
A Complete and Efficient Strategy Based on Petri Net in
Automated Trust Negotiation

Yan He
College of Computer Science, Zhejiang University

Zhejiang Financial Profession College
Hangzhou, China

heheyan@126.com

Miaoliang Zhu
College of Computer Science, Zhejiang University

Hangzhou, China

zhum@zju.edu.cn

ABSTRACT
Traditional security model, where the identity of all possible
requesting subjects must be pre-registered in advance, is not
suitable for the distributed applications with strong real-time
requirements, especially recently popular P2P networks and Grid
computing. A promising approach is represented by automated
trust negotiation, which establishes trust between strangers
through the exchange of digital credentials and the use of access
control policies. An automated trust negotiation strategy needs to
be adopted to establish trust between two parties based on their
disclosure policies. Previously proposed negotiation strategies
may fail when in fact success is possible, disclose irrelevant
credentials, or have high communication or computational
complexity. In this paper, we model the policies participating trust
negotiation as Negotiation Petri Net and propose a trust
negotiation Strategy based on Negotiation Petri Net (SNPN) by
combining the characteristics of Negotiation Petri Net architecture
with the behaviors of auto trust negotiation. We prove that SNPN
is efficient with O(n) communication complexity and O(nm)
computational complexity including Negotiation Petri Net
building process and the negotiation process in the worst case,
where n is the number of credentials and m is the size of the
credential disclosure policies. Meanwhile SNPN is complete and
makes sure that no irrelevant credentials will be disclosed during
negotiations.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection; D.4.6 [Operating Systems]: Security
and Protection - Access Control

General Terms
Security.

Keywords
automated trust negotiation; negotiation strategy; Negotiation
Petri Net.

1. INTRODUCTION
Variety of distributed applications with strong real-time
requirements, especially recently popular P2P networks[1] and
Grid computing[2], has challenged the traditional security model.
In distributed systems, different parties may make connections
and do business without being previously known to each other,
different resources are shared across organizational boundaries
and a potentially unbounded number of users and resources exist
with few guarantees regarding pre-existing trust relationships.
However, the traditional security model, where the identity of all
possible requesting subjects must be pre-registered in advance, is
not suitable for the distributed environments. A promising
approach is represented by automated trust negotiation[3,4,5,6],
which establishes trust between strangers through the exchange of
digital credentials and the use of access control policies that
specify what combinations of credentials a stranger must disclose
in order to gain access to each local service or credential.

In automated trust negotiation, access control decisions are made
based on the attributes of requester rather than his identity. A
credential is a digitally signed assertion by a credential issuer
about the credential owner regarding one or more attributes about
the owner, each consisting of an attribute name/value pair and
describing some property of the owner asserted by the issuer[7,8].
Since credentials may contain sensitive and private information,
the disclosure of credentials also must be protected through the
use of policies that specify which credentials must be received
before the requested credential can be disclosed[9]. A trust
negotiation is triggered when one party requests access to a
resource owned by another party. Since each party may have
access control policies that the other needs to satisfy, trust is
established incrementally through the exchange of digital
credentials. Negotiation strategy controls the exact content of the
messages that a party sends to others, i.e., which credentials to
disclose, when to disclose them, and when to terminate a
negotiation. Successful trust negotiation is not always possible, as
the parties may not possess needed credentials, or subjects may
govern their credentials by policies that, together, impose cyclic
dependencies[3]. A complete strategy[10] should be able to find a
successful credential exchange sequence whenever such a
sequence exists. It is high desirable that the negotiation strategy
be complete, reasonably efficient, and avoidable disclosing any
credentials that are not needed for the successful negotiation.

Some negotiation strategies have been proposed, with different
defects that they may fail when in fact success is possible,
disclose irrelevant credentials, or have high communication or
computational complexity. The earliest negotiation strategies, the
eager strategy and the parsimonious strategy are proposed in [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
*Conference name: Infoscale 2007, June 6-8, 2007, Suzhou, China
*Copyright number (LaTeX \crdata{}): 978-1-59593-757-5

fezzardi
Text Box
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.888

The eager strategy is complete and efficient, but with an
important disadvantage that some irrelevant credentials may be
disclosed unnecessarily. Conversely, the parsimonious strategy
discloses credentials only after exchanging sufficient policy
content to ensure that a successful outcome is ensured, but it is
not complete and introduces the difficulty of deciding when the
negotiation should fail and stop. [10,11] proposed Prudent
Negotiation Strategy (PRUNES). PRUNES is based on
backtracking the AND/OR tree formed by the credentials and
policies. It can finish negotiation efficiently, but ignoring the
complexity of building the AND/OR tree, which requires
exponential time and space. Yu et al.[12,13] developed families of
strategies called disclosure tree strategy (DTS) where two parties
can negotiate trust if they choose different strategies within the
same family. Each disclosure tree is a branch of a set of policies.
Although some strategies in the DTS family are efficient, like the
TrustBuilder-Simple and TrustBuilder-Relevant shown in the
articles, it would require exponential time and space during a
negotiation. A credential or a policy is assigned a weighted cost in
[14]. The objective of the paper is to minimize the total sensitivity
costs of the credentials and policies disclosed by a trust
negotiation protocol, which proposes a new direction of search in
trust negotiation strategy. Ye et al.[15] introduces a third party
trusted by both peers to act as a mediator and disclose their
credentials and policy rules to each other when appropriate, thus
breaking the cyclic dependency and allowing trust negotiation to
succeed in peer-to-peer systems, but in contravention of not
involving third party in auto trust negotiation.

In this paper, we introduce the definition of Petri Net to the trust
negotiation and model the policies participating negotiation as
Negotiation Petri Net. Petri Net[16] is an excellent formalism to
model a large class of discrete state systems that exhibit a large
amount of asynchronous behavior, yet have the capability to
occasionally synchronize some of their activities. In auto trust
negotiation, the policies of both parties compose a collection for a
possible negotiation progress, and the credentials in the policies is
asynchronous or synchronize as some credentials must be
disclosed based on others. It is reasonable and efficient to model
the policies participating trust negotiation as a Negotiation Petri
Net. Based on the model, a trust negotiation Strategy based on
Negotiation Petri Net (SNPN) is proposed. SNPN guarantees to
succeed whenever trust establishment is possible between two
parties, meanwhile it makes sure that no credential will be
disclosed if the negotiation fails, and no irrelevant credentials will
be disclosed if the negotiation succeeds. We prove that SNPN is
efficient, in the worst case, the communication complexity is O(n)
and the computational complexity is O(nm) including Negotiation
Petri Net building process and the negotiation process in the worst
case, where n is the number of credentials involved in the trust
establishment and m is the total size of the credential disclosure
policies for these credentials.

The paper is organized as follows. Section 2 defines credential
disclosure policies. Section 3 proposes Negotiation Petri Net
model and its Reverse Negotiation Petri Net. In section 4 the
negotiation process of SNPN is discussed in detail. Section 5
analyzes communication and computational complexity of SNPN.
Section 6 draws conclusions and describes directions of possible
future work.

2. CREDENTIAL DISCLOSURE POLICIES
In auto trust negotiation, trust is established incrementally through
a sequence of bilateral credential disclosures without involving
third parties. A negotiation process is initiated by a party
(typically, a Client) requesting services from another party (a
Server). If the initially requested services are granted, trust is
established and the client can visit the service. In the simplest
case where credentials do not contain sensitive information, they
can be shown to anybody whenever requested, and only the
service itself needs to be protected from unauthorized access. The
client will be willing to provide any credentials requested by the
server in order to get the service. In this case, the trust negotiation
can be finished in a single round. But the common cases are that
credentials contain sensitive information and need to be protected
from unauthorized access, a single-round trust negotiation is no
longer sufficient, and a certain level of trust must be established
before a party is willing to disclose a credential[17].

In this paper, we formalize the trust negotiation process using
prepositional symbols as in [10]. A credential C is disclosed if it
has been sent to the other party in the negotiation. A credential
access control policy for a resource R is defined as a credential
expression:

CR FR (C1, C2, … , Ck)
where FR is a logical form with credentials from the other party
C1,C2,…,Ck and the boolean operators ∧ and ∨ . Ci (1≤ i≤ k) is
satisfied if and only if the other party reveals credential Ci. The
credential CR of resource R can be access by the other party if FR
(C1, C2, … , Ck) is evaluated to TRUE. If credential CR is
disclosed without requiring the disclosure of any other credential,
which means this credential can be freely disclosed whenever
requested, then credential CR is said to be unprotected. The policy
for CR is written as CR ε . Also, when an agent does not have
credential CR, or when it does not disclose CR in any cases, the
policy for CR is written as CR false or omitted generally, and is
called as denial policy. Obviously a party has denial policies for
credentials it does not possess. An intuitive observation is that
two parties cannot establish trust unless there is at least one
unprotected credential on either side.

Given sequence G = (C1, … , C|G|) of disclosures of protected
resources, |G| is the number of the credentials in the sequence. If
each Ci is unlocked at the time it is disclosed, which means G is
applied and satisfies resource R’s access control policy, then we
say G is a safe disclosure sequence for R. The purpose of trust
negotiation is to find a safe disclosure sequence where C|G| = R,
the resource to which access was originally requested.

Figure 1 shows a successful trust negotiation process initiated by
a client requesting service S from a server. The client’s access
control policies are shown at the left, and the server’s access
control policies are shown at the right. The client begins by
revealing credential C5, since no previously received server
credentials are needed in order for the client to disclose it. The
server then discloses S3, which requires the earlier receipt of client
credential C4 or C5. The credential exchange process continues as
shown in the center of the figure and finishes by S is disclosed. At
each round, all policies for disclosed credentials are satisfied. The
safe disclosure sequence in the figure is G=(C5, S3, C1, S2, C2, C4,
S). There exists other safe disclosure sequences, for example,
G’=(C4, S3, C1, S2, C2, C4, S).

Figure 1. An Exmple of Disclosure Policies

The sequence of exchanged credentials is decided by a trust
negotiation strategy based on local credentials, local policies,
requests for local credential from the other party, and credentials
received from the other party. The strategy starts when the client's
security agent sends a request for service S to the server, and then
the server checks S’s policy. If S is an unprotected service, the
request for access to it is granted immediately, which means the
security agent informs the client that credential S can be visited
immediately. If the server does not possess S, the request is
denied. Otherwise, the security agent of server tries to find
solutions to the policy, for example, S (C1∧ C6)∨ (C2∧ C4) in
figure 1. The server sends the requests for the credentials in the
policy to the client. The security agent of client check the
credentials based on the local policies and if one of the
disjunction of credential for S can be fulfilled, a safe disclosure
sequence is got and credentials are actually disclosed according to
the order of the sequence. Otherwise the client sends requests to
the server for the credentials needed in its policies. The check
goes on until S can be granted or denied. If the request for service
S is denied, the process halts and claims that a successful
negotiation is impossible between the two parties. If S can be
granted, a safe disclosure sequence is returned. Then both parties
in the negotiation begin to disclose credentials, using grant and
deny information accumulated during previous negotiation
rounds.

3. NEGOTIATION PETRI NET
In this section, we introduce the definition of Petri Net to the trust
negotiation and model the policies of both parties as a Negotiation
Petri Net. For the strategy running, which is analyzed in the next
section, a Reverse Negotiation Petri Net is built base on
Negotiation Petri Net.

Petri Net offers a powerful formalism for analysis of the
concurrency or the interaction of events. A Petri Net structure is
defined as a triplet N = (P, T; F), where P = {P1, P2, …, Pn} is a
finite set of places, T = {T1, T2, …, Tk} is a finite set of transitions
with φφ ≠= TPTP ΥΙ , , F is a flow relation with

PTTPF ××⊆ Υ , (× is a Cartesian product). Each place in P
represents a state of resource, transitions in T generate the flow of
the states in P which is expressed by F. Places contain tokens
which is the number of the resources. Generally, a place is drawn
as circle, a transition is drawn as a bar, a flow relation is drawn
with an arrowhead on their destination and tokens are drawn as
dots in the circles.

We model the trust negotiation progress based on the series of
negotiation policies of the server and the client. The definition of
Negotiation Petri Net is as follows.

Definition 1. Negotiation Petri Net is a triplet NP = {P, T; F},
where P = {Ci, which is the credentials of the client and the
server}. T = {ti, which is the operations of the credentials in P
except for the policies for the unprotected credentials}. F = {the
flow relation between nodes in T and P corresponding to the trust
negotiation policies}.

In Negotiation Petri Net, all the credentials of client and server
displayed in the trust negotiation policies form the places set P,
while the nodes in T correspond to the operations of credentials.
No direct flow relations between two places or two transitions.
The flow relations flow from a transition denote the ∧ operation,

while the flow relations flow from a place denote the ∨
operation. Negotiation Petri Net starts from the credential for the
service S originally requested by the client. If a trust negotiation
policy is nCCCS ∧∧∧← ...211 , then the place node for S1 in
Negotiation Petri Net has one transition node t1 as its child, n
place nodes as the children of t1, and F is
{(S1,t1),(t1,C1),(t1,C2),…,(t1,Cn)}. If a trust negotiation policy is

nCCCS ∨∨∨← ...211 , the place node for S1 has n transition
nodes t1,t2,…,tn as its children, while each transition node has one
child, and F is {(S1,t1), (S1,t2),…, (S1,tn), (t1,C1),(t2,C2),…,(tn,Cn)}.
For the simplest trust negotiation policy 11 CS ← , S1 has one
transition node and the transition node takes the place node C1 as
its child, F = {(S1,t1),(t1,C1)}. Tokens are set in the place nodes
corresponding to the unprotected credentials, which are called
TRUE credentials. As the unprotected credentials can be visited at
any time, the number of tokens is set as infinite. One dot is set in
an unprotected credential place. Once token flows from the place
along a flow relation in F to another place, one dot is added in the
destination place and the dot in the source place will not change.

Figure 2(a) gives the Negotiation Petri Net of the policies and
credential exchange sequence of the Figure 1. Negotiation Petri
Net starts from the credential for the service S originally
requested by the client and S needs the client show its credential
C1 together with C6 or C2 together with C4, so place S can either
flow through transition t1 to places C1 and C6, or flow through
transition t2 to C2 and C4. As C3, C4 and C5 are unprotected
credentials, tokens are set in the corresponding places.

Definition 2. Triplet NP’ = {P, T; F-1} is called Reverse
Negotiation Petri Net of NP = {P, T; F}, where

}),(|),{(1 FxyyxF ∈=− .

Reverse Negotiation Petri Net has the same P and T with
Negotiation Petri Net, but only change the arrow directions of the
flow relations in F. In Negotiation Petri Net, a child transition
node of a place represents a clause of the credential’ policy, so
each transition node has only one parent place node. Therefore in
Reverse Negotiation Petri Net, each transition node has only one
child place node. Negotiation Petri Net starts from S, there are
flow relations starting from S but no flow relations ending by S.
Then in Reverse Negotiation Petri Net, no flow relations flow
from S. Tokens firstly flow from the places corresponding to the
TRUE credentials to other places through the flow relation in F–1.

Once a token flows from a source place to a destination place, a
new token is added in the destination place.

Figure 2(b) shows the Reverse Negotiation Petri Net of Figure 1.
Reverse Negotiation Petri Net changes the arrow directions of
Negotiation Petri Net. C3, C4, C5 and C6 become the starting point
and S becomes the end point.

 (a) Negotiation Pet net (b) Reverse Negotiation Petri Net
Figure 2. Negotiation Petri Net and Reverse Negotiation Petri Net for
the Disclosure Policies of Figure 1

Figure 3. Pseudo of Building Negotiation Petri Net and Reverse
Negotiation Petri Net

Figure 3 presents the pseudo code the algorithm constructing
Negotiation Petri Net and its Reverse Negotiation Petri Net.
Given the input of the server policies and the client policies,
Negotiation Petri Net NP = {P, T; F} can be conformed. Each
credential has at most one corresponding place node, and a unique
transition node for each operator exists in NP. When a credential
appears multiple times in the policies, its corresponding place
node has multiple flow relations with other credentials.
Consequently, there may exist cycles in Negotiation Petri Net, as
the path in Figure 2(a) between C1 and C2 along the places C1, t3,
S1, t7, C2, t5, S2, t10, C1. Based on Negotiation Petri Net, its
Reverse Negotiation Petri Net NP’ is built by reverse the flow
relations in NP.

4. STRATEGY BASED ON NEGOTIATION
PETRI NET
The purpose of trust negotiation is to find a safe disclosure
sequence G = (C1, C2, . . . , Ck, S), where S is the resource to
which access was originally requested, such that when a
credential Ci is disclosed, its access control policy has been
satisfied by credentials disclosed earlier in the sequence or to
determine that no such credential disclosure sequence exists. In
Negotiation Petri Net, the place corresponding to the service S is
regarded as the root of the net. Based on the definition of the
place and the transition node of Negotiation Petri Net, a safe
disclosure sequence is in a solution path of Negotiation Petri Net
which (1) contains the root S; (2) if node n∈ P then it contains

one of transition nodes in {ti|(n,ti)∈ F}; (3) if node n∈ T then it

contains all the place nodes in {Ci,Si|(n,Ci)∈ F, (n,Si)∈ F}; (4)
ends with one of the place node with token. The safe disclosure
sequence for S is the credentials in the solution path of
Negotiation Petri Net starts from the place node with token and
ends with S. No safe disclosure sequences exist if one of the
conditions does not be satisfied. Although the solution path is
defined in Negotiation Petri Net, it is searched in the Reverse
Negotiation Petri Net in practice. A reverse solution path is got if
there is and the credentials ordered by the reverse solution path
compose a safe disclosure sequence.

Theorem 1. In Reverse Negotiation Petri Net NP’ = {P,T,F’}, the
transition tx (tx∈ T) will be fulfilled if and only if all the place in

{Ci| Ci∈ P, (Ci,tx)∈ F’} have got the tokens. The place Cy (Cy∈
P) will get token if one of transitions in {ti| ti∈ T, (ti,Cy)∈ F’} has
been fulfilled.

Proof. By the definition of Negotiation Petri Net, the flow
relations flow from a transition denote the ∧ operation, which
means that the transition can be fulfilled only when all the
children places are satisfied. The flow relations flow from a place
denote the ∨ operation, which means that the place can get token
if one of its children transition is fulfilled. The Reverse
Negotiation Petri Net NP’ has the reversed flow relation
directions to Negotiation Petri Net, but the same meaning of the
places and transitions. Therefore, in Reverse Negotiation Petri
Net, a transition can be fulfilled only when all the parent places of
it have got tokens, and a place will get a token if one of its parent
transitions has been fulfilled. □

For example, in Figure 2(b), C4 is a TRUE credential and a token
is set originally in the place node C4. Transition t9 will be fulfilled
as there is only one flow relation in F’ flows into t9. However,
transition t2 and t7 cannot be fulfilled because they must wait until
C2 has got the token. Suppose at a stage, C2 gets token, and is
followed by transition t2 being fulfilled, then S will get the token
as (t2, S)∈ F’. Once S gets the token, a reverse solution path of
Negotiation Petri Net is set and a safe disclosure sequence for S is
obtained.

Some places, transitions or flow relations in F’ can be deleted
safely during the reverse solution path search process in the
Reverse Negotiation Petri Net, for example, the FALSE
credentials with denial policies, such as the credential C6 in
Figure 1, as these credentials have no contributions to the reverse
solution path. Details are shown in Theorem 2.

Theorem 2. In Reverse Negotiation Petri Net NP’ = {P, T, F’},
let Cx be a place, ti is a transition in {ti |(Cx,ti)∈ F’}, tj is a

transition node in {tj |(tj,Cx)∈ F’}.
If Cx is a place corresponding to a FALSE credential, then it
is safe to delete ti and all the flow relations that flow into ti
and flow from ti.
If Cx is a place with token, then it is safe to delete all the
flow relations ended by Cx, all the transitions in {tj |(tj,Cx)
∈ F’} and the flow relations which flow into tj.

If there is no flow relations flow from Cx (Cx≠ S), then it is
safe to delete all the flow relations ended by Cx, all the
transition nodes in {tj |(tj,Cx)∈ F’} and the flow relations
which flow into tj.

Proof. From the assumption, we know that in Reverse
Negotiation Petri Net, all the transitions in {ti |(Cx,ti)∈ F’} are end
nodes of flow relations started from Cx, and all the transitions in
{tj |(tj,Cx)∈ F’} are start nodes of flow relations ended by Cx.

(1) Since credential Cx is FALSE, none solution path will pass
through Cx, then the place Cx can be erased from Reverse
Negotiation Petri Net. By Theorem 1, all the transitions ti in {ti
|(Cx,ti)∈ F’} will not happen, therefore these transitions can be
deleted from T. Since transition ti will never exist in Reverse
Negotiation Petri Net, all the flow relations that flow into ti and
flow from ti must be deleted.

(2) Since credential node Cx has a token, Cx is a granted
credential. Once the other party has granted a credential, the
credential can be visited at anytime. In Reverse Negotiation Petri
Net, it is unnecessary to keep the flow relations ended by Cx, then
all the flow relations {(tj,Cx) ∈ F’} can be deleted. By the
characteristic of Reverse Negotiation Petri Net, each transition
has only one child place. Since the flow relation started from the
transition node tj has been erased, the transition tj can be pruned
and all the flow relations that flow into tj must be deleted.

(3) The destination of the solution path is the place S and there are
at least one flow relation which flows into it but none flow
relation flowing from S in Reverse Negotiation Petri Net. If a

place node Cx is not S but with no flow relations flow from it, the
place Cx is not a contributive place to achieve S and it can be
pruned. Since Cx has been deleted, all the flow relations ended by
Cx: {(tj,Cx)∈ F’} must be deleted. As the explained in (2), the
transition node tj can be pruned and all the flow relations that flow
into tj must be deleted. □

For example, in Figure 2(b), C6 is a place corresponding to a
FALSE credential, then t1 can be erased from the figure, followed
by erasing the flow relations (C6, t1), (C1, t1), (t1, S).

Theorem 3. In Reverse Negotiation Petri Net NP’, if none of
transition ti in T satisfy: all the place nodes in {Cj|(Cj, ti)∈ F’}
have tokens, the reverse solution paths do not exist.

Proof. Tokens flow from a place to another place through the
transition between them. By Theorem 1, the transition tx will
happen if and only if all the place in {Ci|(Ci,tx)∈ F} have got the
tokens, which means that a transition can not be fulfilled if one of
its parent places does not have token. Here we call the transition
is in the Waiting Position. If all the transitions in T are in the
Waiting Position, no tokens will flow in the net. Therefore no
tokens will reach S, the destination of the reverse solution path,
and safe disclosure sequence do not exist. □

Figure 4. Pseudo of Key Functions of SNPN

The purpose of SNPN is to find a reverse solution path and return
a safe disclosure sequence. Based on the theorems analyzed
before, SNPN works as follows. Firstly, the FALSE credentials
and their related transitions and flow relations are deleted

according to Theorem 2(1) as they will never appear in the
reverse solution path. Then the search process begins. Based on
the currently disclosed credentials (the disclosed credentials have
tokens in Reverse Negotiation Petri Net), the transitions, which
can be fulfilled, are collected and form a fulfilled-transition set. If
the fulfilled-transition set is empty, according to Theorem 3, the
search exits and returns that no solution exists. Otherwise, a
transition in the fulfilled-transition set is selected and tokens flow
from places to other places across the transition, followed by
deleting the places, transitions and flow relations according to
second and third part of the Theorem 2. The process goes on until
none solution has been found, or S has got the token and a safe
disclosure sequence has been returned. Figure 4 gives the pseudo
code of two key function of SNPN.

Figure 5. Each Stage of Reverse Negotiation Petri Net of Figure 1

during SNPN Works

Figure 5 gives each stage of Reverse Negotiation Petri Net of
figure 1 during SNPN works. In stage (1), the FALSE credentials
and its related transitions and flow relations are deleted from
Reverse Negotiation Petri Net according to Theorem 2(1).
Entering the search process, as C3, C4 and C5 have tokens,
transition t8, t9 can be fulfilled and they are added into the
fulfilled-transition set. According to the order of transitions in set,
t8 is selected and a token is added to S3 across t8 from C5. Then by
Theorem 2(2), transitions t8, t9, and flow relations (C4, t9), (t9, S3),
(C5, t8), (t8, S3) are deleted, as shown in stage (2). Now, C3, C4, C5
and S3 have tokens, transition t4 can be fulfilled and a token flows
from S3 to C1 through t4. After C1 has got a token and finished the
delete process (stage (3a)), S1 is a credential which has no flow
relations flow from it, then according to Theorem 2(3), its related
transitions and flow relations are deleted, as shown in stage (3b).
The search process goes on until S has got a token and return the
safe disclosure sequence (C3, S3, C1, S2, C2, C4, S).

5. ANALYSIS OF SNPN
As discussed before, an auto trust negotiation strategy must be
complete, reasonably efficient, and avoidable disclosing any
credentials that are not needed for the successful negotiation. In
this section, we will analyze SNPN from the three aspects.

SNPN is a complete strategy. Firstly, from the construction of
Negotiation Petri Net and Reverse Negotiation Petri Net, all
credentials and policies are mirrored in the net by the places,
transition and flow relations. Secondly, although some places,

transitions and flow relations are deleted during the search
process, Theorem 2 assures the safety and the deletions are
unaffected to finding a safe disclosure sequence. Furthermore, the
scan of transition in the remained transitions based on Theorem 3
ensures that any chance of granting credentials will not be missed.
So SNPN can find a safe disclosure sequence whenever such a
sequence exists, the strategy is a complete strategy.

The efficiency of a strategy includes two aspects: the
computational cost and the communication cost.

Computation cost is computed in building model process,
negotiation process and credential exchange process. Negotiation
Petri Net is built based on the policies of both parties with total n
credentials and m policies size. Each policy contains n credentials
at most, and the computation cost of building Negotiation Petri
Net is O(nm) in the worst case. Reverse Negotiation Petri Net is
constructed by reversing the flow relations in Negotiation Petri
Net and the computation cost is linear to Negotiation Petri Net. In
the negotiation process, each transition is visited at most one time,
as it will be deleted after the vision. Each credential is disclosed
once, as other flow relations flow into it are deleted, which
effectively avoids cyclical request for the same credential. So the
computational cost in this phase is at most O(nm). The credentials
exchange ordered by the safe disclosure sequence found in the
negotiation phase, and the computational cost of credential
exchange phase is at most O(n). Therefore the total computational
complexity is O(nm).

The communication cost includes both the total size of the
messages and the total number of messages sent between the two
security agents. Negotiation Petri Net is built on the received
messages and only the requested messages are sent between the
client and server. SNPN works so far as a safe disclosure
sequence is found or not and the total number of request messages
is O(n) in the worst case. Since each request message only
contains a credential name, the total size of request messages is
also O(n) in the worst. Credential exchange starts after SNPN has
found a safe disclosure sequence. During this phase, there are at
most n messages and the size of each message depends on the size
of the credential (which we assume is bounded by a constant). In
all, the worst case communication cost is O(n) in the sense of both
the total number of messages and the total size of messages.

In SNPN, credential exchanges begin until both parties know
there exists a successful negotiation. Only the credentials in the
safe disclosure sequence are disclosed, which means SNPN will
avoid disclosing any credentials that are not needed for the
successful negotiation.

6. CONCLUSION AND FUTURE WORK
In this paper we model the policies participating negotiation as
Negotiation Petri Net and propose a trust negotiation Strategy
based on Negotiation Petri Net (SNPN). Negotiation Petri Net is
built by combining the characteristic of Petri Net architecture
with the behavior of policies in auto trust negotiation, and the
modeling complexity is O(nm) which is sharp contrast with
previous proposed modeling methods with exponential time,
where n is the total number of credentials requested and m is the
size of credential disclosure policies. Based on Negotiation Petri
Net, SNPN is a complete and efficient automated trust negotiation
strategy. SNPN guarantees to find a successful credentials

disclosure sequence whenever the credential policies of the
service requester and provider allow. We also proved that, in the
worst case, the communication cost and computational
complexity of SNPN are O(n) and O(nm). Meanwhile, SNPN
ensures that no irrelevant credentials are disclosed in the
negotiation process.

We assume all the credentials are of equal importance in this
paper. However, this assumption is not true in many situations.
For example, ones credit card number or social security number is
often much more sensitive than her home phone number. It is
desirable to establish trust by exchanging the least sensitive
credentials possible. Therefore, besides completeness and
minimal credential disclosure, minimum total sensitivity of
disclosed credentials might also be a desired feature of a
negotiation strategy.

7. REFERENCES
[1] Milojicic D et al. Peer-to-peer (P2P) technology. HP Labs

Technical Report, HPL-2002-57, http:�www.hpl.hp.
com/techreports/2002/HPL-2002-57.html, 2002. Submitted
to ACM Computing Surveys.

[2] . Foster, C. Kesselman. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2004.

[3] Winsborough WH, Seamons KE, Jones VE. Automated trust
negotiation. DARPA Information Survivability Conf. and
Exposition. New York: IEEE Press, 2000. 88-102.
http://isrl.cs.byu.edu/pubs/ discex2000.pdf.

[4] William H. Winsborough, Ninghui Li. Towards practical
automated trust negotiation. In Proc. of the 3rd International
Workshop on Policies for Distributed Systems and Networks
(POLICY’02), pages 92– 103, June 2002.

[5] E. Bertino, E. Ferrari, A. Squicciarini. Trust Negotiations:
Concepts, Systems, and Languages. IEEE Computing in
Science and Eng., vol. 6, no. 4, 27-34, 2004.

[6] Huraisingham, Bhavani. Secure Knowledge Management:
Confidentiality, Trust, and Privacy. IEEE. Transactions on
Systems, Man & Cybernetics, Vol.36, Issue 3. May2006,
429-438.

[7] J. Li, N. Li, W. H. Winsborough. Automated trust
negotiation using cryptographic credentials. In: Proc. of the

12th ACM conf. on Computer and communications security.
New York: ACM Press, 2005. 46 – 57.

[8] Anna Cinzia Squicciarini, Elisa Bertino, Elena Ferrari,
Indrakshi Ray. Achieving Privacy in Trust Negotiations with
an Ontology-Based Approach. IEEE Transaction Dependable
Section Computer, 3(1): 13-30 (2006).

[9] Bertino E,Ferrari E,Squicciarini A. Trust-X: A Peer-to-Peer
framework for trust establishment. IEEE Transaction on
Knoledge and Data Engineering, 2004, 16(7).

[10] Yu T, Ma X, Winslett M. PRUNES: An efficient and
complete strategy for trust negotiation over the Internet. In:
Proc. of the 7th ACM Conf. on Computer and
communications Security. New York: ACM Press, 2000.
210-219. http://www4.ncsu.edu:8030/~tyu/pubs/ccs2000.pdf.

[11] Yu T. Automated trust establishment in open systems [Ph.D.
Thesis]. Illinois: University of Illinois, 2003.

[12] Yu T, Winslett M, Seamons KE. Interoperable strategies in
automated trust negotiation. In: Proc. of the 8th ACM Conf.
on Computer and Communications Security. New York:
ACM Press, 2001. 146-155.
http://isrl.cs.byu.edu/pubs/ccs2001.pdf.

[13] Yu T, Winslett M, Seamons KE. Supporting structured
credentials and sensitive policies through interoperable
strategies for automated trust negotiation. ACM Trans. on
Information and System Security, 2003,1(6): 1-42.

[14] Weifeng Chen, L. Clarke, James F. Kurose, Donald F.
Towsley. Optimizing cost-sensitive trust-negotiation
protocols. In: Proc. of the 24th Annual Joint Conf. of the
IEEE Computer and Communications Societies. Miami, FL,
USA. 13-17 March 2005. 1431-1442.

[15] Song Ye, Fillia Makedon, James Ford. Collaborative
Automated Trust Negotiation in Peer-to-Peer Systems. In:
Proc. of the Fourth International Conf. on Peer-to-Peer
Computing (P2P'04), Aug. 2004.

[16] T. Murata. Petri Nets: properties, analysis and applications.
In: Proc. of the IEEE, 77(4):541–579, Apr. 1989.

[17] W.Winsborough, N. Li. Protecting Sensitive Attributes in
Automated Trust Negotiation. ACM Workshop on Privacy in
the Electronic Society, Washington, DC, Nov. 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

