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ABSTRACT General Terms

In recent years, wireless sensor networks have been used in appliAlgorithm; Design

cations of data gathering and target localization across large geo-

graphical areas. In this paper, we study the issues involved in ap- Keywords

plying wireless sensor networks to search and rescue of lost hikerSSearch and rescue; Mobile agent; Wireless sensor network; Graph
in trails and focus on the optimal placement of sensors and accessyartitioning; Chinese postman problem

points such that the cost of search and rescue is minimized. Partic-

ularly, we address two problems: a) how to identify the lost hiker 1 INTRODUCTION

pOS‘“F’r! as accurately as possible, i.e., obtain a sme_lll_trail sggme_ntsm recent years, wireless sensor networks have been applied to many
containing the .lOSt hlker,_ and (b) hOW to search efiiciently in _“_6?" data gathering and target localization and tracking applications over
segments f_or different trall_topologles and search agent capabilities. large geographical areas [8, 9]. These sparsely deployed sensor net-
For _the optimal access po_mt dep"’ym.er.” problem, we propose th.e'works maintain connectivity through the use of mobile agents that
oretical models that consider both efficiency and accuracy criteria help transfer data from sensors to access points so as to increase

ar_ld present analytical _results for S|mpler_tr_a|| topolo_glgs. For_com- communication bandwidth and reduce power consumption at sen-
plicated graph topologies, we develop efficient heuristic algorithms sor nodes

with various heuristics. After access point deployment is decided,

the actual cost of search_ in individual trail segment can be com- One representative example of sparse sensor networks is CenWits
puted. We analyze four different types of search and rescue agems(Connection-lesselsor-Based Tracking System Usiwt neses),

p;ef]ent alg%nthms to f'nhd _the optlrr]nal searc_:rhh patlhes_frc])r each c(’jnewhich is proposed for search and rescue of subjects (e.g. people or
of them, and compute their search costs. The algorithms are de-y ;4 animals) in emergency situations in wilderness areas [8]. In

veloped based_on solvm_g Chinese Postman pro_blems. Finally, WeCenwits, each hiker wears a battery-powered small device (called
present extensive experimental results to examine the accuracy of,

h h cal model q h ; ¢ dift sensor nodes) with integrated computation, wireless communica-
the mathematica mode’s an Comp‘?‘r_e‘ € periormances of dilleryjqn - anqg positioning (via GPS) capabilities. Access points (APS)
ent methods. A heuristic method, divide-merge, is shown to out-

‘ I oth d find imal solut are placed at popular locations like the trail heads/ends, intersec-
perform all others and finds near-optimal solutons. tions, scenic view points, or resting/camping areas. When two hik-
ers with their sensor nodes come close enough to establish a wire-

Categories and Subject Descriptors less communication, they store each other’s presence as a witness
1.2.11 [Distributed Artificial Intelligence ]: Multiagent systems; record and also exchange previous witness records. When a hiker
C.2.1 Network Architecture and Design]: Distributed networks; with a sensor node enters the range of an AP, the presence of the
G.2.2.2 [Graph Theory]: Graph algorithms, Path and circuit prob-  hiker is recorded. In addition, the sensor node uploads all its wit-

lems ness records to the AP. APs are connected to a processing center via

" . ) another long-range wireless network (e.g. a satellite network) so
*\(/:eorgfgrrfgcg QZTe.Conference infoscale 2007 that the witness information is transmitted to the processing center
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Realization Point |

Figure 1. A map for trails outside Boulder, Colorado. Figure 2: An example of AP placement in a trail graph. The
three squares represent APs.

like systems for finding lost hikers. Particularly, we address two ) ] ]

problems: a) how to identify the lost hiker position as accurately as narrowed down to the trail segment rather than the entire trail map.

possible, i.e., obtain a small trail segments containing the lost hiker; AN €xample is shown in Fig. 2 with two trail segmer§A, b)

and (b) how to search efficiently in trail segments with different (b, ¢) (b,d) (¢, d) (c, A2)} and{(Az, f) (f,€) (f,9) (9, As)}-

topologies. The system is a multi-agent system in which hikers are - ) ] ) ]

mobile agents. Together with APs, they form a dynamic and par- The probability of a hiker getting lost in a trail segment can be

tially connected network that supports cooperative agent tracking. derived as follows. Letv;, i € [1, m,] denotes the total weight of

Furthermore, we propose methods for optimal search path planningGi- Suppose the hiker has an equal chance to get lost at any point

for a single or multiple search and rescue agents. along the trail, i.e., the lost probability is uniform in the trails. Let
p(G;) be the probability of a hiker being lost in segme&ny, we

The paper is organized as follows. In Section 2, we present prob- have

lem formulation. We define two objectives, search cost and location p(Gy) = Y (1)

uncertainty, and discuss their trade-offs. In Section 3, we solve the !

AP placement problem based on the location uncertainty objective.

We derive theoretical results on simpler trail topologies and present Let ¢(G;) denotes the search and rescue operation cost function in

efficient heuristic algorithms for more complicated trail topologies. G:. The expected search cost of all trail segments is

In Section 4, we discuss four different types of search and rescue me ms G

agents, present algorithms to find the optimal search pathes for each C = Z p(Gi)e(Gy) = E Lc(l) 2

one of them given a trail segment, and compute their search costs. =1 !

In Section 5, we present experimental results to examine the accu-

racy of the mathemayc models &_md compare the per_forman_ces OfThus, the problem of deploying APs such that the expected cost of

different met.hods. Flnallyz we d|§cuss related work in Section 6 finding a lost hiker is formulated as follows:

and summarize the paper in Section 7.

i=1

min C' subjectto w; =1 ©)
2. PROBLEM STATEMENT =1
A typical scenario of finding a lost hiker using the wireless sensor
network system is as follows. A hiker's movement is recorded by Under different scenarios, we may have different definitiong 6%, ).
other hikers and APs as witness records. The lost case is assumegtor example, some applications ask for minimizing the average
to be non-moving accident, such as being injured, sick, or stuck, search cost, whereas others may impose a maximal search cost it
along the trial. When a hiker is determined to be lost, e.g., based can afford. We use expected search Qd%(th) for the first case
on the time the hiker has not been witnessed, the hiker’s lost region agnd maximal search cost! (G;) for the second case. [f; is

is decided based on the witness records for him, which is a trail g5 simple as a single edge, the expected search cost and maximal
segment. One or more search and rescue agents are sent out to thesarch cost is simpIyE (Gz) — % anch(Gi) — w;. However,

trail segment to find the lost hiker. for a trail segment of a general graph, depending on how the differ-
) _ _ ent search agents operate, such as ground vs. air, the search costs
We represent the trails as a weighted undirected planar graph il be different and computing their exact costs can be expensive.

(V, E) with vertices for intersections, edges for direct paths, and We address the issues in more details later in Section 4.

edge weightsv(e),e € E for distances. Let denotes the total

weights of the graph where= %" _w(e). Fig. 1 shows an  To simplify the problem, we use another metriagation uncer-

example of a trail map near Boulder, Colorado. tainty, in place of the search cost, which can be computed in
linear time. LetY; denote the location at which the hiker is lost in

Supposem APs ({Ai, Az...An}) are deployed along the trails.  trail segments;. Let o; be the standard deviation &f. Assume

They divide the graph into non-overlapping subgraphs caitst Y; follows a uniform distribution, we have

segments A trail segment is bounded by APs and denoted by 1

G; = (Vi, Es), i € [1,ms], wherem, is the total number of trail 0f = —=W; (4)
segments. Assuming the sensor network system can determine the 2v3

hiker's moving direction. Once a hiker passes an AP, we know
which trail segment he is entering and thus the location estimate is Location uncertainty/, is defined based on the expected value of



the standard deviation

U = V3E(0;) (5)

Now, the new objective is to find an AP placement that minimizes
U. Specifically, we solve the following problem

min U subjectto» w; =1

i=1

(6)

In our approach of solving the AP deployment problem, i.e., plac-
ing APs so that the expected cost of finding a lost hiker by a par-
ticular type of search and rescue agent is minimized, we divide the
problem into two simpler sub-problems: solving Eq. (6) and then
minimizing c¢® (G;) andc™ (G;) for a given trail segment®;. This
approach is much more efficient than solving the original problem
in Eq. (3) directly, which requires expensive calls to compute either
c®(G;) or ™ (Gy). In contrast]J can be computed efficiently and
also enables theoretical analysis. Empirically, the results of using
U are very close to those of usiiig as shown in our experimental
results in Section 5.

3. ACCESS POINT PLACEMENT

Based on the trail structure, we divide the problem into two cate-

gories: a simple edge or a graph. The single hiker case is investi-

gated first, followed by the multiple hikers case.

3.1 Trails of a single path

We start with a simple case: a single path with two trail hedds
and A,,,. Let the trail bel miles. m APs (41, As, ..., A),) are
depolyed along the trail. To determine whether it contains a hiker,

each trail segment needs two APs on its two end points. Therefore,

with two AP deployed on the two trail heads,s = m — 1. From
Egs. (4) and (1), we have

U= \/gE(O'Z) = \/gf mp(G’z) = %fwf (7)
1=1 =1

From Eq. (7) and by means of Lagrange function, we can solve
the optimization problem in Eq. (6). The location uncertaibty
has the minimal value if and only if; = mi foralli € [1,mg].
Therefore, in a single path scenario, the optimal solution is to place
the access points evenly along the trail.

3.2 Trails of a graph
For a trail segmentr; with total lengthw;, we have

w; ZeEEi w(e) ZeeEi w(e)
g; = = P _—

23 23 l l

®)

The uncertainty/ is

1 X 1 = 2
U:ﬂ;wi :jZ(Zw(e))

©)

i=1 e€E;
Let F = {w;|i € [1...ms]}, then
Var(F) = B(u?) - (Bw)* = =2 — (=292 o)

Thus, we can simplify/ as

ms

21

msVar(F) l

U= 2 *om

B(w?) =

11

K]

When the number of APsy, is given, ifm is fixed (like a single
path wherens = m—1), U is minimal whenV ar(F') = 0, which
means the APs are placed at the same interval. However, mben

is not fixed, seeking a even placement may not result in an optimal
solution. Generally speaking, a closed form solution does not exist
for Eg. (11), and we can only use computational methods to find
the optimal solution. The optimal solution balances betwegn
andVar(F).

For graph topologies, we propose a two-phase method to solve the
AP placement problem. In the first phase, the optimal solution of
deploying APs on a subset of the vertices is sought; In the second
phase, the solution is improved by allowing the APs to be moved
to edges. The method is presented in the next two sub-sections.

3.3 AP placement on vertices

The objective is to find a subskt of m vertices withinl” that par-
titions GG into m disjoint subgraphs such that the value of Eq. (9)
is minimal. Enumerate all combinations requi@$|V'| e C,‘X‘)
time. Here, we present four efficient methods:

1) Local Search. It minimizesU via a typical local search tech-
nique. It starts with arandom AP placement such thatA,... A,

are at distinct vertices. At every iteration, it tries to move one AP
to a neighboring vertex with the maximal reduction on the uncer-
tainty U. It stops as soon as it reaches a local optimal. The time
complexity isO(|V|?). In our experiments, we observed that the
search space df is very rugged with many local minimal. Thus,
the performance of local search is not very good.

2) Min-max Local Search. It tries to minimizemax(w;). The
search space ohaz(w;) is smoother and the local search algo-
rithm usually runs more iterations than method 1 (7.5 vs. 1.8 on
average on our test cases). In addition, it also helps to reduce
Var(F), which is proportional td/ according to Eq. (11). It usu-
ally fir12ds better solutions than method 1. The time complexity is
o(IV[).

3) Divide and Merge Algorithm. It starts with a full AP placement
where each vertex has an AP. At every iteration, it removes an AP
that results in the minimal increaself After |V | — m iterations,

it stops with a solution ofn. APs. The time complexity i© (|V|?).

4) Hyper-edge K-partitioning (HKP) Algorithm. The graph par-
titioning problem, in general, is studying how to achiévealanced
partitions and the total number of edges connecting any two adja-
cent partitions is minimal. We exchange the vertices and edges in
the trail map so that we can adopt existing algorithms. The trans-
formed graph is no longer a simple graph and therefore we need to
use the algorithms designed for hypergraph.

We first transform the trail ma@ into a hyper grapla” = (V" E™)
where the vertices and edges are exchanged, and the weight of the
vertices inG" are the edge weight i¥. Let |E"| denotes the to-

tal number of edges connecting any two adjacent partitions. The
problem becomes

l

min |[E| subject tovi € [1..m.] w; < e % 12)



13
12 Ag
A
1 ¥ ! i o
10 G
§ Y
9 © <G, A,
8 A, G7< o N
2
a>/N N
7 A, Gy
G, > E\
6 3 .
A3
5

Figure 3: An example of moving an AP, A3, from a vertex to an
edge point, A.

wherel is the total weight of3", w; is the weight of partitiorG?,
anda is a tolerance factor usually set to 1.05.

whereas the uncertainty of the original placement is

1

ze{l...k

(15)

2
Wy
}

The difference between the new placement and the original place-
ment is

zye{l...k}—{j}

>

TFY

AU=U-U= %(w/Q—F(W—?wj)w/—&-

Wy Wy )

(16)
Take the derivative of Eq. (16) and set it to 0, we can compute the
w’ value for the minimal uncertainty (if exists), which is

/

w:w]-f% forwjzg a7)

There are two important properties of the new placement found by
Eq. (17): the new placement is both half-divided and unique. They

Next, we use the algorithm proposed in [10] based on greedy graphare important in proving the correctness of the algorithm. (The
growing partitioning to obtain the partition on the transformed graph. Proofs are omitted due to the space limit.)

The algorithm starts withl”"| partitions each of which containing

only one vertex of the hypergraph. At every iteration, the algo-

rithm selects a random partitions whose size is smaller the

and joins the partition with an adjacent partition that results in the

minimal increase or maximal decreasd &'|. Usuallyt multiple
trails are need to obtain a reasonable good solution ket |V
([11]). The algorithm require®(t o |V"|?) tries where|V"| is

the number of vertices in the hypergraph. Because the original trail

graph is planar,we hay&"| = O(|V]), and because each try calls
the subroutine of computing’ whose time complexity i©(|V]),
the overall complexity i©(|V|?).

Finally, we exchange the vertices and edges again to get the AP

placement on the original trail map.

3.4 Edge refinement - moving APs to edges

The solution of any of the methods presented in the last sub-section
restricts the placement of APs to vertices. In this section, We im-

prove the solution by moving APs onto edges.

Given an initial placement of APs, consider an AR,c V', and the
set(2 of all adjacent trail segmen{sy; = (V;, E;)| V; N {A:} #

¢}. We have
W = Z Z w(e)

G,€QecE;

(13)

Assume we can improve the solution by movidg to one of the
adjacent trail segmern®;. Let G’ denotes the trail segment en-
closed by the newd; position and the original position. An exam-
ple is shown in Fig. 3. Lety; = Zeecj w(e), w =3 g w(e)
andk = |Q|. When we move4; to one edge, there are two and
only two trail segments adjacent #’s new position. LeG° and
G' denotes the two new trail segments with weightsandw’,
respectively. The uncertainty of the new placement is

>

ze{l..k}—{j}

;1 1 ,
U= o (w’+w') = S we+w')? 4 (w; —w')?],

(14)

THEOREM 3.1. For a subgraphG~ of G composed of an ac-
cess poinb and its adjacent trail segments, the new location of ac-
cess point’ found by Eq. (17) divide& ™ into two equal graphs
G1,G5 with w(GT]) = w(G5 ) wherew(G,) is the sum of all
edge weights of grapti’,. We say that’ half-dividesthe graph

THEOREM 3.2. There is at most one new placement found by
Eq. (17). The solution ignique

According to Theorem 3.1, the new location can be determined
by examining whether there is a place that half-divides the trail
segment. In addition, Theorem 3.2 guarantees the new placement
we found is unique and local-optimal.

The algorithm is developed based on the theorems is as follows.

1. Start with an initial placement.

2. Atevery iteration, move one AP in order to achieve the max-
imal reduction in the overall uncertainty.

3. Stop when no further improvement is possible.

In practice, the improvement quickly becomes insignificant after a
few iterations. Thus we set the maximal number of iterations to be
relatively small, e.g., 10.

3.5 Multiple Hikers

When there are multiple hikers coming across each other, they pro-
vide more location information of each other. Lebe the number

of other hikers that a hikek runs into before he gets lost. For a
single path trail, if the hikers are randomly distributed in the trail,
then the average uncertainty of the lost hiker location is

l

|7 —
ms+x+1

(18)



For graph topologies, itis into two types: tour segments and redundant segments. A tour seg-
! ment is a path(e1, ez, ..., €,) Whose edges have not been visited
s (29) before. A redundant segment is a path whose edges have all been
ms + 3 visited for at least once. For simplicity, we use the edge weight
as the search cost in the rest of the discussion. The total weight
The detailed derivations are omitted due to space limit. of all tour segments isv; and the total weight of all redundant
segments represents the overhead cost.l:L.ét = 1,...,n) de-
Given the expected number of hikers on each trail segment, we usenotes the: tour segments. Let;, (j = 1, ..., (n — 1)) denotes the
Eq. (19) with local search techniques to improve the AP placement 7 — 1 redundant segments. The search path is a sequence of seg-
solution found in the single hiker case. The result is that fewer APs Ments alternating between tour segments and redundant segments
are deployed in trail segments containing more hikers and more (I1,71, 12,72, ...,7n—1,1n). Letw(l;) denotes the weight of tour

APs in the ones with fewer hikers to achieve smaller segment, andw(r;) denotes the weight of redundant segment
the expected search cost when the lost hiker is found in tour seg-

4. SEARCH AND RESCUE mentl, is .
w(tt

Opge an AP pIaqemgnF solu.ti.on is found and the trail segment con- CE(lt) =cJ(P)+ Wt 4 (21)
taining the lost hiker is identified, search and rescue agents are sent 2

to find the lost hiker with the lowest cost, e.g., shortest amount of

time. The problem of minimizing the maximal or expected search \yherepy/bs) — St (w(lj—1) + w(rj—1)) is the total weights
cost is equivalent to finding an optimal search path in a graph. Let's fth h | é bef hing th gl
take a look of the following four types of search and rescue (SaR) of the path traveled before reaching the tour segmenind =,

agents that result in different definitions of the search cost. is the expe_c_ted sear_ch distgnce in _segmlgnu_et p(L) denotes
the probability of a hiker being lost in segmdnt Assumep(l;)

follows uniform distribution inG,

U=

o

1. A single ground SaR agent (S-GSA): A single rescue team w(ly)

using a ground vehicle capable of traveling along the trails p(l) = w; (22)

only.
2. Multiple ground SaR agents (M-GSA): A number of ground Therefore, the expected search costinis

rescue teams perform the SaR mission separately. n

E E
Gi) = l l 23

3. A single air SaR agent (S-ASA): A single rescue team us- (&) ;p( ver(l) (23)

ing an aerial vehicle capable of traveling along the trails and
jumping from one trail branch to another.

c'(P) + 0.5w; + Z wgt) [Z w(rj—1)](24)

4. Multiple air SaR agents (M-ASA): Several air SaR agents '
operate separately.
The detailed derivation is omitted due to space limit.

The SaR mission consists of two steps. First, the agents take awhenG; is an Euler path and we start from an end point, we only
shortest path to the trail segment. Then they take the shortest searchave one tour segment anfi(G;) = ¢/ P + 0.5w;.
trajectory based on their capabilities to scan through all the edges

belonging to trail segment. We propose a heuristic method to reduce the expected search cost
that performs a greedy walk on the Euler graph found by the CPP
4.1 Single ground SaR agent (S-GSA) algorithm. The method always chooses unvisited edges when pos-
In the worst case, a single ground SaR agent travels all edges of theP1€- This is based on the observation from Eq. (24) that the early
trail segment; at least once and the cost is: tour segments have less previous redundaﬁc;l2 w(rj—1) and
" ) the increase of their lengthes results in high@r,) = ““). Fur-
M(Gi) = (P)+ ) n(e)ele) (20) ther improvements can be made by a local search process that ex-
e€E; changes edges between adjacent tour segments and redundant seg-

ments. Our experimental data show that the heuristic method out-
performs the classic Fleury’s algorithm with respect to achieving

where E; is the set of all edges ify';, n(e) is the times an edge
lower expected search cost.

is visited,c(e) is the cost to search the edge, ah@P) is the cost
to travel toG; along shortest patt®. AssumeP is fixed, then .
this problem is a Chinese Postman Problem (CPP) [12] on anundi-4.2  Multiple ground SaR agents (M-GSA)

rected graph. There exist polynomial time algorithms to find the With multiple search agents, the problem becomes Min-Max k-

optimal solution. Letw; denotes the total weight ¢f;. The maxi- Chinese Postman Problem (MM k-CPP), in whicht > 2, post-

mal travel length is between; (whenG; is an Euler tour) an@w; men have to search the graph with a search cost for each edge and

(whengGj is a tree). the maximal search cost for any agents is minimal, which is given
by

While the CPP algorithm helps to minimize the maximal search

cost by constructing an Euler path, minimizing the expected search . ,

cost is more important in practical sense. In order to compute the " (Gi) =c(P) + ,nax > n(e)w(e) (25)
expected search cost (G;), we categorize the traveled pathdh T \eer™®



where EiT(“') is the set of edges travelled by agenin G,. A which is similar to Eq. (24). The method proposed for S-GSA can

solution can be found using a fairly recent algorithm [1] that utilizes also be applied here.
the principle of tabu search.

4.4 Multiple air SaR agents (M-ASA)

The expected search cost for M-GSA is Performing the same graph transformation@nas in single air
n? ot SaR agent, we can solve the problem as the Min-Max k-RPP. The
(@) =d(P)+ % +  max Z w(lf ) [Z w(ri )] maximal cost and the expected cost follow the same definition as
o=k \ (o Wi o in Eq. (25) and Eq. (26). Solving the problem of minimizing

(26) maximal search cost is similar to solving the MM k-CPP in the
sense that they both use local search techniques to obtain solutions
wherel?, ..., 1% andry, ro, ..., 7= _1 are then® tour segmentsand  based on heuristics for a single agent case. We use the same greedy
the (»* — 1) redundant segments traveled by agermespectively. method as for the other scenarios to find a search path with minimal
We use the same greedy heuristic method as in the single groundexpected cost.

SaR agent scenario to plan the search trajectory.
5. EXPERIMENTAL RESULTS
If we have very large number of ground SaR agents to search everyin the first set of experiments, we show that the objective of location
branches in parallel, then breath-first search (BFS) optimizes bothuncertaintyU is a good approximation to the real search ¢osts
maximal and expected search cost. Assume BFS starts from vertexn Eq. (2). Random trail maps are generated by placing 10 vertices
u. We have the search cost randomly inside a square region of si@ x 50. Nearby vertices
M o are first connected by edges with the lengthes uniformly distributed
7 (Gi) = (P) +w(Liu) @7 in region (0, 5). When two edges cross over, one is selected to be
removed probabilistically. The result is a connected planar graph
whereL; ,, is the longest path ifi; starting fromu. If G; is a tree, with the maximal node degree no more than 5. For the single hiker
w(L; ) simply represents the height of the treeGlf contains at and single ground SaR agent case, we ran different algorithms with
least one cycle, the search may end at the middle of some edge. Fowarying number of access points. Each data point is the average of
example, ifG, is a simple cycle, there are two branches:and 30 runs of random instances.
the two search agents separate and meet again when they all travel
%t distance. The final meeting point may be in the middle of some Using the results of the divide-merge (DM) algorithm, Fig. 4(a)

edge and in this special case(L; ) = 3. compares their location uncertainty vallUie half of the maximal
search cosC'™ /2, and the mean search casf’. U is a lower
The expected travel time of BFS is bound of C™ /2 and C* since it does not include the redundant
"(Gy) = ¢ (P) +0.5w(Li.u) (28) search segments] = C¥ = CTM if and only if the non-redundant

trail segments form an Euler path. All three curves show the same
decreasing trend as the number of access points increases. This is
Whenw is fixed, we use BFS to find)(L;,,) and the algorithm  pecause more APs divide the trails into more trail segments.
runs in linear time Q(| E;|)) whereE; is the set of edges i&¥;.
Using the results of divide-merge (DM) and min-max local search
4.3 Single air SaR agent (S-ASA) (MMLS), we again show thal/ is effective and its values are very
The problem of minimizing the search cost of a S-ASA is quite close to those o™ /2 andC* as in Fig. 4(b). The y-axis is the
similar to that of a single ground agent except that a S-ASA is ca- hormalized difference between the MMLS results and the corre-
pable of crossing from one trail to another. Assume the crossing Sponding DM results:
is only allowed between any two vertices, then we can transform Qs — Qo
the problem to classic Rural Postman Problem (RPP) by adding y= T Oom (31)
dummy edges in the origind¥; to obtain the complete grapk;.
We categorize the edgesk; into required edge sét%:*, whose
edges have a corresponding edgé&in and non-required edge set where@ s denotes the average value of MMLS results from

to visit all edges i+ with the minimal cost, which is figure, the three performance metrics show similar increasing trend
toward 5, which is half of the total vertex numbéf|, and start to
M(Gy) = (P) + Z n(e)w(e) (29) decrease afterwards. When the number of access poirgdarger
ceET than 70% of|V|, the two algorithms show little difference for all

the three metrics. In the rest of the experiments, wellises the
performance metric for its simplicity and efficiency.
whereE] is the set of all edges (include dummy edges) traveled.
Eq. (29) can be computed using existing algorithms, such as the|n the next set of experiments, we compare the results of five al-
one based on local search in [5]. gorithms: divide-merge (DM), local search (LS), min-max local
search (MMLS), the optimal solution of placing APs on vertices
In order to compute the expected search cost, we re-define a redunonly, and the divide-merge with refinement (DMR). The first four

dant segment as a path whose edges have either been visited beforgigorithms restrict the placement of APs to vertices, whereas the
or are dummy edges iB%¢~. The expected cost is given by last one can place APs on edges.

(@) =d(P)+ % + Z w(l_t) [Z w(rj_1)] (30) Fig. 4(c) shows the location uncertainty values of the results found

- Wi 5 by the five algorithms for different number of access points. Local
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Figure 4: (a) Comparison of values of three difference metricsl/, M AX (C) /2, and E(C), on the solutions of DM. (b) The differences
of U, MAX(C)/2, and E(C) values between MMLS and DM normalized over DM solutions, respectively. (¢) Comparison of four
methods for placing AP on vertex and DM with edge refinement that allows APs being placed on edges. (d) Comparison of DM
without and with edge refinement of different iterations. (e) Comparison of DM, HKP, and HKP with hyper edge refinement.

search is the worst, while the others are similar. Between the two Finally, we compare divide-merge (DM) with the hyper-edge k-
local search algorithms, MMLS achieves better solution by reduc- partitioning algorithm (HKP) and HKP with Hyperedge Refine-
ing the variance of the edge lengths of all trail segmeWts{ F) ment (HER). We implement the hyperedge refinement technique
in Eq.(11)) and producing a smoother search landscape that allowspresented in [10], which is one of the two widely used refinement
more hill-climbing iterations (7.5 iterations of MMLS vs. 1.8 iter- methods in hyper-graph partitioning problem (The other one is the
ations of LS on average). FM algorithm [3]). We choose HER for its simplicity and good
performance.
The solutions of DM and MMLS are very close to the optimal so-
lutions and DM is slightly better. Furthermore, DM is scalable and Random trail graphs in larger square regions with $iz@ x 150
runs the fastest, very fast even when the number of vertices is large.and 30 vertices were used in the experiments. The lengths of the
In addition, the data shows a trend that the more APs deployed, edges are still in regio(0, 5). For different number of partitions
the lower the location uncertainty is. The curves become flat after (k = 1, ..., 10), HKP or HKP+HER returns the smallest number of
m > 70% x n. It corresponds to the percentage of the deploying an APs it needs to achieve the partition. Using the same number of
AP on a degree 1 vertex will not reduce the uncertainty because itis APs, DM returns its solution. Then we compare the location un-
already the boundary of a connected component. To the contrary,certainty of their solutions. Fig. 4(e) shows that DM is consistently
if we relax the constraint of vertex-only, the AP on the 1-degree better than HKP+HER, which in turns is better than HKP.
vertices can be moved to achieve lower uncertainty. This is why
the curve of the solutions with edge refinement by DMR continue
to improve aftern = 7. 6. RELATED WORK
(1) Access point placemerithe graph partitioning problem is de-
The benefit of edge-refinement in DMR is significant when the fined as to divide the graph inforoughly equal disconnected sub-
number of APs is large, as shown in Figs. 4(c) and 4(d). In Fig. 4(d), graphs, such that the number of edges (or the sum of the edge costs)
the solutions of DM and DMR with different iterations (1, 10, or  between different parts are minimized. It has been a popular issue
20) are normalized over the corresponding optimal vertex-only so- in the field of scientific computing, VLSI design, and task schedul-
lutions. The data shows that DMR improves DM even with only ing. It is known NP-complete but many approximation algorithms
one iteration. Running the edge-refinement for 10 iterations is sig- have been proposed to find a reasonable good solution. One class
nificantly better than running for one iterations, but is almost the of the algorithms is called the spectral partitioning [6], which are
same as running for 20 iterations. When the number of APs is quite expensive. Another class uses the geometric information of
over 5, DMR achieves solutions better than the optimal solutions the graph (if the coordinates of the vertices are known) [13]. The
of vertex-only placement. geometric methods usually run faster than the spectral method but



the solution is usually worse. The third class of methods is called of the 19th conference on Design automatipages

the multilevel method. It first reduces the size of the graph (usu- 175-181, Piscataway, NJ, USA, 1982. IEEE Press.

ally by collapsing the vertices and edges to yield a smaller graph), . .

then finds a solution in the reduced graph and finally maps the solu- [4] G- G and L. G. Abranch and cut algorithm for the undirected
tion to the original graph. The phase of mapping the solution back rural postman problenMathematical Programming

is also referred as uncoarsen phase when a refinement is usually 87:467-481, 2000.

adopted [11, 7]. The multilevel approach usually provides better |51 G Groves and J. van Vuuren. Efficient heuristics for the rural

solution than spectral methods at lower cost [15]. postman problenORION 21(1):33-51, 2005.

(2) Search and rescue path planning.he problem can be for- [6] B. Hendrickson and R. Leland. An improved spectral graph
mulated as the Chinese Postman Problem (CPP) on an undirected  partitioning algorithm for mapping parallel computations.
graph [12]. It tries to solve the problem on how to travel all graph SIAM Journal on Scientific Computing6(2):452-469,
edges with the minimal travel distance. A polynomial time optimal 1995.

algorithm is available [2]. Another problem related to CPP is Ru- ) ] )
ral Postman Problem (RPP) [14], where some of the edges are not [7] B. Hendrickson and R. W. Leland. A multi-level algorithm
required to be visited. The edges are divided to two sets, required  for partitioning graphs. Iisupercomputingl995.

or non-requwed._ The objective becomes f|r_1d|ng a shortest tour that [8] J. H. Huang, S. Amjad, and S. Mishra. Cenwits: A

travels the required edges. The problem is proven to be NP-hard sensor-based loosely coupled search and rescue system using
[14]. Recently some heuristic methods based on either local search : :

or Monte Carlo principles are proposed for RPP[5, 4]. witnesses. IProceedings of ACM SenSy2005.

[9] P.Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and

7. CONCLUSION D. Rubenstein. Energy-efficient computing for wildlife
In this paper, we study the problem of search and rescue (SaR) of ~ tracking: design tradeoffs and early experiences with
lost hikers along trails with the help of wireless sensor networks. zebranet. IASPLOS2002.

The goal is minimizing the expected or maximal search cost. We [10]
address the problem by dividing it into two simpler problems. First,

we present theoretical analysis and propose efficient algorithms to

the optimal AP placement problem. This helps to reduce the search
and rescue operation to one trail segment. Then we analyze dif-[11] G. Karypis and V. Kumar. A fast and high quality multilevel
ferent SaR scenarios and propose methods to minimize the search scheme for partitioning irregular grapt®AM Journal on
cost. The maximal search cost is minimized using existing Chinese Scientific Computing20(1):359-392, 1998.

Postman Problem algorithms and the expected search cost is min-

imized using a new heuristic method. In simulation, we compare [12] M.-K. Kwan. Graphic programming using odd or even
different algorithms and show that the solution quality obtained by points.Chinese Math1962.

an efficient heuristic method, divide-merge, are very close to the [13] G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified

optimal solution. geometric approach to graph separator®roceedings of
the 32nd annual symposium on Foundations of computer
sciencepages 538-547, Los Alamitos, CA, USA, 1991.
IEEE Computer Society Press.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: Applications in VLSI
domain. Technical report, 1997.

In the future work, we plan to study the SaR operations where
more than one type of SaR agents present. It is interesting be-
cause heterogenous SaR agents present both different search costs
and search gains (e.g. the probability an agent will discover the lost [14] C. S. Orloff. A fundamental problem in vehicle routing.
subjects when they are in its sight). Furthermore, we plan to study Networks 4:35-64, 1974.

the case of unknown hiking direction in the optimal AP placement

problem. It presents challenges both in that a trail segment is not[15] A. Strehl.Relationship-baased Clustering and Cluster
closed any more and in that the missing probability is no longer Ensembles for High-dimensional Data MinirighD thesis,
uniform along the trail. University of Texa at Austin, 2002.
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