10 iterations is sig-
nificantly better than running for one iterations, but is almost the
same as running for 20 iterations. When the number of APs is
over 5, DMR achieves solutions better than the optimal solutions
of vertex-only placement.

Finally, we compare divide-merge (DM) with the hyper-edge k-
partitioning algorithm (HKP) and HKP with Hyperedge Refine-
ment (HER). We implement the hyperedge refinement technique
presented in [10], which is one of the two widely used refinement
methods in hyper-graph partitioning problem (The other one is the
FM algorithm [3]). We choose HER for its simplicity and good
performance.

Random trail graphs in larger square regions with size150 × 150
and 30 vertices were used in the experiments. The lengths of the
edges are still in region(0, 5). For different number of partitions
(k = 1, ..., 10), HKP or HKP+HER returns the smallest number of
APs it needs to achieve the partition. Using the same number of
APs, DM returns its solution. Then we compare the location un-
certainty of their solutions. Fig. 4(e) shows that DM is consistently
better than HKP+HER, which in turns is better than HKP.

6. RELATED WORK
(1) Access point placement.The graph partitioning problem is de-
fined as to divide the graph intok roughly equal disconnected sub-
graphs, such that the number of edges (or the sum of the edge costs)
between different parts are minimized. It has been a popular issue
in the field of scientific computing, VLSI design, and task schedul-
ing. It is known NP-complete but many approximation algorithms
have been proposed to find a reasonable good solution. One class
of the algorithms is called the spectral partitioning [6], which are
quite expensive. Another class uses the geometric information of
the graph (if the coordinates of the vertices are known) [13]. The
geometric methods usually run faster than the spectral method but



the solution is usually worse. The third class of methods is called
the multilevel method. It first reduces the size of the graph (usu-
ally by collapsing the vertices and edges to yield a smaller graph),
then finds a solution in the reduced graph and finally maps the solu-
tion to the original graph. The phase of mapping the solution back
is also referred as uncoarsen phase when a refinement is usually
adopted [11, 7]. The multilevel approach usually provides better
solution than spectral methods at lower cost [15].

(2) Search and rescue path planning.The problem can be for-
mulated as the Chinese Postman Problem (CPP) on an undirected
graph [12]. It tries to solve the problem on how to travel all graph
edges with the minimal travel distance. A polynomial time optimal
algorithm is available [2]. Another problem related to CPP is Ru-
ral Postman Problem (RPP) [14], where some of the edges are not
required to be visited. The edges are divided to two sets, required
or non-required. The objective becomes finding a shortest tour that
travels the required edges. The problem is proven to be NP-hard
[14]. Recently some heuristic methods based on either local search
or Monte Carlo principles are proposed for RPP[5, 4].

7. CONCLUSION
In this paper, we study the problem of search and rescue (SaR) of
lost hikers along trails with the help of wireless sensor networks.
The goal is minimizing the expected or maximal search cost. We
address the problem by dividing it into two simpler problems. First,
we present theoretical analysis and propose efficient algorithms to
the optimal AP placement problem. This helps to reduce the search
and rescue operation to one trail segment. Then we analyze dif-
ferent SaR scenarios and propose methods to minimize the search
cost. The maximal search cost is minimized using existing Chinese
Postman Problem algorithms and the expected search cost is min-
imized using a new heuristic method. In simulation, we compare
different algorithms and show that the solution quality obtained by
an efficient heuristic method, divide-merge, are very close to the
optimal solution.

In the future work, we plan to study the SaR operations where
more than one type of SaR agents present. It is interesting be-
cause heterogenous SaR agents present both different search costs
and search gains (e.g. the probability an agent will discover the lost
subjects when they are in its sight). Furthermore, we plan to study
the case of unknown hiking direction in the optimal AP placement
problem. It presents challenges both in that a trail segment is not
closed any more and in that the missing probability is no longer
uniform along the trail.
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