
Two Extensions of Service Description to Enhance the
Scalability of SOA

∗

Zhifeng Gu
DCST, Tsinghua University

Beijing, 100084, China

gzf@keg.cs.tsinghua
.edu.cn

Juanzi Li
DCST, Tsinghua University

Beijing, 100084, China

ljz@keg.cs.tsinghua
.edu.cn

Ruobo Huang
CSDL, IBM

Beijing, 100085, China

huangrb@cn.ibm.com

ABSTRACT
Service description is the underlying basis of different ser-
vice tasks. In this paper, we proposed two service descrip-
tion extensions to enhance the scalability of SOA. First we
proposed multi-input operation to increase the flexibility of
service interface. Second, we encode service dependency
into service description. Service dependency is not only an
empirical knowledge for reliable service composition, but it
is also a distributed service recommendation and discovery
mechanism, which is more scalable than centralized service
discovery mechanisms such as UDDI.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability—Inter-

face definition languages; H.4 [Information Systems Ap-

plications]: Miscellaneous

General Terms
Service Description, Extension

Keywords
Service Description, Multi-input Operation, Service Depen-
dency

1. INTRODUCTION
Services are considered as self-contained, self-describing, mod-
ular applications that can be published, located, and in-
voked across the Internet. To enable highly flexible and reli-
able service composition technology, there are many tasks to
be concerned, including service description, service discov-
ery, service execution, transaction, and security, etc, among
which, we think that service description is the underlying
basis of all the other tasks.

∗The paper is supported by the IBM SUR project (Service
Science and Technology).

In the research community, many works have tried to en-
rich the expressiveness of service description, for example,
the semantic extensions [1] [5] and the behavioral exten-
sions [3] [2]. In this paper, we proposed two extensions of
service description to enhance the scalability of SOA. The
first extension is multi-input operation. We allow one op-
eration to support different types of messages. This con-
cept is quite similar to the concept of method overload in
programming languages. The second extension is adding
service dependencies to service description. The concept of
dependency is similar to that of service dependency graph
(SDG) [4]. However, in SDG, dependencies are defined on
the abstract level and are implied by service descriptions,
while in our work, dependency is defined among service in-
stances and needs explicit declaration. We think that our
extensions will benefit the scalability of SOA through three
aspects:

1. Enhancing the adaptability of service operations.

When composing services, if the type of the required mes-
sage does not match the type of the provided message, the
traditional solution is to create a message adapter as a medi-
ator. However, without a deep understanding of the schema
of the required and the provided messages, which might be
very complicated and domain-specific, it is not easy to gen-
erate a message adapter correctly. Although there are many
tools aiming at XML message mapping, it is still a time-
consuming and error-prone task to create message adapters.
So we think the service provider should make a service sup-
porting the mainstream schemata in its domain, in order to
avoid message type mismatch in the composing process.

2. Applying empirical knowledge to service com-

position. Web services are independent and autonomous
systems. It is hard to test and debug service-based appli-
cations in a cross-enterprise and cross-organization environ-
ment. It is hard to make sure two services that have never
been tested together can be composed and work properly.
Even if all the message types are exactly matched, it is still
very likely that two services will fail to work together due to
different implementations. We define service dependency as
the relation among the service instances. Dependencies can
either be provided by the service provider, or be collected by
the service composer. Service dependency is a kind of empir-
ical knowledge. When composing services, service composer
can use service dependency as guidance for service discov-
ery and selection. Also, service dependency can be used to

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.884

evaluate the reliability of existing compositions.

3. Providing a distributed service recommendation

and discovery mechanism. As well as to increase the
reliability of service composition, service dependency can
also be considered as a distributed service recommendation
and discovery mechanism. Service dependency is very simi-
lar to “Related Links”, which is a very common concept in
web pages. It contains related services that can work with
this service, and produce more interesting and value-added
results. Comparing with centralized service discovery mech-
anisms such as UDDI, service dependency is more scalable
owing to its distributed natures.

2. MULTI-INPUT OPERATION
In this section, we introduce our first extension, multi-input
operation.

2.1 Motivation
Service designers have to face difficult situations: there are
several well-known schema in his domain; new business part-
ner uses another data schema; customers always require sup-
port for various data schemata. Simply speaking, there is
always a requirement that a service need to deal with het-
erogeneous schemata with similar data semantics. It is a
design philosophy for service designers whether,

1. A service interface should directly support different
types of messages

2. Or, a service interface should be kept simple and clean,
while leaving the message transforming job to message
adapters.

We argue that, from the perspective of service composer,
the first method is better. Regarding the second method,
that who will design and implement the adapter remains a
problem. Normally there are three candidates to design and
implement the adapter:

1. The service composer. It is not an ideal choice, since
it will take a lot of time to understand the data se-
mantics in a complicated data schema so as to design
the message adaptor. And unfortunately, the adapter
created by service composer is usually error-prone.

2. The third party. It is better than the service com-
poser. But there will be some problems when service
composer is required to deal with third party adapters.
For example, how to find a good adapter? If the third
party adapter is an online service and the data is confi-
dential, how can we make sure the third party is trust-
worthy?

3. The service provider. We think this is the most rea-
sonable choice. A service provider is usually an expert
in his domain, so it will be easy for the service provider
to develop his own message adapters. Also, a service
provider knows well where to purchase high quality
message adapters from third parties. Furthermore, a
service provider can choose not to use message adapter
at all, and directly map messages to his internal ob-
jects.

To summarize, we think a service should be adaptive to
different message types. A service can be considered as the

mother board of a PC. If there are only PCI slots on this
mother board, it will be very inconvenient and unreliable to
assemble a computer. For example, the first step, you need
to install an IDE hard disk. It is obviously impossible to
understand the PCI specification and the IDE specification
so as to make an adapter. The only feasible solution is to buy
an IDE/PCI adapter. However, if unfortunately the bought
adaptor is incompatible with the mother board or the hard
disk, unexpected data-loss or blue screen may be incurred.
A mother board with IDE interface integrated will partially
solve this problem, since the integrated IDE interface should
have been tested to be fully compatible with the mother
board. Then, the rest of the problem becomes: how can
we make the hard disk and the integrated IDE interface
compatible with each other? This is really a problem, and
will be discussed in section 3.

2.2 The Problem and Our Extension
We give an example to show what the problem is. Suppose
we are designing a service that processes news materials.
We are facing two schemata in this domain, NewsML 1 and
XinhuaML 2. In order to support both of these two schemas,
there are two approaches.

The first approach is to define two operations to deal with
NewsML and XinhuaML respectively. As WSDL allow op-
eration overload, the names of the two operations may be
the same. However, we think this is not a good way, since
these two operations have the same functional semantics. It
is better to aggregate these two operations into one. The
second approach is to defined a new complex type, which
can contain an element being either NewsML or XinhuaML.
Using this new defined type, we can define a unified op-
eration handling both NewsML and XinhuaML. However,
this approach does not explicitly address that this service
is adaptive to both NewsML and XinhuaML. Although it is
possible to exploit the adaptability of this service through
analyzing the schema, it is better to address the adaptability
explicitly.

To solve this problem, we think one operation should sup-
port different inputs. Our approach is illustrated in list
1. we allow the input element to have several option sub-
elements. Each option is an alternative input of the opera-
tion. Although this extension seems redundant to operation
overload, we think it makes the semantics of the operations
more clear.

3. SERVICE DEPENDENCY

3.1 Motivation
We have mentioned earlier that even if the message types
are matched when composing services, it is still unsafe to say
that the composition will work without sufficient testing. It
is due to two reasons:

1. There is no well-developed method to formally de-
scribe data semantics. Currently, data semantics is
usually specified with natural languages. As services

1http://www.newsml.org
2http://news3.xinhuanet.com/it/2005-01/21/content_
2491428.htm

<import namespace=” ht tp : //newsml . org /”
l o c a t i o n=”NewsML. xsd”/>

<import namespace=” ht tp : //xinhuaml . gov/”
l o c a t i o n=”XinhuaML . xsd”/>

<message name=”NewsMLResquest”>
<part name=”news” element=”nl:NewsML”>

</message>
<message name=”XinhuaMLResquest”>

<part name=”news” element=”xl:XinhuaML”>
</message>
<portType>

<opera t i on name=”ProcessNews”>
<input>

<opt ion message=”NewsMLResquest”>
<opt ion message=”XinhuaMLResquest”>

</ input>
. . .

</ opera t i on>

</portType>

Listing 1: Our approach: Multi-input operation

are developed and deployed across companies and or-
ganizations, different service providers may have dif-
ferent understandings to the data semantics carried by
the XML data.

2. Even if the service providers have the same under-
standing, there may still be some differences intro-
duced in the development process.

So it is hard to guarantee that two services can work together
when they have not been tested together. Besides develop-
ing more powerful formal methods to eliminate misunder-
standing on abstract description and differences on concrete
implementation, we can make use of empirical knowledge
to improve the reliability of service composition. In our
work, service dependency is a relation between two service
instances. If service A can accept and fully understand the
output of service B, then, we say there is a dependency from
B to A. We think instance level dependency is necessary be-
cause:

1. As discussed above, due to the misunderstanding on
abstract description and the differences on concrete
implementation, it cannot be guaranteed that two ser-
vice instances can work together without testing.

2. The back-end data source maybe incompatible across
different service instances. For example, an ID gen-
erated by a service of company A is very likely to be
invalid in the scope of the services of company B.

Of course, real world applications are very complicated. A
service dependency working in some environments may be
broken in other environments. Therefore, we think that ser-
vice dependency can only partially solve the problem, al-
though it is really a useful empirical knowledge that can be
made use of in service discovery and composition.

Service dependency can be specified in two ways. One is
specifying service dependencies together with service de-
scription; the other is specifying service dependencies sep-
arately in a user-manageable knowledge base. The first
way can be used by service providers to encode dependency
info into service description. The second way is service

composer-oriented. Service composer can extract dependen-
cies from a successful composition, and store these depen-
dencies into his own knowledge base.

Thus, service providers can publish a set of service depen-
dencies together with the service. Service composers can
gather and maintain service dependencies in his own knowl-
edge base. Furthermore, the knowledge base can also be
published as a service for public and commercial use. In
section 2, we leave a question regarding the incompatibility
between the integrated IDE interface and the hard disk Our
answer is to ask the vendor of the mother board for a list of
compatible hard disks, which is quite similar to the concept
of service dependency.

3.2 A Side Product
We noticed that, as a side product, service dependency can
be considered as a distributed service recommendation and
discovery mechanism. Service dependency is very similar to
“Related Links”, which is a very common concept on web
pages, and is a very useful feature to browse the Internet.
Service dependency will bring great convenience to service
provider and service composer.

From the perspective of service composers, given one service,
they will be able to find the services producing interesting
and value-added results, and the services producing the nec-
essary messages to invoke this service. From the perspective
of service providers, they will be able to advertise their own
or their partner’s services through cross dependencies.

Compared with centralized service discovery mechanisms
such as UDDI, service dependency is more scalable owing
to its distributed natures. As services are maintained by
service providers independently, the maintenance cost is dis-
tributed to every service provider. However, as the main-
tenance cost of centralized service discovery mechanisms is
usually centralized into one or several organizations, it will
become a bottle neck when the number of services gets large.

4. IMPLEMENTATION
In this section, we introduce how we extend WSDL to apply
our extensions.

4.1 WSDL Extension
We extend the schema of WSDL to apply our two extensions.
Generally speaking, a WSDL document can be logically di-
vided into three parts: XML schemata, abstract descriptions
and concrete descriptions [6], as shown in figure 1. In order
to fully re-use XML data schemata and abstract descrip-
tions. XML data schemata should be defined first. In ab-
stract descriptions, XML data schemata should be imported
instead of being re-defined or being copied. Similarly, con-
crete descriptions should also refer to abstract descriptions
by importing them. In another word, XML data schemata
and abstract descriptions should be fully shared, and rela-
tively stable, while concrete descriptions may vary from one
service provider to another.

Multi-input operation is an extension of abstract descrip-
tions. We modify the schema of WSDL to enable multi-
input operation. We add an element named option under

XML Schema

Abstract Desc.

message

portType

operation

Concrete Desc.

binding

service

import

import

Figure 1: Logical structure of a WSDL document

input. Each option is associated with a message by the mes-

sage attribute. An example can be found in listing 1.

Service dependency is an extension of concrete descriptions.
The WSDL specification supports extensibility elements un-
der certain elements. As shown in list 2, we put dependency
declaration under the port element, which usually contains a
URI that indicates the endpoint of a service instance. Note
that service dependency is not required to be specified with
the service. Each service dependency is self-contained and
can be put anywhere. Also there are some other places in
WSDL reserved for extensibility, for example, the end of the
definitions element. Putting the related dependencies under
the port element can reflect the logical relation between the
service instance and the dependencies.

<s e r v i c e name=” Se rv i c e1 ”>
<port name=”port1 ” binding=” tns :b1 ”>

<soap :addre s s l o c a t i o n=
” ht tp : //company1 . com/ Se rv i c e1 ”/>

<dependency type=” succeeded ”>
<s r c type=” webserv i ce ”>

<port>ht tp : //company1 . com/
s e r v i c e s / Se rv i c e1</ port>
<opera t i on>Operation1</ opera t i on>

<message>Response1</message>
<part>Part1</ part>

</ s r c>
<des type=” webserv i ce ”>

<port>ht tp : //company2 . com/
s e r v i c e s / Se rv i c e1</ port>
<opera t i on>Operation1</ opera t i on>

<message>Response1</message>
<part>Part2</ part>

</des>
</dependency>

</ port>
</ s e r v i c e>

Listing 2: Specifying service dependency in WSDL

Now let’s turn to how to specify service dependency. The
example is given in list 2. Simply speaking, a service de-
pendency is a connection between two data elements, which
share the same data type, but belong to different endpoints.
According to web services, the data element will be a part

in message definition. The definition of service dependency
mainly consists of two parts: the src element and the des el-
ement. The src element specifies the source data element of

the dependency. Correspondingly, the des element specifies
the destination data element of the dependency. The type

attribute of dependency element has three possible values:
succeeded, mandatory and failed. The meaning of these two
values is self explained by the literal meaning. When the
value of type is succeeded, the dependency is much more like
a service recommendation than a “dependency”. When the
value of type is failed, it is a negative dependency, and should
never be triggered in service composition. If there are more
than one mandatory dependencies, then any of them will be
acceptable.

The dependency element in list 2 is a very basic example of
service dependency. In practice, we need more features to
ease the specification of service dependency and to enhance
expressiveness of service dependency. In our work, we have
tried to add some extra features into the definition of service
dependency. Due to the limit of space, we do not expand
these features here.

4.2 A Parser Recognizing our Extensions
We have implemented a simple parser to recognize our ex-
tended version of WSDL. The parser is based on WSDL4J.
However, it is still a very basic prototype. Many features
need to be implemented.

5. CONCLUSION
In this paper, we proposed two service description extensions
to enhance the scalability of SOA. Multi-input operation is
proposed to improve the adaptability of service. However,
the underlying idea we want address is that, for service com-
posers, what is important is that they should avoid design-
ing and implementing message adapters. Service composers
should always try to find the services that share the same
schemata, and compose these services according to the de-
sign goals. Service dependency is similar to “Related Links”
in web pages. Although service dependency can not funda-
mentally solve the interoperability problem among services,
it is really a useful empirical knowledge that can be made
use of in service discovery and composition.

6. REFERENCES
[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T.

Schmidt, A. Sheth, and K. Verma. Web service
semantics - WSDL-S, April 2005.

[2] D. Berardi. Automatic Composition Services: Models,

Techniques and Tools. Ph.d, University of Rome, 2005.

[3] D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web
service interfaces. In WWW ’05: Proceedings of the

14th international conference on World Wide Web,
pages 148–159, New York, NY, USA, 2005. ACM Press.

[4] Q. A. Liang and S. Y. W. Su. AND/OR graph and
search algorithm for discovering composite web
services. International Journal of Web Services

Research, 2(4):48 – 67, 2005.

[5] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and
K. Verma. METEOR-S Web service annotation
framework. In WWW ’04: Proceedings of the 13th

international conference on World Wide Web, pages
553–562, New York, NY, USA, 2004. ACM Press.

[6] S. Tyagi. Patterns and strategies for building
document-based web services, Sep 2004.

