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ABSTRACT 
With the emergence of large and multi-scale sensor networks, the 
technologies of multi-scale processing among various sensors 
become an essential issue. In this paper, the problem of exploiting 
data correlation for multi-scale sensor networks is considered, and 
an architecture exploiting correlation is designed for both intra- 
and inter-data processing. Our correlation-adaptive scheme 
follows the characteristics of real sensor data, and fills the gap of 
the correlation models addressed by most of previous research 
with inherent support for related data gathering algorithms. A core 
solution module of this architecture is devised, and theoretical 
analysis and simulation studies are conducted on real-world 
datasets. Through the real-world data experiments in terms of 
accuracy and energy-consumption evaluation, the correlation-
adaptive scheme is shown to work well in multi-scale processing 
sensor networks.   

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design- Distributed networks; C.3 [Special-
Purpose and Application-Based Systems]: Microprocessor/ 
microcomputer applications; H.2.8 [Database Management]: 
Database Applications- Data mining. 

General Terms 
Design, Experimentation, Performance. 

Keywords 
Wireless sensor network, Multi-scale processing, Intra-/Inter-data 
correlation, Data sample, User query, Correlation exploiting 
architecture, Correlation adjustment function. 

 

1. INTRODUCTION 
The world is emerging as increasingly pervasive, and is 
challenged to provide services which integrate people, 
environment and knowledge. Pervasive computing seamlessly and 
invisibly pervades information and communication technologies 
into various environments and conditions, delivering services 
adapted to individuals and differing contexts of use [2]. The most 
essential characteristic of a pervasive system is the capability of 
sensing the physical world via a huge variety of sensors and 
controlling it through myriad of actuators. These services will 
have to be greatly based on contextual information and successful 
exploitation of local knowledge, while coping with highly 
dynamic environments and unpredictably changing resources. 
Therefore, the emerging “pervasive sensing world” will, from a 
networking point of view, face the key issue of efficiently 
handling sensor data in a multi-tasking environment, which we 
term as the multi-scale processing problem. 
Compared with that of sensing data generation and synthesization, 
most previous research has focused on optimizing the energy 
consumption with the consideration of the limited battery supply. 
In reality, however, both data-centric nature and extreme energy 
restrictions should be perceived as two main characteristics of 
wireless sensor networks (WSNs). Based on the inherent 
attributes of data sensing and processing, in this paper we 
advocate the use of correlation analysis and data mining 
techniques to optimize both energy consumption and information 
accuracy. 
The data-centric nature is significant for WSNs, as it is the data 
values that are concerned rather than the IDs of sensor nodes. 
Meanwhile, due to the rather limited resource constraint, the 
sensing and communication overheads of indirections must be 
avoided as much as possible. Thus, exploiting local data 
correlation becomes a necessary and efficient way to achieve 
long-lived sensor networks. Indeed, a WSN will not scale without 
making use of data correlation information: consider for example 
a network of n nodes, even with optimal routing, optimal power 
control, and optimal transmission schedules, the total transport 
capability scales like O(n1/2), i.e., O(1/n1/2)→0 bit per node when 
n is large enough [11]. This indicates the great importance of in-
network sensor data correlation processing. Moreover, as a sensor 
network grows large and sensor motes become heterogeneous (i.e., 
in a multi-scale processing environment), sensors with multiple 
tasks will obtain more efficient cooperation with the help of 
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mining miscellaneous (and even just potential) correlation among 
the data samples. In this paper, we 

• describe a multi-scale processing environment in which 
an appropriate methodology is developed and analyzed 
for large scale sensor networks; 

• design a correlation exploiting architecture for multi-scale 
processing in WSNs, and devise a core solution module 
for both simplified cases and real sensed data. 

The rest of this paper is organized as follows. In Section 2 we first 
illustrate the multi-scale processing (MSP) environment of sensor 
networks, and then discuss the issues involved in MSP. In Section 
3, the data correlation problem is presented, and a correlation 
exploiting architecture is designed with an analysis of a core 
solution module. The performance of the core solution module is 
evaluated in Section 4 for both simple case studies and real-world 
data experiments. Related work is reviewed in Section 5, and 
conclusions and future work are given in Section 6. 

2. ISSUES OF MULTI-SCALE 
PROCESSING 
In this section, the scenario description of multi-scale processing 
is first illustrated (Section 2.1), and then some applicable methods 
for multi-scale processing are discussed (Section 2.2) by 
considering the characteristics of sensor data. 

2.1 Scenario Description 
A multi-scale sensor network is shown in Figure 1, in which the 
wide area context is classified into several types, identified by 
different colors in the picture. Take a weather monitoring system 
as an example: the wide area context may contain the sun 
illumination angle, sky condition, canopy structure and etc., the 
integration of which constitutes complete information of the wide 
area context. Similarly, sensors with different colors are pre-
configured for different functions (probably for different tasks). 
These sensors do their own sensing tasks as well as cooperating 
with others, i.e., in-network data fusion, to give a full view of the 
phenomena in the network.  

 
Figure 1. The structure of multi-scale processing 

As shown in Figure 1, a sensor’s own strategy is determined by 
the data from both itself (intra-data) and other types of neighbor 
sensors (inter-data). We aim at using numerical analysis and data 
mining techniques to deal with the two-step data processing in 
order to increase information accuracy and substantially save 
energy. 

2.2 Issues Involved 
Previous research reveals that sensor data streams exhibit, in 
addition to those outlined in [1], several key characteristics 
including inherent uncertainty, intrinsic intra- and inter-data 
correlation, extremely precious energy, and context-dependent 
data importance [14]. Concentrating on these key characteristics, 
the following issues must be addressed in designing a multi-scale 
sensor system. 
Firstly, a sensor network is to give a reflection of the monitoring 
area. However, the real-world phenomena is consecutive while 
the data streams generated from sensor readings are discrete, 
probably with some noise such as sampling errors, faults and 
external attacks. Uncertainty is therefore inherent under local 
observation. Data stream modeling, event reconstruction, and 
noised sampling techniques are required to handle such data 
uncertainty.  
Secondly, the event information captured by adjacent sensors is 
usually correlated due to the high redundancy of sensor 
deployment. Thus, different sensors observing the same object 
can share their information and eventually constitute an integrated 
view of the object. The intrinsic data correlation then lies in two 
aspects: intra-correlation (for the correlation of data samples 
generated by the sensor itself and/or its neighbor sensors with the 
same task) and inter-correlation (for the data samples generated 
by sensors with different tasks for correlation reference). 
Numerical analysis and de-correlation are the main correlated 
techniques. 
Thirdly, energy is always a key concern in sensor networks, 
which is also influential to the quality of data sampling and in-
network processing. The extreme energy constraint calls for 
methods such as prediction-based data sampling rate adjustment. 
Lastly, data samples have different importance under different 
context. Take the air pollution index (API) by Equation (1) as an 
example: 

1 2API max( , ,..., )nI I I=                                  (1) 
where Ii (i=1,2,…,n) represents the concentration of various air 
contamination in the same area. The API indicates the air 
pollution level and it is harmful for people to live in an area where 
the value of API is more than 100. Given that there exists an air 
pollution monitoring sensor network in an area, the API sample 
values larger than 100 are more important than those smaller ones, 
and should be endowed with higher sampling rate and higher 
transmission priority. Decision making theory is required for 
sensing and communication schedules, especially for a multi-scale 
sensor network. 

3. EXPLOITING DATA CORRELATION 
As mentioned in Section 2, our work is to exploit, under 
application-specific requirements of information accuracy, the 
correlation of sensor data in order to save energy in multi-scale 
processing. In this section, we first formulate the data correlation 
problem in multi-scale sensor networks (Section 3.1), and then 
come up with the design of a correlation-exploiting architecture 
(Section 3.2). A core solution module of this architecture is 
finally devised and analyzed (Section 3.3). 



3.1 Data Correlation Problem 
We start the data correlation problem with a real-world scenario: 
the air pollution monitoring sensor network, in which the API-
concentration relationship and API-grade relationship are pre-
defined as shown in Table 1. 
The table reflects theoretical correlation among different kinds of 
air-borne particulates. However, the concentration of a special 
kind may vary as the monitoring area changes, which cannot be 
precisely pre-configured in the correlation structure. Most 
previous researchers based their ideas on such a static and 
unchangeable correlation structure as Table 1, with little concern 
for runtime correlation refinement. In reality, however, the data 
streams are dynamic and uncertain, perhaps with some special 
and/or potential correlation which cannot hold accurate pre-
definitions and have to be learned during sensor operations. 
Hence, we formulate the problem from the perspective of data 
correlation through Definitions 1 and 2. 

Table 1. API, concentration, grade & state 
TSP SO2 NOx In Grade & State 

1.000 2.620 0.940 500 
0.875 2.100 0.750 400 
0.625 1.600 0.565 300 

 
V, 

Excellent 

0.500 0.250 0.150 200 IV, Good 
0.300 0.150 0.100 100 III, Normal 
0.120 0.050 0.050 50 II, Not good 

- - - <50 I, Bad 

Definition 1: Given measurements X1, X2, ..., XN at time T1, T2, ..., 
TN, the lag k autocorrelation function is defined as: 

1
( ) N k

x ii i k
R k X X−

= +
= ⋅∑                               (2) 

Although the time variable, T, is not used in the formula for 
autocorrelation, the assumption is that the observations are equi-
paced. 

Definition 2: Given measurements X1, X2, ..., XN and Y1, Y2, ..., YN 
at time T1, T2, ..., TN, the lag k cross-correlation function is 
defined as: 

1
( ) N k

xy i i ki
R k X Y−

+=
= ⋅∑                           (3) 

The cross-correlation indicates the simultaneous change between 
two numerically valued random variables. 
The data samples generated from sensors possess both 
autocorrelation and cross correlation. Consequently, the sensor 
data correlation problem is divided, separately, into two sub-
problems of intra- and inter-data processing. We use Definitions 3 
and 4 to clarify the two sub-problems. 

Definition 3: Given a sensor a and its homogeneous neighbor set 
NSa={sa1, sa1, sa2,…, sam},ψ the intra-correlation is defined as a 
combination of  the autocorrelation of the data sensed by sensor a 
itself and the cross-correlation of  the data generated from a and 
its neighbor nodes sai,(i=1,2,…,m). 

                                                                 
ψ Here the homogeneous sensor nodes represent sensors with the same 

monitoring task. e.g., nodes sensing sun illumination are homogeneous. 

The first sub-problem is thus concerning how to locally exploit 
intra-correlation to adjust its pre-defined correlation structure to 
specific circumstances. 

Definition 4: Given a sensor a and its heterogeneous neighbor set 
NDa={da1, da1, da2,…, dan},ζ the inter-correlation is defined as  
the cross-correlation of  the data generated from a and its 
neighbor nodes dsi,(i=1,2,…,n). 
The second sub-problem is thus concerning how to exploit inter-
correlation in a multi-scale sensor network, to make use of the 
inter-correlation to elaborate the pre-configured correlation, and 
to eventually obtain an adaptable correlation structure for a 
specific context. 

3.2 Correlation Exploiting Architecture 
Our approach to solving the two sub-problems mentioned in 
Section 3.1 is by designing a correlation-exploiting architecture. 
In particular, we introduce in this subsection the intra- and inter-
data processing modules, respectively. 

 
Figure 2. Intra-data processing module and data flow 

The intra-data processing module is as illustrated in Figure 2. As 
shown in this figure, the intra-data processing module is to 
analyze intra-correlation for the sensing module and handle 
sampling rate alerts from the communication module. The dashed 
arrow on the right hand side means that the self-sampled data 
value may or may not be output, depending on the result of the 
decision-making process. For example, if current sample value is 
the same as the pre-sampled value or of little importance for 
describing the current context, the system needs not transmit this 
value to the sink node (so that the transmission energy can be 
saved). 
The correlation structure (with pre-configured basic value interval) 
and the processing center are two main components of the intra-
data processing module. The basic value interval is derived from 
statistical results and/or empirical estimation; it represents the 
criterion of sample values. If a sample value exceeds the lower or 
upper bound of the basic value interval, or the probability of a 
certain value is of a striking dissimilarity between the sampling 
results and that in the basic value interval, it probably implies an 
event happened in the area.  
A prototype correlation structure with the basic value interval and 
some basic definitions of the data correlations is configured in 
priori, and sensors initially use this prototype as a reference to 
their work. As the wide area context changes, the prototype needs 
update and refinement in real time so that it can provide more 

                                                                 
ζ Here the heterogeneous sensor nodes represent sensors with different 

monitoring tasks. e.g., sensor nodes recording temperature and recording 
humidity are heterogeneous ones. 



accurate information for the sensing and communication module, 
and eventually optimize the entire data sampling process. 
The main duty of the processing center (cf. Figure 2) is to manage 
and maintain the correlation structure. When a new sample comes, 
the value is first checked according to the basic value interval. 
Then the processing center makes a judgement with reference to 
current correlation structure and the sample's intra-correlation, 
including the autocorrelation with historical samples from the 
data cache and cross-correlation with neighbor samples, indicated 
by neighbors’ alerts from the communication module., and 
correspondingly updates the correlation structure and adapts 
sampling strategy to the wide area context. 

 
Figure 3. Inter-data processing module and data flow 

The inter-processing module as shown in Figure 3 possesses a 
similar architecture. The dashed arrow means on the right hand 
side that the value may be output or saved in the historical data 
cache for future reference.  
The real-world context is miscellaneous, so we theoretically 
assume that the context is described as a combination of various 
attributes, and heterogeneous sensors collect information related 
to separate attributes. For example, in a fire watching system, 
three types of sensors are deployed for sensing the temperature, 
the concentration of carbon dioxide, and the concentration of 
carbon monoxide, respectively. The three types of sensors 
constitute a multi-scale sensor network. Managing interactions 
among these multi-type sensors is thus the main task of the inter-
data processing module.  
As shown in Figure 3, the central module consists of an inter-data 
cache, a correlation structure, an embedded aggregation module, 
and the processing center. The inter-data cache stores relevant 
external samples from heterogeneous neighbors, based on the 
inter-correlation (represented by the correlation structure). The 
aggregation module deals with data fusion of correlated attributes. 
The processing center plays the role of analyzing user queriesξ, 
updating the correlation structure, and managing data aggregation 
and sample output. As in [15], the user queries can be used as 
implication of potential and/or special correlation in special cases. 
Through the 2-step processing modules, our ultimate goal is to 
optimize energy consumption as well as information accuracy for 
a network involving multi-typed sensors. 

                                                                 
ξ A user query is a set of attributes queried together. e.g., “Attributes 

{temperature,humidity} in Area 2 at Time 3:00 pm” is a user query for 
temperature and humidity simultaneously. 

3.3 Core Solution Module 
We now proceed to analyzing, in detail, the functions of the 
processing center for intra- and inter-correlation (cf. Figures 2 and 
3), based on a general algorithmic description. 
The prototype correlation structure shown in Figure 4 is initially 
configured based upon empirical and statistical knowledge. With 
new data item and new query input, the correlation adjustment 
function runs according to real-time intra-/inter-correlation and 
updates correlation if necessary. 

 
Figure 4. Framework of the core solution module 

For intra-data processing, we assume that only a single attribute 
of the wide area context is sensed by a cluster of sensor nodes, 
leaving the discussion of multi-attribute sensing to the inter-data 
processing part. A general description of our correlation 
adjustment algorithm (Algorithm 1) is given below. 

 
In Algorithm 1, the data streams are represented by a set called 
RawSmp since sensors can only capture discrete samples. As a 
sensor’s intra-data processing center interacts with its sensing and 



communication modules simultaneously, the algorithmic 
description is divided into two parts which actually work 
concurrently. 
The first part in Algorithm 1 is for the interaction with the sensing 
module. When receiving a sample from RawSmp, the sample 
value is compared with the BasicValue. An eligible sample is then 
cached and its correlation is recorded as a reflection of current 
state of the context. The core function is illustrated in lines (5) ~ 
(16). If the current sample is consistent with recent ones stored in 
the historical data cache, indicating slight change during the 
period, the sensor reduces its sampling rate to save energy. 
Otherwise a rate increasing alert is sent to neighbor nodes because 
of a potentially sudden change in the sensing area. Since the 
sample value may be distorted for several reasons such as external 
events, noise, faults and attacks, the sample exceeding the 
BasicValue is a signal of these reasons and the operation in line 
(15) informs its neighbor nodes of the exception. 
The interaction with the communication module is described in 
the second part of Algorithm 1. The functions Merge in line (4) 
and Divide in line (9) are the main operations for intra-
correlation-based correlation adjustment. The function Merge 
combines data value intervals to indicate environmental similarity 
when neighbors’ data exhibit a stable state while current sample 
and recent historical data are in different correlated value groups 
(denoting originally weak intra-correlation). The function Divide 
runs otherwise. When an alert message exceedBasicValue comes, 
user/application-specific operations are invoked since the reason 
for exceeding the basic value varies and the user/application 
requirements are different. 
The inter-correlation adjustment is illustrated in Algorithm 2, 
where an n-scale sensor network is considered. The n-scale 
indicates the context represented by a combination of n correlated 
attributes. We assume that each attribute is sensed by a certain 
type of sensors, and sensors of different types have the ability to 
communicate with each other. The n types of nearby sensors 
coorperate, forming an n-scale sensor network. 
In Algorithm 2, a sensor’s inter-correlation structure is generally 
expressed by a vector 1 2( , ,..., )nC c c c= , where ijc represents the 
strength of the cross-correlation of attributes i.attr and j.attr. As 
the real-world context is rather complex, it is difficult to obtain an 
always-accurate description. User queries, as implication of the 
strength of inter-correlation [15], are quite useful in revealing 
potential/special inter-correlation and hence help adjust the 
correlation structure. Therefore, the function CalculateProb in 
line (5) calculates the query frequency of each correlated attribute 
and estimates the probability of each pair of attributes (i.attr, j.attr) 
for sensor i, the result of which is the basis of the application-
specific function Refine in line (7). Lines (8) ~ (15) form the basic 
message handling module; a parameter THRESHOLD in this 
module helps determine the strength of the inter-correlation of a 
given attribute pair. For sensor i in Algorithm 2, if the refined 
inter-correlation of sensors i and j is strong enough, i.e., 
exceeding the pre-configured THRESHOLD, sensor i’s current 
sample is transmitted to sensor j on receiving j’s invitation. 
Alternatively, sensor i first aggregates the sample received from j 
with its own sample, and then forwards the aggregated data item 
to the destination. This cooperative scheme is beneficial to in-
network processing, so that only the most useful data is 
transmitted to the most needed users. Since only those highly 

correlated attributes are aggregated, extra energy consumption of 
unnecessary aggregation and communication can be avoided. 

 

4. PERFORMANCE EVALUATION AND 
CASE STUDIES 

In this section, we evaluate the performance of the embedded 
correlation adjustment architecture according to accuracy and 
energy-consumption. First, we introduce the evaluation metrics in 
Section 4.1. We then consider in Section 4.2 a simplified version 
of our general problem, followed by experimental results and 
analysis on some real-world datasets. 

4.1 Evaluation Metrics 
Energy is a traditional metric in WSNs, based upon the proportion 
of energy consumption by transmission, receiving, sensing, and 
sleeping [3].  
Accuracy, as defined by Definition 5, is another essential criterion. 

Definition 5: Given a data stream STREAM with a corresponding 
state set STATE = {(st1, t1), (st2, t2),…, (stm, tm)} and a discrete 
sample set SAMPLE = {(smp1, t1), (smp2, t2),…,(smpn, tn)}, n≤m, 
the accuracy during time period T=[t1,tm] is defined as 

( , , )
( ( , . )) 100%

( )

accuracy STREAM SAMPLE T
num EQUAL STATE SAMPLE state

TOTAL STATE
= ×

      (4) 

On the right hand of Formula (4), EQUAL is a boolean function, 
showing that at a certain time, if the state of SAMPLE is the same 
as corresponding STATE, the value of EQUAL is 1; 0 otherwise. 
TOTAL is the total amount of states during T, calculated at each 
sampling point. 

4.2 Case Studies 
As shown in Figure 4, data samples and user queries are the main 
sources for correlation adjustment. In the following discussions, 
we consider a simplified intra-data processing example (Case 1) 
and a fundamental inter-data processing example (Case 2) of our 
general problem, in which the two sources are discussed 
separately. 



 
In our experiments, the raw data, sensed samples, and output 
results are given in Table 2 and illustrated in Figure 5. Table 2 
shows the sample values and actions to increase or reduce 
sampling rate adaptively. Notice that an alert is sent at time 3 
when the sensor achieves the fastest sampling rate; an even faster 
rate is needed, however, according to rules (2) and (4) of Case 1 
above. 

Table 2. Intra-operation table for Case 1 

 

 
Figure 5. Comparison among raw data and processed results 

 

In Figure 5, the dotted line in the middle is the state boundary 
which divides the context into two states. The sensed samples 
constitute an approximation to the raw data stream, and the output 
samples are a subset of the sensed samples chosen according to 
the rules of Case 1. 
There are 20 samples during the period of time 0 to 20. With an 
assumption that data streams are sampled without noise, the 
theoretical accuracy can, following Definition 5, simply be 
calculated formulas follows:  

( , , )
( ( . , . ), ) 100%

( . , )

accuracy raw sense t
num EQUAL raw state sense state t

TOTAL raw state t
= ×

     (5) 

where the parameters raw and sense represent raw samples of the 
original data stream and sensed samples, respectively. t = 20 in 
Case 1. Hence, the accuracy for Case 1 is 18/20*100%=90%. The 
errors occur at time 11 and time 20. It is obvious that the discrete 
samples approximately fit the original data stream and illustrate 
the trend of state transition.  
The correlation interval adjustment follows the methods of 
Algorithm 1. Suppose an external sampling rate increasing alert 
(revealing an emergent state transition from neighbors) happens at 
time 11 when Sensor i is still at a low sampling rate. Sensor i got 
a value 3, refers to its recent historical data item value 8, and 
refines the correlation interval from [1, 5] to [1, 3], [3, 5], and 
from [6, 9] to [6, 8], [8, 9], depicting the context with more 
detailed states. This correlation partition calls for Sensor i’s 
attention to the sample value intervals [3, 5] and [6, 8], which is 
helpful for future sampling rate adjustment. Correlation interval 
union happens in just the opposite condition, helping save energy 
under some stable conditions.  
Such operations are adaptive and work well even for real-world 
datasets, as shown in Figures 6, 7 and 8. The daily precipitation 
datasets in [13] are used to demonstrate the practical capability of 
our intra-solution module. Figure 6 shows a comparison of 
original precipitation data stream and output samples with run-
time correlation adjustment. These discrete samples fit the real 
data stream nicely in most of the time, although distortion occurs 
from time 43 to 48 due to some correlation partition/union errors 
during the process of correlation update. In Figure 7 (where 
negative values represent no sensing/output happens at that time), 
the samples without correlation adjustment have missed several 
key points such as data items at time 9 and 10, while the samples 
with correlation adjustment perform much better. The energy cost 
with different initial correlation configurations are analyzed in 
Figure 8, indicating a robust energy consumption pattern of the 
intra-data processing module. 

 
Figure 6. Comparison of original sensed and output samples for the precipitation dataset of Aug. 1st, 1998 in China, with initial 
correlation interval 10 and maximum sampling rate four times of the minimum sampling rate 



 
Figure 7. Data processing with/without correlation adjustment 

 
Figure 8. The energy cost with different initial correlation 
intervals and sampling rates 

As to the more general situations, Case 2 depicts the inter-
correlation adjustment in our architecture. 

 
We use the notation Sa1 to denote a sensor for attribute a1, Sa2 for 
attribute a2, and so on. For a 3-tuple A = {a1, a2, a3} and its 
apriori correlation array C3= (1, 0, 1), Table 3 records the 
QueryLog of the actual user queries received over a period of time. 
It is clear that a1 and a2 are simultaneously queried with a 
frequency of 60%; in contrast, no query occurred for a1 and a3 
simultaneously according to the recent consecutive queries. So 
Sa1.c2 is changed to 1 and Sa1.c3 to 0 based on Rules (2) and (3). 
Subsequently, Sensor Sa1 keeps more interaction for attribute a2 
while less for attribute a3. For instance, if a sample of attribute a2 
comes into Sensor Sa1, the sample will be first aggregated with 
Sensor Sa1’s local sample before getting forwarded, so that higher 
transmission efficiency is achieved. The experiment runs in a 

similar way, the details of which are omitted here due to space 
limit. 

Table 3. User queries for Case 2 
Time 1 2 3 4 5 

Query a1,a2 a1 a3 a1,a2 a1,a2 

 
For the sake of simple expression, we have only discussed and 
simulated the case in which up to three correlated attributes are 
requested at a time. However, our proposed methods can be 
directly applied to cases in which more than three attributes are 
requested at a time. As there are few formalized methods aiming 
at evaluating the performance of interactions among multiple 
sensors, it is part of our future work to develop such applicable 
estimating methods. 

5. RELATED WORK 
The issue of designing a new architecture to exploit data 
correlation in sensor networks was initially addressed by Ganesan 
et al. [9], where the multi-resolution of data storage, distribution, 
and adaptation to correlation was analyzed and a hierarchical data 
handling architecture was presented. The characteristics of sensor 
data streams were researched in [1, 14], and relevant data models 
were developed in [8, 14]. A series of data gathering algorithms 
were devised to address such issues as modeling spatial-temporal 
correlation [7, 12], using hierarchical architecture[9], optimizing 
data coding [6, 16], constructing minimum spanning tree, and 
finding dominating sets [10]. These data gathering strategies 
focused mostly on saving energy consumption in routing. 
However, the high cost of accurate sample acquisition was often 
ignored in those strategies. Recently, much attention has been 
paid to giving a high-resolution by exploiting correlation in data 
gathering (e.g., [5]), but, to the best of our knowledge, most of the 
works were based on a static and unchangeable correlation 
structure [7], which cannot precisely reflect the dynamic nature of 
the real-world context. Even a few dynamic models, such as [4], 
concentrated mainly on centralized correlation processing at the 
sink node and depended on highly synchronized update on both 
the sensor network and the sink node. 
Theoretically, achieving optimality usually requires global 
knowledge of real-time sensor data, which may not be available in 
practice. Our work of designing a locally correlation-adaptive 
architecture for intra- and inter-data processing can be, as a matter 
of fact, regarded as complementary to the data aggregation 
approaches mentioned above. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a correlation-adaptive scheme 
which, on the one hand, differs from the static and unchangeable 
correlation structure in most of the previous research, and on the 
other hand, matches the real sensor data well. In our approach, the 
problem of data correlation exploitation for multi-scale sensor 
networks has been considered for both intra- and inter-data 
processing. Inside the correlation exploiting architecture, a core 
solution module is devised whose performance is analyzed upon 
real-world datasets. Our scheme is also complementary and 
applicable to most existing data gathering algorithms. 
Currently, we are in the stage of continuing the development and 
experiments of our system, with detailed performance results of 



the inter-correlation processing to be reported by our subsequent 
research. In addition, we plan to further investigate the 
relationships between real-world data samples and various sensor 
properties, so as to be able to deploy the correlation adjustment 
scheme in an application-specific way. 
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