
3952 
 

1

  
Abstract—Due to the proliferation of WiFi access points, 

indoor localization methods based on WiFi signal strengths 
are becoming more and more attractive because they don’t 
require additional infrastructural costs beyond the existing 
WiFi infrastructure. Many research projects were 
proposed based on this approach, but most of them only 
focused on the processing of the signal strength data to 
obtain the user locations. Very little attention was paid to 
the mobility patterns of the users. In this paper, we propose 
a method based on (i) knowing the floor model, (ii) 
continual tracking of user locations and (iii) back-tracking 
from the current location to previous locations to resolve 
localization ambiguities. We implemented the system in a 
life environment and performed experiments to measure 
the localization accuracies. We found that our method 
identified all test paths accurately with the exception of a 
challenging case where two locations were connected 
together with a thin wall. We discuss ways to handle this 
situation. 
 

Index Terms — location identification, location tracking, 
mobility, floor model.  
 

I. INTRODUCTION 
Due to the decreasing cost and the ease of installation 

of access points, indoor localization using WiFi signal 
strengths are becoming more and more popular. Many 
research projects had been proposed based on this 
approach, but most of them were based on a single set of 
signal strengths obtained at the time localization was 
performed. As such, they focused on signal processing 
methods and triangulation techniques. Very few 
approaches made use of continuous monitoring of user 
locations to increase localization accuracy [5]. In this 
paper, we propose a backtracking technique to improve 
the accuracy of the localization results. We conducted 
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experiments in a life setting to show the accuracy of the 
system and discussed challenges we faced in the 
experiment. 

 
In the rest of this paper, we will give a brief overview 

of recent WiFi-based localization methods in Section 2. 
In Section 3, we introduce the basic idea of our approach 
called WHAM! (Where Am I). In Section 4, we present 
the system architecture. In Section 5, we evaluate the 
accuracy of our system. 

II. PREVIOUS WORK 

RADAR: An In-Building RF based User Location and 
Tracking System 
Developed by Microsoft Research RADAR makes use 

of WiFi signal strengths for indoor localization [1]. It is 
based on two principles about WiFi signal strengths; the 
WiFi signal strength decreases when the transmitter and 
the receiver are further apart and when there are obstacles 
between the transmitter and the receiver. Base on these 
two principles, WiFi signal strength readings were 
measured on various points of the test site. The readings 
were recorded to a database. When a location query was 
submitted by the user, the system compared the user’s 
current signal strength values with the signal strength 
values in the database. Then the system will deduce a 
most probable location and return it to the users. 

 
Several projects were conducted based on matching of 

WiFi signal strength values [7]. In general, it was found 
that WiFi signal strengths are unstable in that the signal 
strengths at the same location changes with time, 
temperature and objects around it. Thus, it is hard to 
achieve good accuracy based on pure matching of signal 
strength. Ho, et. al., proposed a method to retrain the 
system when the user finds that the estimation location is 
wrong [3]. 
 

Most existing methods only make use of the signal 
strengths measured at the user’s location for estimating 

A Model-Based WiFi Localization Method  
Dik Lun Lee and Qiuxia Chen 

The Hong Kong University of Science and Technology 
Department of Computer Science and Engineering 

Clear Water Bay, Hong Kong 
{dlee, chen}@cse.ust.hk 

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal
or  classroom  use  is granted without fee provided  that copies  are not made  or distributed  for  profit or commercial advantage and that copies bear this notice 
and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. 
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007  ICST 978-1-59593-757-5 
DOI 10.4108/infoscale.2007.903



3952 
 

2

what the user’s actual location is. Few, if any, made use 
of the user path and movement to enhance localization 
accuracy [5]. This paper presents a new approach which 
continuously records the signal strengths received at the 
user client, and disambiguates the user’s location by 
backtracking to the user’s previous locations in the floor 
model and eliminating candidate locations that are not 
likely to be reachable from the previous locations. Note 
that we assume that the user can enable or disable the 
monitoring service as he/she enters the monitored area; 
privacy concerns are beyond the scope of this paper. 

III. WHAM!  
This paper proposes a method called WHAM! (Where 

Am I), which is part of an indoor navigation and semantic 
location modeling project. In our approach, the 
localization system continuously monitors the user’s 
positions in an area. When a localization request is 
received from the user, the system will estimate the user’s 
actual location using a standard WiFi localization method. 
If a unique location is obtained, the system will return the 
estimated location to the user. However, when ambiguity 
arises, meaning that the system finds more than one 
location satisfying the measured signal strengths, it will 
use the user’s previous locations to disambiguate the set 
of candidate locations.  

 
Since continuous computation of the user’s location is 

very time consuming, WHAM! will record only the 
signal strength values of the user at regular interval. This 
is not a very time consuming operation. When previous 
locations are needed for disambiguation, WHAM! will 
“backtrack” and compute from the stored signal strengths 
the immediate preceding location of the user. By 
estimating the likelihood for the user to move from the 
previous locations to the candidate locations, WHAM! 
can discard candidate locations that are not likely to be 
reached from the user’s previous locations. If a 
conclusive answer still cannot be obtained, the system 
can back track one more step until a clear answer is 
obtained or a system-defined backtracking level is 

exceeded.  
 
To facilitate disambiguation, our method requires a 

semantic location model to represent the possible 
locations and paths within the indoor environment [4]. 
For the purpose of this paper, a floor model of the indoor 
environment is sufficient. We assume that it is possible to 
query the zones (e.g., rooms and corridors) and the paths 
between the zones within the floor model as is possible in 
a semantic location model [4].  

 
Figure 1 illustrates how WHAM! works. The floor 

plan consists of eight zones, representing two rooms and 
the corridors around them. There are two access points, 
AP2 and AP2, at the upper left and upper right corners, 
respectively. Notice that a corridor can be represented by 
more than one zone (e.g., Zone 3 and Zone 6) according 
to the need of the application. The signal strengths from 
AP1 and AP2 are measured for each zone, which is 
shown in Table 1. Notice that the signal strength values 
are for illustrative purpose only and that WHAM! is not 
very sensitive to the actual signal strength values but 
instead their relative values. For example, since there is 
no obstacle between the two APs and any point within 
Zone 1, the signal strengths measured in Zone 1 are 
constantly at a rather high level. On the other hand, Zone 
2 will receive much higher signal strength from AP1 and 
a weak signal from AP2 because of the blockage of Zone 
7. It is clear that because of the knowledge of the floor 
model, WHAM! does not rely very much on the absolute 
signal strengths for computing user locations. 

 
Zone 1

Zone 2 

Zone 3 

Zone 4 

Zone 5 

Zone 6 

Zone 8 Zone 7 

  

 
Figure 1 A floor plan with two rooms. 

AP1 AP2 Table 1 
SIGNAL STRENGTH VALUES OF DIFFERENT ZONES 

Zone Single Strengths of 
AP1 Signal Strengths of AP2 

1 4 4 
2 4 2 

3 2 3 
4 2 4 
5 3 3 
6 3 3 
7 1 1 
8 1 1 

 



3952 
 

3

 
A user traversed the path Zone 1 → Zone 5 → Zone 3 

→ Zone 8 and submitted a location query in Zone 8. 
Suppose the recorded signal strengths when the user’s 
first three locations are as shown in Table 2. If only the 
final signal strength data were considered, it is very 
difficult to determine whether the user was in Zone 7 or 
Zone 8. However, if we backtrack to t=3, the signal 
strength values of AP1=2 and AP2=3 uniquely identify 
the user’s location to be in Zone 3. Thus, further 
backtracking is not needed. With the knowledge that the 
user was in Zone 3, we can infer that the user’s current 
location is Zone 8, not Zone 7, because it is impossible 
for the user to reach Zone 7 from Zone 3.  

IV. SYSTEM STRUCTURE 
WHAM! was implemented in J2SE. It mainly includes 
four modules, namely, Tracking, Smoothing, Partitioning 
and Determining the zone. Figure 2 shows the structure of 
our system. Details of the four modules are described 
below. 
 

Tracking 
WHAM! continuously records signal strength values 

from each access point at the user’s location with fixed 
time interval when the user is walking around the floor. 
When the user submits a location query, WHAM! will 
process the collected signal strengths to report his/her 
current location.  
 

Smoothing 

The variation of the collected signal strengths is large. 
In order to minimize the effect of noise and outliers, we 
need to smooth our collected data before processing so 
that it can increase the accuracy of finding the cut-off 
points to partition the data (see next step). After 
analyzing the raw data we collected, we observed a few 
patterns that could be smoothed. In Figure 3(a), there is a 
drop in the data sequence. The drop can be smoothed out 
because if the difference between the signal strengths on 
both sides of the drop is small, it is more likely that the 
data are in the same zone. The same reason applies to 
Figure 3(b), where there are two consecutive drops. For 
three or more successive drops, it is difficult to say 
whether they are outliers or they are in a different zone. 
Figure 3(c) shows an outlier at the cut-off point. This 
point can be treated as an outlier because it is not possible 
to have a sudden increase followed by a large drop. 
Figure 4 and Figure 5 show the difference between the 
data before and after smoothing.  

 

Parition 
WHAM! collects the signal strengths periodically when 

the user is walking around an area, thus generating a long 
sequence of signal strength data. We need to partition the 
long sequence of data before we can map the partitions 
into zones on the floor plan. The purpose of partitioning 
is to separate the collected data to several segments such 
that the data in each segment is more likely to belong to 
the same zone. We identify the segments by finding the 

(a) 
 

(b) (c) 

Figure 3 Outliers that can be smoothed.   The blue line represents 
the raw data. The pink line represents the data after smoothing.  

Figure 2 The structure of WHAM!. 

Table 2 
SIGNAL STRENGTH VALUES OF A USER AT DIFFERENT TIMES 

Time Single Strength of 
AP1 

Signal Strength of 
AP2 

t=1 (Zone1) 4 4 
t=2 (Zone5) 3 3 

t=3 (Zone3) 2 3 
t=4 (Zone 8) 1 1 
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cut-off points. After partitioning is done, we can analyze 
the data in each segment to determine which zone it 
belongs to. It is more reliable and accurate to analyze the 
data within a segment together than using individual data 
points. 

 

Figure 4 The measured signal strengths before smoothing 
(signal strengths against time). 

Figure 5 Signal strengths after smoothing (signal strengths 
against time). 

 
Figure 6 shows the cases for two zones with a cut-off 

region. In Figure 6(a), there is a sharp change in the 
smoothed signal data (pink curve), indicating that the 
user is likely moving from one zone to another. In Figure 
6(b), however, it is hard to find the cut-off only by 
comparing two successive points because the points 
gradually decrease in the cut-off region. To resolve this 
problem, we use cumulative mean to find such cut-off 

points. Cumulative mean is the mean value of the data 
points inside a window. Cumulative means of 
consecutive windows are compared to find the cut-off 
point. We assume that the number of data points within 
the same zone is large enough that the data points in the 
cut-off region do not vary the mean value too much.  

 
In our system, we first find the cut-off points based on 

the signal strength data sequence of each access point. 
Then, we union the cut-off points for all access points to 
partition the data. Figure 7 shows the partitions of one of 
the collected data sequence. There may be some small 
partitions because the cut-off points in different access 
points may not fall at the same point. Finally, we merge 
small neighboring partitions because calculation based 
on small partitions is not reliable. 
 

Zone Determination 
The final step is to map the signal segments into zones. 

We measured the maximum and minimum signal 
strengths of each zone as an input to WHAM!, which will 
determine the possible zones of each segment based on 
these min/max values. For each segment, WHAM! 
calculates the mean value of the signal strengths of each 
access point, and then associate with each zone a score 
showing how many mean values of the segment fall into 
the min/max ranges of this zone. The ones with the 
highest score are the possible zones of this segment.  

 
As described earlier, WHAM! will start from the last 

segment and backtrack, if necessary, along the path. By 
comparing the connectivity of the graph and the possible 
zones in each segment, WHAM! can eliminate some of 
the identified zones to get the correct answer. Figure 9 
illustrates the idea. The graph corresponding to the floor 
plan will have a self loop at each node because the 
segments do not necessarily map one-to-one to the zones 

 
 
 
 
 
 
 
 

 
 

(a) 
 

 
 
 
 
 
 
 
 
 
 

(b) 

Figure 6 Cut-off regions. 

 Figure 7 Partitions of the collected signal strength values 
(signal strengths against time). 
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traversed. It is possible to partition the data within the 
same zone into two or more segments. Sometimes, it is 
possible to have more than one valid answer. For each 
possible answer, our system will sum up the average 
possible scores in each segment along the path, and then 
rank the results by their total possible scores. Further, it is 
possible to have no valid answer. Then, WHAM! will 
report the zone with the longest backtrack path. 

V. EXPERIMENT 
Our experiment was carried out in the Laboratory area 

on 4th floor of the Department of Computer Science and 
Engineering. The layout of the floor is shown in Figure 8. 
Its size is 43.5m by 40.5m, with an area of 1761.75 sq. m. 
We used five access points in our experiment at the 
locations shown in Figure 8. We separated the lab area 
into nine zones as shown in Figure 8. The paths we used 
to test our system are shown in Table 3. The system 

collected one signal strength sample per second when the 
user is walking along the paths. 

VI. RESULT AND DISCUSSION 
After a user submitted a location query to the system, 

there are 3 results that can be used to evaluate the 
performance of the system. They are, 
‧ Possible zones (max 3 zones out of the total 9 zones) 
‧ 1st ranked zone with error of 1-zone distance 
‧ 1st ranked zone with no error 

 
After the user submitted a location query, the system 

will return a list of possible zones for the user’s possible 
locations. A ranking will be given to the zones to indicate 
their relative likelihoods to be the correct location of the 
user’s location. The neighboring zones of the 1st ranked 
zones are the 1st ranked zones with error of 1-zone 
distance. Table 4 shows the results of the 8 experiments. 
We can easily see that in all of the tests WHAM! 
identified the correct zone among the top three zones it 
returned (first case) with the top zone identified being no 
more than one zone off the actual location (second case). 

 
In the third case, two out of the eight test cases were 

wrong, but both were due to the same mistake made in 
distinguishing Zone 7 and Zone 9. Figure 10 is a 
magnified version of the floor plan which shows only the 
area around Zone 7 and Zone 9. 

Possible zones

2, 3

1, 2

 
Figure 9 Comparison between connectivity of the graph and 
possible zones. 

Figure 8  Floor plan with the locations of the access points and 
zones. 

Table 3 
THE PATHS FOR TESTING 

 Paths 

1 4->9->5 
2 4->1->2 
3 5->9->7 
4 4->8->3 
5 5->1->4->9->7 
6 4->8->6 
7 4->8->5 
8 5->8->3 

Table 4 
THE  RESULTS OF THE EXPERIMENTS 

Results Accuracy 

1) Possible Zones (max 3 zones out of 9) 100% 
2) 1st Ranked zone with error of 1-zone distance 100% 

3) 1st Ranked zone with no errors 75% 
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As shown in the floor plan, Zone 7 and Zone 9 are very 

close together. Further, the two zones are reachable from 
each other through two doors that are almost next to each 
other. This means that if the user is in Zone 7 and the 
system is unable to distinguish Zone 7 and Zone 9, 
backtracking will bring the system back to Zone 9, which 
is not different enough from Zone 7 to disambiguate the 
two zones. To make the situation worse, the two zones are 
only separated by a very thin wall, which can not reduce 
the signal strength in Zone 7 effectively, thus making the 
signal strength readings of Zone 7 and Zone 9 very 
similar. 

 
To handle this error, we analyze the collected signal 

strengths at these two zones. It is found that the min-max 
ranges of zone 7 were covered by the min-max ranges of 
zone 9. Thus, if the location was determined to be zone 7, 
zone 9 was returned as the result too. We want to find a 
significant access point which is able to distinguish them. 
From the data, we observed that there is a large difference 
between the max values of these two zones from AP3 
because AP3 is nearest to the two zones and zone 9 is in 
effect in direct line of sight to AP3. Thus, we set a 
threshold value for AP3 to correct the error. Although in 
the experiment manual fine-tuning was performed after 
observing the error, the fact that Zone 7 and Zone 9 are 
hard to distinguish could have been discovered from a 
reachability analysis on the floor model [4] and special 
treatment could have been done to handle zones that are 
direct reachable without corners or thick walls to change 
the signal strengths between them.. 

 
By backtracking on the signal strength data, more 

accurate location estimation can be deduced. This can be 
illustrated from the example below. As shown in Figure 

10, zones 6 and 9 are very close together and they are only 
separated by a very thin wall. If only the final signal 
strength data were used to determine the location, the two 
zones are very difficult to distinguish using only WiFi 
signal strengths. However, if backtracked signal strength 
data are also taken into consideration, Zone 6 and Zone 9 
can be distinguished, because they are not connected 
together by any corridors or doors.  

 
Compared to the method proposed by Ho. et. al. [3], our 

method does not require user training and our 
experiments were conducted in a compact area consisting 
of dense and contiguous locations. Ho. et. al. reported 
80%-85% accuracy with two training sets where only 
three possible locations were used. Although the 
accuracy as reported in Table 4 is only 75%, the errors 
cases were due to two closely connected locations, which, 
as discussed, could be identified and corrected by 
analyzing the location model. It is fair to conclude that 
our method, without the need for training, is more 
practical and more robust in a real environment. 

VII. CONCLUSION 
In this paper, we presented WHAM!, which is a 

WiFi-based localization method. WHAM! is unique in 
that it uses the signal strength values recorded along the 
user’s path and a floor model of the area encoding the 
zones and reachability of the zones to deduce the user’s 
current location. The system was set up in an area of 
dense and contiguous locations. The accuracy was shown 
to be 75% accuracy and the erroneous cases were all due 
to the same error source, which was caused by two rooms 
separated by a thin wall and reachable from each other. 
By analyzing the floor model and fine-tuning the 
threshold, this consistent error can be easily eliminated. 

 
In the current design of WHAM!, only very primitive 

statistical methods were used. However, we have 
successfully demonstrated that the signal strength data 
collected from the user’s previous locations is very useful 
for enhancing the accuracy and robustness of 
localization.  
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Figure 10  Magnified floor plan showing Zone 6 and Zone 9.
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