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ABSTRACT
Efficient multi-dimensional data search has received much
attention in centralized systems. However, its implementa-
tion in large-scale distributed systems is not a trivial job
and remains to be a challenge. In this paper, SDI, a new
succinct multi-dimensional balanced tree structure based on
peer-to-peer technology, is presented. With SDI structure,
the query efficiency can be bounded by O(log N). Com-
pared with previous tree-based methods, SDI has extremely
low maintenance cost. This is due to the carefully chosen
finger links. Furthermore, new algorithms are designed for
both point query and range query processing, which make
SDI free from the root-bottleneck problem. Experimental
results validate the efficiency and effectiveness of the pro-
posed approach.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
H.2.4 [Systems]: Query processing; H.2.m [Database Man-
agement]: Miscellaneous

General Terms
Algorithms, Experimentation, Design

Keywords
multi-dimensional data, peer-to-peer, point query, range query

1. INTRODUCTION
Efficient multi-dimensional data search is a key challenge

for data management in large-scale distributed systems. Ex-
isting solutions [18, 12, 5, 4, 3] are mostly based on di-
mensionality reduction or space partition. The performance
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of these methods falls drastically when dimensionality in-
creases.

Tree-based multi-dimensional data indexing is widely used
in centralized systems. However, it is non-trivial to apply
those methods directly in distributed environments. First,
tree-based method often suffers the root-bottleneck problem,
since high-level1 nodes tend to forward queries to low-level
nodes. Second, as in centralized systems, space-division-
based methods may result in space overlapping for non-
uniform data which leads to intolerable huge number of
messages for query processing in large-scale network envi-
ronment.

As one state-of-the-art technology, Virtual Binary Index
Tree (VBI-Tree) [9] was proposed, which is the first general
framework to implement hierarchical space-division-based
tree structures, such as R-tree [2] and M-tree [15], in large-
scale distributed networks using Peer-to-Peer (P2P) tech-
nologies. It addressed all the problems of tree-based struc-
ture, including search efficiency, load balancing, fault recov-
ery and root-bottleneck. However, in order to promise query
efficiency, each node in VBI-Tree has to keep coverage in-
formation of all its ancestors, which results in additional
overhead for network maintenance and data updating. Ad-
ditionally, such information is not helpful dealing with “dis-
crete data” checking, which affects the system scalability to
large network size, highly skewed data distribution and so
on.

In this paper, we present SDI, a Swift tree structure for
multi-dimensional Data Indexing in P2P systems, inspired
by VBI-Tree [9], but having less maintenance overhead and
better query processing performance. Its novel features are
listed as follows:

• SDI has a succinct tree structure with less additional
network links. With the carefully designed routing
links, they will not overload low-level nodes, such as
the tree root, and the maintenance overhead is low.

• New point query and range query processing algorithms
are proposed, which bound the search cost by O(log N),
defined as the maximum path length of finding the an-
swer for the query in a network of N nodes.

1We define root is on the lowest level and the leaves are on
the highest level
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• SDI scales well in terms of query radius, network size
and dimensionality.

• SDI still preserves the advantages of tree-based index-
ing techniques, including load balance, fault tolerant,
and search efficiency.

Extensive experiments validate the efficiency and effectivenss
of this proposed approach.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 introduces the background
knowledge of VBI-Tree. Section 4 provides SDI structure.
Section 5 explains the system building in detail. Section 6
describes query processing algorithms under the new archi-
tecture. In the end, Section 7 shows experimental study and
Section 8 makes a conclusion.

2. RELATED WORK
Multi-dimensional indexing, including high-dimensional

indexing, has received much effort in the centralized databases
[6]. The representative ones are based on hierarchical space
division, and then organized into trees, such as R-tree[2], R*-
tree[13], M-tree[15], and so on. Dimensionality reduction is
also used for multi-dimensional data indexing. Space Filling
Curve[10] is a representative one, which in essence gives a
linear ordering of all points in the data set. VA-file[16] and
LPC-file[7] use the vector approximate method to overcome
the curse of dimensionality brought in by dimensionality re-
duction. They try to filter the feature vectors to construct
the approximate file for the original files, but have to read
the whole approximation file for filtering.

In distributed networks, multi-dimensional indexing mainly
bases on the methods referred above. CAN can be consid-
ered as the first system, which supports multi-dimensional
data indexing. It is something like KD-tree [11], and can
be used directly for indexing multi-dimensional data. [4,
1, 14] are all based on CAN. [1] uses the inverse Hilbert
to map one dimensional data space to CAN. [14] is pro-
posed for caching low-dimensional range queries. pSearch[4]
is proposed for document retrieval in P2P networks. But
it does not focus on range query or KNN query. [18, 12,
3] use Space Filling Curve for multi-dimensional data in-
dexing. After that, a single dimension overlay will be used
to index the transformed data. But they show poor per-
formance when facing highly skewed data. SkipIndex [5]
and DIM[17] are KD-tree based methods. SkipIndex [5] is
the latest P2P system based on skip graph, which aims to
support high-dimensional similarity query. But its scalabil-
ity, failure recovery and query processing cost are problem-
atic when facing high-dimensional data. DIM[17] supports
multi-dimensional range queries in sensor networks by map-
ping multi-dimensional data space to a 2-dimensional space.
Load balancing is not addressed in DIM. VBI-Tree[9] is the
first general framework for multi-dimensional data indexing
based on hierarchical tree structure with good performance.
However, it has too many additional links which result in
high cost in maintenance.

3. BACKGROUND KNOWLEDGE
In this section, we present a brief review of relevant fea-

tures of VBI-Tree [9], which is a variation of BATON [8]
and can be used to implement any kind of hierarchical tree

structures that have been designed based on the space con-
tainment relationship. Each node, except the peer keeping
the right most data node, in the network plays 2 roles: a
data node and a corresponding routing node. We define
leaf routing node (LRN) as the parent nodes of leaf(data)
nodes. Data(leaf) node is used to store data and routing
node is a virtual node, which only maintains region informa-
tion called routing space. If it travels upwards, the data will
always be covered by the ancestor nodes. The pair (level,
number) represents a node logically and exclusively. The
root is defined on level 0, and the child level is one level
greater than parent level. Each level has at most 2L nodes
with L as the level number. We number each position at
level L from 1 to 2L, from left to right, whether or not
it is vacant currently. For a routing node, it may connect
to other nodes by up to four different kinds of real links
and one kind of virtual link: parent link, children links,
adjacent links which connect the data nodes and routing
nodes alternately by an in order traversal, neighbor links
which is the same level nodes with number less or greater
than current node by 2i (0 ≤ i ≤ l), and the virtual upside
path links which just log all the ancestors’ region coverage
information along its way to root (has no real link). We
put the neighbor routing nodes which have numbers less or
greater than current node by a power of 2 in left or right
routing tables. If there is no such neighbor node, we just
put ”null” in the corresponding position. A routing table is
full if all valid neighbor positions are not null.

There are two important rules in VBI-Tree. The first one
is a tree is balanced if every routing node which has a child
has both it left routing table and right routing table full.
The second is if a node x contains link to another node y
in either its left or right routing table, the parent node of x
must contain link to parent of y unless they share the same
parent node. The first rule gives a way to process node join
or departure so as to guarantee tree balance; the second
rule gives an efficient way to do fault recovery and query
forwarding.

As we can see in VBI-Tree:

• Each node keeps an eye on all the ancestors which
lie on the way to root, so each expansion or shrunk
to space managed by any ancestor will cause all the
descendants to update the corresponding uppath, re-
flecting the change to the ancestor. Updating is costly.

• There are only virtual links among descendants and
ancestors, so discrete data checking message climbs up
the tree one level one time, which costs many redun-
dant messages before it reaches the target node.

• Routing nodes link data(leaf) nodes using adjacent
links, which has mixed the structure and not restricted
all the routing among routing nodes.

4. SDI ARCHITECTURE
In order to overcome the shortcomings of VBI-Tree, we

put foward SDI, which is shown in Fig. 1. Each routing
node may ”link” to five kinds of nodes, if any: one parent,
two children, two adjacent routing nodes, neighbor routing
nodes and one ancestor node. Compared with VBI-Tree,
SDI defines new ancestor links and different adjacent links,
but removes upside path. Adjacent link is defined as the
link which helps to connect all routing nodes, leaving alone
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Figure 1: SDI Structure

the data nodes, by an in-order traversal as shown in Fig. 1.
Given a node x, the node immediately prior or after to it,
connected by the adjacent link, is the left or right adjacent
node. Adjacent link always connects to one LRN at one end.
Ancestor link is defined as the link distributed by the lower
level routing node to its specific higher level routing node
descendants, which are at least 2 levels higher2 and lie on the
left child branch but right most positions or the right child
branch but the left most positions at each level. Ancestor
link brings the ancestor coverage information to its selected
descendants. For any node at level l (l >= 0 ), it will
distribute at most 2 ∗ (log N − l− 2) links out with network
size N . Child height is defined as the child subtree height,
which is used to activate the balance algorithm [9]. To the
data nodes, it has no sideways routing tables, ancestor or
adjacent links, but only parent link to LRN.

In Fig. 1, we show m’s routing information. It has full left
and right routing tables and one ancestor link to c. LC and
RC are the child information for the neighbor, but notice
that only routing node is effective for these two items. l, the
first neighbor in the left routing table, has only data node
children. So we set ”null” to both LC and RC of l.

4.1 Ancestor Link Distribution
Only routing nodes are considered here. Supposing (lr, nr),

(la, na) denote the node and the ancestor it links to respec-
tively, with lr > la + 1, la >= 0 and dif = lr − la, we define
the corresponding relationship as:

nr =

{
(na − 1) ∗ 2dif + 2dif−1 , nr is even
(na − 1) ∗ 2dif + 2dif−1 + 1 , nr is odd

(1)

Theorem 1. 1. All nodes with level no less than 2, except
the left most and right most ones, will have ancestor links.
2. If one node maintains an ancestor link, there is only one.

Proof: Supposing (l1, n1) has an ancestor link to (l2, n2),
(l1 > l2 + 1 and l2 >= 0).

(1) As we have defined the ancestor node distributes the
links to the right(left) most node of left(right) child branch
at each level. As a left most node, it can never be the left
most child of any right child branch at each level. As a right
most node, it can never be the right most child of any left
child branch. So neither of them has ancestor link.

For all the other nodes, it can either be the right most
child of a left branch or a left most child of a right branch.
So they can have ancestor links.¡
2The farther the node from the root, the higher the level it
has.

(2) Supposing (l1, n1) maintains the other ancestor link
to (l3, n3). With Equation 1, we get

(n2 − 1)* 2l1−l2 + 2l1−l2−1=(n3 − 1)* 2l1−l3 + 2l1−l3−1

then we get:
2 ∗ n2 − 1 = (2 ∗ n3 − 1) ∗ 2l2−l3 with (l2 >= 0, l3 >= 0),
For both (2 ∗ n2 − 1) and (2 ∗ n3 − 1) are odd, (l2, n2) is

the same node with (l3, n3) ¡

w

u

a

v

b

sx y t z r

data node routing node ancestor link

Figure 2: Ancestor Link Distribution

In SDI, ancestor links are distributed to routing nodes at
each level evenly except the left and right most ones. Each
link will be maintained by at most 2 nodes of the same
level: the right(left) most descendant of the left(right) child
branch. Let’s take Fig.2 node w for example. At level 2
and level 3, it distributes the links to nodes a and y, which
are the right most children of w’s left branch, and nodes b
and t, which are the left most children of w’s right branch.
Equation 1 and Theorem 1 help to decide whether one node
has ancestor link and which level the ancestor locates, if any.

Theorem 2. Supposing there are nodes x, y, z at level l1,
evenly numbered (s, t, r oddly numbered) and sibling nodes
u, v at level l2, (l1 > l2 + 1, l2 > 0). Node w is the parent of
node u, v. x, y, z(s, t, r) are descendants of u, v, w. If x(s)
has full routing tables and it has an ancestor link to u.

1. There must be a neighbor node y(t), which has an an-
cestor link to node w.

2. There must be a neighbor node z(r), which has an an-
cestor link to node v.

Proof: N(n) denotes the number for node n. Supposing
x, y, z have links to u, w, v respectively:

(1) N(x) = (N(u)− 1) ∗ 2l1−l2 + 2l1−l2−1;

N(y) = (N(w)− 1) ∗ 2l1−(l2−1) + 2l1−l2 ;
supposing N(u) = n1 and N(w) = n2 ⇒
|N(y)−N(x)| = |2l1−l2−1 ∗ (4 ∗ n2 − 2 ∗ n1 − 1)|;
if n1 is even, then n2 = 1/2∗n1 or else n2 = 1/2∗(n1 +1).
so |N(y)−N(x)| = 2l1−l2−1;
for x, y are of the same level, then x, y are neighbors.
So it does to node s, t, r. ¡
(2) N(z) = (N(v)− 1) ∗ 2l1−l2 + 2l1−l2−1;
supposing N(v) = n3 ⇒
|N(z)−N(x) = (n1 − n3) ∗ 2l1−l2 |;
for node u, v are siblings, |n1 − n3| = 1 ⇒
|N(z)−N(x) = 2l1−l2 |;
for x, z are of the same level, then node x, z are neighbors.
So it does to node s, t, r. ¡
Each node will keep the region information for the linked

ancestor, if any. As shown in Fig. 2, x knows the coverage
region of u. If x detects the branch rooted at node u can not
cover the query and y in x ’s sideways routing tables, only
one hop is needed to neighbor y, which knows the lower level



ancestor w ’s region information. Valid nodes checking to the
query will not always be forwarded upwards, which relaxes
the load of lower level nodes.

5. OVERLAY NETWORK BUILDING

5.1 Node Join and Node Departure
Node join or departure process is similar with VBI-Tree

[9] except the routing information updating because of the
modification to routing tables. Currently one ancestor item
is used to replace upside path and adjacent links do not
relate to data(leaf) nodes any more. Only routing node is
considered here.

After joining, if the new routing node is oddly numbered,
but not the left most one, the ancestor link is parent’s orig-
inal left adjacent link before updating; if the new routing
node is evenly numbered, but not the right most one, the
ancestor link is parent’s original right adjacent link before
updating. When joining, updating of the ancestor link can
be piggyback over other updating messages, no additional
cost is required. When node departure, if it is a node which
can leave without causing the tree to become imbalanced3,
no ancestor link updating is needed, otherwise, at most ad-
ditional 2 log N messages are used to do ancestor links up-
dating for the descendants.

5.2 Index Building
Index building for SDI is the same as in VBI-Tree [9].

The ancestor node will cover the descendant node. Node
joining or departure causes the data space divided or com-
bined. Data adding or deleting causes the coverage space of
node expanded or shrunk, which is the same process as in
centralized index schemes. Discrete data is used to relax
the updating cost, which is defined as the data belonged to
no children temporarily.

5.3 Failure Recovery, Network Restructure and
Load Balancing

Neighbor links and parent-child links are used to do fail-
ure recovery, the same as in VBI-Tree [9]. When dealing
with load balancing, we can share load between parent and
child for internal nodes, and between sibling nodes for data
node. But for data nodes, we can also do lightly loaded node
forceful joining to highly loaded node. When we meet with
tree imbalance during this process, we use the AVL-tree ro-
tation like method to restructure the tree. The details can
be found in VBI-Tree [9].

The ancestor links will not changed much when doing sub-
tree rotation, for the node position relations have not been
changed. It means when do rotation at node n,the nodes
which line on the left or right most positions at each branch
will not moved to other positions. Only the nodes chang-
ing their subtrees after rotation have to update the ancestor
links they distribute. Then the updating cost for ancestor
links is O(1).

6. QUERY PROCESSING
According to the modification to the tree structure, we

define new algorithms for query processing. Relying on the
ancestor links among neighbors, we promise the query effi-
ciency is still O(log N) but with no root-bottleneck problem

3It is the LRN with no neighbors having child routing node.

or high maintenance cost. Point query is a special case of
range query by setting query radius to zero. For simplic-
ity, we first consider the case where no sibling nodes overlap
with each other. Later, we will show the general range query
algorithm.

For region r1 and region r2, there are 3 different kinds of
relationships between them: separation, intersection and
coverage. If r1 shares no space with r2, r1 is separate with
r2; if r1 shares its whole space with r2, r1 is covered by r2;
If r1 shares part of its space with r2, r1 intersects with r2.

Algorithm 1: PointQuery(Node n, QueryPoint q,
LowestLevel a, OldAncLevel oa,CheckedPath path)

begin1

if path includes n then return ;2

path.add(n);3
if n covers q then4

LocalSearch(n, q); SubtreeSearch(n, q);5

else6
if n.Level - a == 1 then7

if n.Sibling!=null and n is not in path then8

PointQuery(n.Sibling, q, n.Level, oa,9

path);10
else11

LocalSearch(ancestors from12

n.Parent.Level to oa, q);13

else14
if n is the left or right most node then15

if n.Sibling !=null then16

PointQuery(n.Sibling, q, a, oa, path);17
else18

PointQuery(n.Parent, q, a, oa, path);19

else20
if (anc = n.Ancestor) != null then21

if anc covers q then22 {leftChildM ,rightChildM}=get23

maintainers for anc’s children ;
if can not find 2 children24

maintainers of anc then
forward request to n.Parent ;25

else26
newOa=anc.Level;27
if leftChildM isn’t in path28

then
PointQuery(leftChildM ,q,29

anc.Level+1,30

newOa,path);
newOa=anc.Level+1 ;31

if rightChildM isn’t in path32
then

PointQuery(rightChildM ,33

q, anc.Level+1, newOa,34

path);
else35

if anc.Level == a and anc doesn’t36

cover q and anc.Level > oa then
LocalSearch(ancestors from37

n.Parent.Level to oa, q);
else38

if anc.Level > a then39
y=anc.Parent.Maintainer ;40
if y! = null then41

PointQuery(y, q, a, oa,42

path);43
else forward the request to44

n.Parent;45

end46

6.1 Point Query Algorithm



We first present the point query algorithm with no sib-
ling nodes overlapping with each other in Algorithm 1. The
query forwarding stop conditions are :

• if one of its children can cover the query space com-
pletely, we can stop forwarding query upwards to lower
level nodes.

• if sub-root of the checking branch can not intersect
with the query space, we can stop forwarding query
downwards to higher level nodes.

For a point query issued or received at node n, it will
first check its own region. If it covers query, the query will
be either processed by itself or forwarded downwards to its
children, if any. Otherwise, it locates the node which can
cover it relying on ancestor references.
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There are two cases when n has no ancestor reference.
The first one happens to the tree or subtree less than 3 levels
high. If its sibling exists and has not been visited before,
we forward the query directly to the sibling and restrict the
query to the sibling branch by setting a to n.Level. Or else
we do ancestor node discrete data search. The second one
is that it is the left most or right most node. We forward
the query to its sibling node. If such a sibling node does not
exist, the query is forwarded to its parent node.

The next situation is that n can not cover q but it main-
tains an ancestor link4. If n’s ancestor anc covers q and
anc’s 2 children have not been checked, first we do the chil-
dren checking before jumping directly to anc to do discrete
data searching. By setting oa to anc position, it is easy

4Ancestor link contains ancestor’s region information

Algorithm 2: RangeQuery(Node n, QueryRegion r,
LowestLevel a, OldAncLevel oa,CheckedPath path)

begin1

if path includes n then return;2
path.add(n);3

if n intersects r then4

LocalSearch(n, r); SubtreeSearch(n, r);5

if n.Level == a then return ;6
if n.Level- a == 1 then7

if n.Sibling! = null and n is not in path then8

RangeQuery(n.Sibling, r, n.Level, oa, path);9

if both n and n.Sibling don′t cover r then10

LocalSearch(ancestors from n.Parent.Level to11

oa, r);12
return;13

if n is the left or right most node then14
if n.Sibling! = null then15

RangeQuery(n.Sibling, r, a, oa, path);16
else17

RangeQuery(n.Parent, r, a, oa, path);18
return;19

if (anc=n.Ancestor)!=null then20
if anc intersects r then21

{leftChildM, rightChildM}=get22

maintainers for anc’s children ;
if can not find 2 children maintainers of anc23

then
forward request to n.Parent;24

else25
newOa=anc.Level ;26
if leftChildM isn’t in path then27

RangeQuery(leftChildM , r,28

anc.Level+1, newOa, path) ;
newOa=anc.Level+1 ;29

if rightChildM isn’t in path then30

RangeQuery(rightChildM , r,31

anc.Level+1, newOa, path);32

if anc.Level ==a and anc doesn′t cover r and33

anc > oa then
LocalSearch(ancestors from anc.Parent.Level34

to oa, r) ;35
if anc.Level > a then36

if anc doesn’t cover r then37
y=anc.Parent.Maintainer ;38
if y! = null then39

RangeQuery(y, r, a, oa, path);40
else forward the request to n.Parent;41

else42

{newLevelList}=from anc.Parent.Level43

to level a ;
foreach newLevel in newLevelList44

z=(get a node on the other side of45

tree rooted at newLevel);46

RangeQuery(z, r, newLevel+1,47

newLevel+1, path);48

end49

to turn back to anc to do discrete data checking if no chil-
dren cover q. Any missing of child maintainer will cause
the parent node to forward the query. Later we restrict the
legal checking level for the children by setting: LowestLevel
to (anc.Level + 1) and OldAncLevel to newOa. The child
with lower newOa value has the responsibility to activate
the checking to the ancestor at oa level so as to avoid re-
peative discrete data search to ancestor at level oa. When
none of anc’s children can cover q, we do discrete data check-
ing at anc. Notice that all the discrete data checking can
stop forwarding upwards once we meet with the node which
can covers q.



The last situation is that both n and n’s ancestor can not
cover q, we forward the query to the node which maintains
a lower level ancestor reference, if any, until find the node
covering the query.

In order to avoid receiving back the search request, we
use parameters CheckedPath to log checked nodes, Lowest-
Level to mark the checking sub-root and OldAncLevel to
mark lowest ancestor level which maybe need discrete data
checking. Only if LowestLevel sub-tree covers r, nodes listed
from LowestLevel - 1 to OldAncLevel can be deleted from
the checking list. The initial values for these 3 parameters
are null, 0, 0 respectively.

Let’s illustrate the point query algorithm in Fig. 3. This
is a 2-dimensional M-Tree based space division. The query
is issued at node h, and the target is the discrete data of
node a. First, the target is not covered by h. It has no
ancestor reference, so it forwards the query to sibling node
i, which has the ancestor reference to b. But b can not
cover the target. No neighbor of i has lower level ancestor
reference. Then the query is forwarded to parent node d and
d will forward the request of finding a lower level ancestor
to e. Here e finds that ancestor a covers q . According to
the algorithm, before do a’s discrete data checking, we shall
send checking request to b’s and c’s maintainers, which are
the children maintainers of a, at level 2. But b and c have
no ancestor references maintained at this level. We choose
the left and right direct neighbors, d and f, to forward the
request. For d has been included in path, we forward the
request to f. At f, it has a=1 and oa=0 which rooted at c.
There is no ancestor reference distribution at this level. g is
f ’s sibling and has not been visited before. Then it receives
the search request. After doing local search, it begins to do
ancestor nodes discrete data search to c and a. At last we
get result at a.

In point query algorithm, query can be started at any po-
sition. Ancestor checking need not always be sent upwards,
if its corresponding maintainer is found in the sideways rout-
ing table. So the root-bottleneck problem is avoided. The
search efficiency is O(log N), where N is the network size.

So far, we give out the point query processing algorithm
without overlapping. We can not avoid overlapping, when
using general hierarchical space division, especially for skewed
data distribution. In such a case, query will be forwarded
to multiple nodes instead of only one node. We will show
the detail in range query processing algorithm.

6.2 Range Query Algorithm
Range query algorithm is shown in Algorithm 2 and it is

similar with Algorithm 1. The main difference is that even
though we find the coverage region, we still can not stop
checking and parallel query distribution is taken because of
overlapping. Let’s say node n issues a range query r.

If n intersects with or covers r, we do local search (discrete
data search) and also begin downwards subtree search. As
we know, if the node intersects with r, all of its ancestors
along the way to root will intersect or cover r and then lower
level ancestor checking is needed. At this time, we have to
send query to all the other nodes which line on the other
side of the subtree rooted at these ancestor nodes to find
all results. The query forwarding stop condition has been
mentioned in Section 6.1. If n does not covers or intersects
with r, we have to rely on the ancestor reference to find the
first node which intersects or covers r.

Let’s illustrate the range query algorithm in Fig. 4. In
this example, node h issues a range query r. At first, h
checks itself locally. It neither intersects or covers r nor
maintains any ancestor link. h forwards the request to its
sibling i, which maintains ancestor link to b. However b can
not cover or even intersect with r and no other lower level
ancestor link maintainer can be found at this level. So it
forwards the request to parent node d. It is the left most
node and does not intersect with r. We forward the request
to sibling e, which maintains the ancestor link to a. a covers
the query. After that, we shall check the children of a ( b
and c). Here b and c are one-level lower nodes to the query
issuing node e, and we forward the checking request to the
left and right direct neighbors in e’s sideways routing tables.
d has been included in path. We only forward request to f.
Now the query are restricted to the branch rooted at node
c, with a=1 and oa=0. f begins the query processing in a
shorter tree branch. It intersects with r. Its sibling g has
not been checked before, so it receives the search request.
But neither of them covers r, so we start checking on both
g and f, and also forward discrete data checking request
to ancestors. However a does no discrete data checking ,
because c covers r completely. At last, the query is resolved
at peer j, f, c and g.

6.3 Analysis to Range Query Algorithm
Ancestor link plays the most important role in our algo-

rithm.
1. As presented in Section 4.1, ancestor links are distributed
evenly to the nodes of the same level and they contain an-
cestors’ space coverage information. So checking to a lower
level ancestor, whether it intersects or covers the query, can
be resolved by the corresponding link maintainers (higher
level descendants) and need not always be forwarded up-
wards. This solves the root-bottleneck problem.
2. Ancestor link helps to do discrete data search with less
hops, which reduces the query processing cost drastically,
compared with VBI-Tree. The advantage will be more obvi-
ous to larger network size. For example in Fig.1, if m needs
do discrete data checking to a, it hops to c by ancestor link
first and then to a. But for VBI-Tree, it hops to f, c and a
one by one.
3. We promise all the nodes which intersect with the query
can be visited once and only once.
4. The parallel query distribution will promise the query
efficiency is O(log N).

7. EXPERIMENTAL STUDY
To evaluate the performance of our proposed system, we

implemented a simulation system in Java JDK 1.5. In our
implementation, each peer is identified both physically by a
pair of IP address and port number, and logically by its po-
sition in the tree structure. Communication between nodes
is via sockets. There is a fake sever which distributes events
to peer nodes. We generate the inserted data by Zipfian
method with parameter 1.0. Using SDI, we implemented
M-tree [15]. VBI-M-Tree is used for comparison. Both sys-
tems deal with load balance and fault recovery similarly, for
ancestor links in SDI and upside path in VBI-Tree have no
effect on these aspects. Our comparisons focus on the cost
for query processing, data operation, and also on load distri-
bution. In this simulation environmental, the default values
for network size, discrete data size, insert data size, dimen-
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sionality, and query radius are 2, 000, 2, 10, 000, 5 and 0.01
respectively. The point or range query size is 1, 000.

7.1 Performance of Query Processing
Fig.5 shows that VBI-Tree beats SDI in both average and

maximum hops to find results for the queries in different
network size. VBI-Tree uses upside path to log the cov-
erage information for all ancestors along the way to root
and so each node has a wider view than SDI. Fig.6 shows
the average messages to resolve a query in different network
size. SDI beats VBI-Tree in both cases, especially for range
query. As stated in Section 6.3, SDI resolves discrete data
checking by using of ancestor links with less hops but VBI-
Tree can only jump one level one time. When we increase of
discrete data size, both average and maximum search hops
and the average messages needed to resolve a point query in-
crease, but the average messages needed to resolve a range
query have not changed a lot, which are shown in Fig. 7
and Fig.8. Fig. 9 shows range query cost increases as we
use bigger query radius. Fig.10 shows that query cost in-
creases with increasing of dimensionality, for the higher the
dimensionality, the more the space overlapping.

From the results, we can get VBI-Tree has better query

processing efficiency than ours for its cost is bounded by
log N and ours is bounded by 2logN . However SDI beats
VBI-Tree in average messages for resolving both point query
and range query, especially for large network size, big dimen-
sionality data space or big discrete data size. The reason
is that these elements affect the overlapping among nodes.
The more overlapping, the more advantage of our system,
because we can use less delivering messages to check ances-
tor nodes.

7.2 Performance of Insertion
Data insertion cost includes 3 parts: data insertion, an-

cestor link updating and discrete data reinsertion. Fig.11
indicates that the larger the discrete data size, the less the
average insertion cost. VBI-tree can beat SDI in insertion
but their cost doesn’t differentiate much, for VBI-tree will
spend much more on updating for enlargement caused by
discrete data as shown in Fig.12. Fig.13 indicates that the
larger the network size, the more the cost on average in-
sertion. But SDI will only cost about 2 more messages for
insertion. Compared to the query cost reducing, it is accept-
able. The bigger the network size or the more the insertion
data size, the more the updating cost, as shown in Fig.14



 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000

10000500020001000500

U
pd

at
e 

M
es

sa
ge

s

Network Size

SDI - update
VBI - update

Figure 14: Insert Update Cost
with different network size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

2000012000100008000600040002000

U
pd

at
e 

M
es

sa
ge

s

Data Size

SDI - update
VBI - update

Figure 15: Insert update cost
with different data size

 0
 30
 60
 90

 120
 150
 180
 210
 240
 270
 300
 330
 360
 390

109876543210

A
ve

ra
ge

 M
es

sa
ge

s

Level

Query
Insert

Figure 16: Average query/insert
load at different levels

and Fig.15 respectively. SDI saves a large number of updat-
ing messages. For VBI-Tree, the insertion updating cost to
upside path is O(N), but SDI is O(log N) to ancestor link.

7.3 Access Load
It is measured by the average messages received by the

nodes belonged to each level when doing data insertion and
searching. Level 0 is the root and highest numbered level are
LRNs. Fig.16 shows that either when insertion or query pro-
cessing, the load does not concentrate on the root or nodes
near root. In our design, the request will always be pro-
cessed among the same level neighbor nodes if the sideways
routing tables are full. Only when doing discrete data check-
ing, we send the query upwards to the lower level nodes. So
there is no root-bottleneck problem in SDI.

8. CONCLUSION
In this paper we have presented a swift general frame-

work, SDI, for multi-dimensional query processing inspired
by VBI-Tree. By defining specific link between an ancestor
and the descendant, and query processing algorithms, we
reduce cost for both network maintenance and query pro-
cessing. The new query processing algorithms bound the
query cost by O(log N) and avoid the root-bottleneck prob-
lem. SDI scales well to network size, discrete data cardi-
nality and range query radius. In addition, SDI is much
succinct since it does not maintain redundant adjacent links
to data nodes, but keeps all the routing information among
the routing nodes. The experiments indicate that SDI has
achieved our desire successfully.
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