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ABSTRACT
Since sequential patterns may exist in multiple sequence
databases, we propose algorithm PropagatedMine+ to ef-
�ciently discover multi-domain sequential patterns. Prior
works have shown that algorithm PropagatedMine outper-
forms other methods. In this paper, by exploring lattice
structures, we develop algorithm PropagatedMine+ for prop-
agating. Note that the lattice structure provides some guide-
lines when mining sequential patterns in other domain data-
bases. Thus, exploiting the lattice structure devised could
further reduce the number of candidate patterns, thereby
improving the performance of mining sequential patterns
across multiple domain sequence databases. A comprehen-
sive performance study is conducted and experimental re-
sults show the scalability and the e¢ ciency of algorithm
PropagatedMine+.

1. INTRODUCTION
Existing sequential pattern mining algorithms [1][2][3] only

discover the sequential behavior (e.g., buying behavior) in
one domain, which are not su¢ cient. One would like to
discover sequential patterns across multiple domains. Such
a sequential pattern across multiple domain sequence data-
bases is referred to a multi-domain sequential pattern [4].
Consider a mobile computing environment, where mobile
users can access three services (i.e., location tracking ser-
vice, data searching service, and credit payment service) via
mobile devices and each service is referred to one domain
in this paper. Given a log of movements of a user from the
location tracking service, one would mine user moving pat-
terns referred to those areas in which the user frequently
travels. However, in order to re�ect the behavior of a user
in such environment, one would like to �nd more complex
sequential patterns across multiple domains, instead of only
the moving patterns. An example of a multi-domain se-
quential pattern is shown in Table 1, where a user stays at
area fAg, searches data items f1; 2g, and buys goods f�; �g;
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Location tracking (A) (B, C) (D)
Search (1, 2) (3, 4, 5) (6, 7)
Payment (�; �) () (�; �)

Table 1: An example of a multi-domain sequential
pattern.

then moves to area fB;Cg, searches data f3; 4; 5g, and buys
goods fg; and �nally moves to area fDg, searches data
f6; 7g, and buys goods f�; �g. Such a sequential pattern
consists of sequences across multiple domains and provides
more information to analyze user behaviors.

2. CHALLENGES
Table 2 depicts multiple domain sequence databases and

each domain sequence database is stored individually. No-
tice that time instance sequences represent the occurred
time slots for the corresponding sequences in each domain
sequence database. The prior work [4] has formulated the
problem of mining sequential patterns across multiple do-
main sequence databases. Therefore, the main challenge
is to discover sequential patterns across multiple sequence
databases without joining every domain sequence database
via time instance sequences.

3. ALGORITHM PROPAGATEDMINE+

The prior work in [4] developed algorithm Propagated-
Mine to propagate sequential patterns mined to other do-
main sequence databases. Though algorithm Propagated-
Mine is able to outperform other methods, the cost of prop-
agating sequential patterns could be further reduced. Thus,
in this paper, we propose algorithm PropagatedMine+. The
same to the work in [4], algorithm PropagatedMine+ con-
sists of two phases: the mining phase and the deriving phase.
In the mining phase, algorithm PropagatedMine+ utilizes
existing sequential pattern mining algorithms to discover se-
quential patterns in a starting domain and then propagates
time instance sets of only 1-sequences (referred to as atomic
patterns) to next domains. However, the sequential patterns
in the starting domain are represented as the lattice graph
structure to facilitate the generation of candidates and pro-
vide guidelines for mining multi-domain sequential patterns.
For example, assume that the starting domain is set to D1

in Table 2. Those sequential patterns mined are represented
as a lattice structure shown in Figure 1, where each node
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Domain database D1 Domain database D2
Id Time instance sequences Sequences Id Time instance sequences Sequences
s1 <(T1)(T2)(T3)(T4)> <(a)(b,c)(b,c,d)(e)> l1 <(T21)(T22)(T23)(T24)> <(1,2,5)(7)(2,3)(4,5,6)>
s2 <(T5)(T7)(T8)> <(a,b)(b,c)(c,e)> l2 <(T10)(T12)(T13)> <(1,6)(5)(9,10)>
s3 <(T10)(T12)(T13)> <(a,e)(h)(g,j)> l3 <(T5)(T7)(T8)> <(1,3)(2,4)(8)>
s4 <(T21)(T22)(T23)(T24)> <(a,b,f)(d)(b,c)(e,f)> l4 <(T1)(T2)(T3)(T4)> <(1,2)(2,3)(6)(4,5)>

Table 2: An example of multiple domain sequence databases

<(a)> <(c)><(b)> <(e)>

<(a)(b)> <(a)(c)> <(a)(e)>

<(a)(b,c)>

<(a)(b)(e)> <(a)(c)(e)>

<(a)(b,c)(e)>

<(b)(b)> <(b)(c)>

<(b,c)>

<(b)(e)>

<(b)(b,c)>

<(b)(b)(e)> <(b)(c)(e)>

<(c)(e)>

number of
elements=1

number of
elements=2

number of
elements=3

<(b)(b,c)(e)>

<(b,c)(e)>

Figure 1: A lattice structure for sequential patterns
in a starting domain (i.e., D1 in Table 2).

represents a sequential pattern and the linkages of nodes
(standing for intra-domain links) represent itemset relation-
ships. Furthermore, those nodes having the same number
of elements are further arranged level-by-level. Explicitly, it
can be seen in Figure 1 for the nodes with their number of
elements is 1, these nodes are put level-by-level in increasing
order of length of sequences.
De�nition 1 (Propagated table): Let M be a multi-

domain sequential pattern across k domain sequence data-
bases with TIS(M) = f< TS1 : l1 >;< TS2 : l2 >; :::; <
TSf : lf >g; where TSi is a time instance sequence and
li is the corresponding integer list. Assume that domain
Dt = fs1; s2; :::; smg, where si =< Xi

1; X
i
2; :::; X

i
e(ti)

> and
each sequence si has the corresponding time instance se-
quence, denoted as TSsi . When propagating time instance
sets of M to domain Dt, we could have a propagated table
de�ned as DtjjM = fXi

lj
j9TSsi and TSj 3 (TSsi = TSj)g.

For example, in Table 2, by propagating TIS(< (b) >)
to sequence database D2; we could have the propagated ta-
ble D2jj<(b)> shown in Table 3. After obtaining propagated
tables, we could mine frequent itemsets by association rule
mining algorithms. Then, those frequent itemsets could be
combined by the corresponding patterns propagated to gen-
erate multi-domain sequential patterns. From the above ex-
ample, given a minimum support 3, we can easily obtain�
(b)
(2)

�
and

�
(b)
(3)

�
as multi-domain sequential patterns

across 2 domain sequence databases, where (2) and (3) are
the frequent items of D2jj<(b)>.
The detailed steps for deriving phase are described as fol-

lows:
Step 1: Derive through propagated table:
In Table 2, we �rst derive atomic patterns in sequence

database D2: Speci�cally, in Figure 2, time instance sets of
atomic patterns in sequence database D1 (i.e., the top-level
nodes) are propagated to sequence database D2. From the

Time instance sequences Items
<(T1)(T2)(T3)(T4)> (2,3)
<(T1)(T2)(T3)(T4)> (6)
<(T5)(T7)(T8)> (1,3)
<(T5)(T7)(T8)> (2,4)
<(T21)(T22)(T23)(T24)> (1,2,5)
<(T21)(T22)(T23)(T24)> (2,3)

Table 3: An example of propagated table D2jj<(b)>:

<(a)> <(c)><(b)> <(e)>

<(b,c)>

number of
elements=1

<(1)> <(2)> <(3)> <(2)>

Domain D1 Domain D2

Figure 2: An example of generating atomic patterns
in domain D2:

propagated table of each atomic pattern, atomic patterns
are easily obtained. For each atomic pattern in D1; there
is a inter-domain link representing that these two patterns
are able to form multi-domain sequential patterns. Conse-

quently, we have
�
(a)
(1)

�
;

�
(b)
(2)

�
;

�
(b)
(3)

�
and

�
(c)
(2)

�
in

the above example.
Step 2: Derive through union operation:
In this step, we will derive multi-domain sequential pat-

terns with their number of elements to be one. For example,
let Q =< (b; c) >; a sequential pattern with e(Q) = 1 in do-
main D1 of Table 2. Through the intra-domain links, we can
�nd atomic patterns that are components of Q (i.e., < (b) >
and < (c) >). In Figure 3 following inter-domain links of
< (b) > and < (c) >; we could obtain the atomic patterns in
domain D2 (i.e., < (2) > and < (3) >). Consequently, two

possible unions of P are generated (i.e.,
�
(b)
(2)

�
[
�
(c)
(2)

�
=�

(b; c)
(2)

�
and

�
(b)
(3)

�
[
�
(c)
(2)

�
=

�
(b; c)
(2; 3)

�
): Once we

have the possible candidate multi-domain sequential pat-
terns, support values of these patterns are examined by
checking their time instance sets. Given a minimum support

3, since the support values of
�
(b; c)
(2)

�
and

�
(b; c)
(2; 3)

�
are

3 and 2, respectively,
�
(b; c)
(2)

�
is a frequent multi-domain

sequence. Thus, the lattice structure in domain D2 contains



<(a)> <(c)><(b)> <(e)>

<(b,c)>

number of
elements=1

<(1)> <(2)> <(3)> <(2)>

Domain D1 Domain D2

<(2)>

Figure 3: An example of generating sequential pat-
terns whose number of elements is 1 in domain D2:

<(a)> <(c)><(b)> <(e)>

<(b,c)>

number of
elements=1

<(1)> <(2)> <(3)> <(2)>

Domain D1 Domain D2

<(2)>

<(a)(b,c)> <(1)(2)>

number of
elements=2

number of
elements=3

Figure 4: An example of generating sequential pat-
terns with their number of elements larger than 1
in domain D2:

< (2) > and inter-domain links are built between lattice
structures in domain D1 and that in domain D2:
Step 3: Derive through concatenate operation:
Before describing this step, we �rst de�ne the concatenate

operation.
De�nition 2 (concatenate operation of TIS): LetM

and N be two multi-domain sequences. TIS(M) = f< S1 :
l11; l12; :::; l1e(M) >;< S2 : l21; l22; :::; l2e(M) >; :::; < Sm :
lm1; lm2; :::; lme(M) >g and TIS(N) = f< T1 : k11; k12; :::;
k1e(N) >;< T2 : k21; k22; :::; k2e(N) >; :::; < Tn : kn1; kn2; :::;
kne(N) >g. The concatenation of TIS(M) and TIS(N) is
denoted as TIS(M) \< TIS(N) = f< Si : li1; li2; :::; lie(M);
kj1; kj2; :::; kje(N) >g such that Si = Tj and lie(M) < kj1: In
other words, TIS(M)\< TIS(N) is the time instance set of
the multi-domain sequence < M; N >.

For example, given M =

�
(a)
(1)

�
, N =

�
(b; c)
(2)

�
and

the multi-domain sequence database in Table 2 with a min-
imum support as 3, it can be veri�ed that TIS(M) = f<
(T1)(T2)(T3)(T4) : 1 >;< (T5)(T7)(T8) : 1 >;< (T10)(T12)
(T13) : 1 >;< (T21)(T22)(T23)(T24) : 1 >g; T IS(N) = f<
(T1)(T2)(T3)(T4) : 2 >;< (T5)(T7)(T8) : 2 >;< (T21)(T22)
(T23)(T24) : 3 >g, and TIS(M) \< TIS(N) = f< (T1)(T2)
(T3)(T4) : 1; 2 >;< (T5)(T7)(T8) : 1; 2 >;< (T21)(T22)(T23)
(T24) : 1; 3 >g. From TIS(M)\< TIS(N); we could further

merge these sequential patterns into
�
(a)
(1)

(b; c)
(2)

�
.

The multi-domain sequential patterns with the number of
elements larger than 1 will be derived in this step. Consider
an example pattern P =< (a)(b; c) > in Figure 4. By intra-

domain links and inter-domain links, we have
�
(a)
(1)

�
\<

�
(b; c)
(2)

�
. Therefore, P 0 =

�
(a)(b; c)
(1)(2)

�
is generated.

Algorithm PropagatedMine+ iteratively repeats the above
three steps until all domain sequence databases are propa-
gated.
Correctness of PropagatedMine+: The correctness of

step 1 is omitted. Interested readers could refer to the prior
work in [4]. In this paper, we only prove the correctness of
step 2 and step 3. Let P be a k-domain sequential pattern
and P 0 be a (k+1)-domain sequential pattern derived from
P , where e(P 0) = e(P ) = 1 , jP 0j > jP j > 1, and the
corresponding frequent itemset of P and P 0 is Z. In other

words, P 0 =
�
P
Z

�
. Given an arbitrary division X and Y

of P , such that X [ Y = P . Clearly, there are intra-domain
links from P toX and Y . In addition, there are inter-domain
links from X and Y to Z0, where Z0 2 P (Z) the power set
of Z and Z0 6= ;, due to the anti-monotone property (i.e.,
if P 0 is frequent, all multi-domain sequences contained by

P 0 must be frequent, too). Hence, both
�
X
Z0

�
and

�
Y
Z0

�
are frequent. Therefore, the lattice structures could derive
every pairs of P and P 0. Following the above operations,
the correctness of step 3 is also applied.

Algorithm PropagatedMine+:
Input: Multi-domain sequence database with n domains,
D1; D2; :::; Dn, and the minimum support �.
Output: Multi-domain sequential patterns with n domains.
Begin
Apply sequential pattern mining on D1.
Let SP1 be the set of sequential patterns mined in D1.
For each domain Di, i = 2; 3; :::; n
For each P 2 SPi�1
If jP j = 1 Then
Construct Propagation Table DijjP .
Find frequent items in DijjP with min_sup �.
Let FI be the set of frequent items in DijjP .
For each q 2 FI
Append

�
P
q

�
to SPi.

Let TIS(
�
P
q

�
) = TIS(P ) \ TIS(q).

If e(P ) = 1 Then

Compose
�
P
q

�
with e(

�
P
q

�
) = 1.

If Support(
�
P
q

�
) > � Then

append
�
P
q

�
to SPi

If e(P ) > 1 Then

Compose
�
P
q

�
with e(

�
P
q

�
) > 1.

If Support(
�
P
q

�
) > � Then

append
�
P
q

�
to SPi

Output=SPn.
End
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Figure 5: The execution time of algorithms with
various minimum support values.
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Figure 6: The performance of algorithms with the
number of domain varied.

4. EXPERIMENTAL RESULTS
We �rst investigate the performance of algorithms Prop-

agatedMine and PropagatedMine+ with the value of mini-
mum support varied from 0.5% to 5%. The execution time
of these two algorithms is shown in Figure 5. With the
smaller minimum support, the number of sequential pat-
terns will be larger, thereby increasing the execution time of
both algorithms. Since algorithm PropagatedMine needs to
propagate more multi-domain sequential patterns, the exe-
cution time of algorithm PropagatedMine is larger than that
of algorithm PropagatedMine+.
Next, we conduct experiments with the number of do-

mains varied from 2 to 5 and the minimum support is set
to 0.3%. The performance is shown in Figure 6. Clearly,
when the number of domains increases, the execution time
of both algorithms PropagatedMine and PropagatedMine+

increases. It is expected that with a larger number of do-
mains, algorithm PropagatedMine performs worse than al-
gorithm PropagatedMine+ since more propagated tables are
generated.
The experiments of varying the number of sequences is

now evaluated. The numbers of sequences are set to 1000,
2000, 3000, 4000, 5000 and 6000, respectively. The setting of
the minimum support is 1%: As can be seen in Figure 7, the
execution time of both algorithms increases with the num-
ber of sequences. Furthermore, algorithm PropagatedMine+

outperforms algorithm PropagatedMine due to the same
reason that algorithm PropagatedMine needs to process every
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Figure 7: The performance of algorithms with the
number of sequences varied.

multi-domain sequential patterns. As the number of se-
quences increases, the total number of multi-domain sequen-
tial patterns becomes larger.

5. CONCLUSIONS
In this paper, we proposed algorithm PropagatedMine+

for mining sequential patterns across multiple domain se-
quence databases. Algorithm PropagatedMine+ �rst mines
sequential patterns in a starting domain sequence database,
and then uses a lattice structure to store these sequential
patterns. In light of the lattice structure, algorithm Propaga-
tedMine+ is able to propagate time instance sets of only
atomic patterns to next domains for mining sequential pat-
terns in a level-by-level manner. A comprehensive perfor-
mance study was conducted. Experimental results show
that by only propagating time instance sets of atomic pat-
terns to other domains, algorithm PropagatedMine+ out-
performs algorithm PropagatedMine.
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