
Distributed Hash Table Based Design of Soft System Buses
Mohammad Reza Selim

1
, Takumi Endo

1
, Yuichi Goto

1
, and Jingde Cheng

1

1
Department of Information and Computer Sciences

Saitama University, Saitama, 338-8570, Japan

{selim, endo, gotoh, cheng}@aise.ics.saitama-u.ac.jp

ABSTRACT

Large scale computing systems which can run for unlimited time

and can evolve over time have a growing demand in this modern

information society. Soft System Buses (SSBs) were proposed to

provide middleware platform support to such computing systems.

This paper proposes a design of SSBs based on Chord – a

distributed hash table protocol for large scale peer to peer systems.

Our design fulfills the requirements of SSBs like scalability,

automatic recovery from failures, data preservation and

incremental runtime upgradeability and maintainability. An

assessment of our design from the view point of the requirements of

SSBs is also presented.

Categories and Subject Descriptors
C.2.4 Distributed Systems – Distributed applications; C.2.1

Network Architecture and Design – Distribute networks

General Terms
Design, Reliability

Keywords
Middleware, Soft System Bus, Distributed Hash Table, Chord

Protocol

1. INTRODUCTION
Modern information society is more and more dependent on the

large scale distributed systems. In many cases continuous and

persistent functioning of such systems is essential. Motivated by

the needs to build such computing systems, Cheng proposed a

design methodology, called Soft System Bus (SSB) based

methodology [2,3], to build large scale systems that functions

continuously all the time without stopping its interactions even

when it is being maintained, upgraded or reconfigured, it has some

trouble, or it is being attacked. A system built using this

methodology is called a Soft System Bus Based System (SSBBS).

An SSB is a middleware of such systems [12]. However, till now

no one designed such a middleware which could satisfy its

requirements simultaneously.

A Distributed Hash Table (DHT) is a scalable data structure to

build large-scale Peer to Peer (P2P) based distributed applications

[11]. A DHT based P2P system is inherently scalable, recoverable

from failure and decentralized in nature [11]. Among many

candidates of structured P2P lookup protocols, Chord is the most

matured one and suitable to build large-scale and scalable DHT

based systems [4, 5, 13].

To build SSBs, in this paper, we propose a Chord based design

which is suitable from the view point of scalability, data

preservation, automatic recovery from failures, unified interface

and incremental runtime upgradeability and maintainability.

The next section presents a brief description of SSBs and

requirements of them. Chord based design of SSBs is presented in

section 3. Section 4 evaluates the design hypothetically from the

view point of the requirements. Section 5 presents how our

designed SSB differs with other works. Finally, concluding

remarks is presented in section 6.

2. SOFT SYSTEM BUSES
An SSBBS (Fig. 1) consists of a number of components and one or

more SSBs [3]. The components are connected to the SSBs. They

convey data/instructions from one component to another, provide

unified interface to the components and preserve data/instructions

if the destination component is not connected to the SSB. An SSB

consists of one or more nodes called Data/Instruction Stations

(DISs) which collectively provides the functionalities of an SSB.

There are two types of components in an SSBBS: one or more

general purpose permanent Control Components (CCs) and some

application specific Functional Components (FCs) [3]. Any two

components must use the unified interface of the SSBs to interact

and no direct interaction among the component is allowed.

Bellow we summarize the requirements of SSBs. A detailed

analysis can be found in [12].

R1. Scalability: For running unlimited time, SSBs must support

scalability of itself as well as the SSBBSs.

R2. Data Preservation: They must provide this facility so that if a

component is not present, the data/instructions destined to

that component can be stored in corresponding DIS.

R3. Availability and Reliability: At least one (arbitrary) DIS

Functional Components

Data/Instruction Stations

Soft System Bus

Control

Components

Fig 1. Circular (left) and linear (right) SSB based systems

schitectures

Conference name: Infoscale 2007, June 6-8, 2007, Suzhou, China

Copyright number (LaTeX \crdata{}): 978-1-59593-757-5

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.229

must be running all the time. The states of a DIS must be

recoverable in case of failure.

R4. Dynamic Connectivity: Since a DIS may fail, SSBs must

allow a component to select and connect to its currently

associated DIS dynamically.

R5. Runtime Upgrade and Maintenance: There must have a way

to upgrade and maintain the SSBs at runtime.

R6. Runtime Adaptability/Re-configurability: This requires

because SSBs will evolve over time and they may operate in

dynamic environments.

R7. Transmission Model: The components may need to

communicate in a many to many style.

R8. Unified Interface: SSB must provide it to the components.

R9. Reconfigurable Security: SSBs must ensure it so that

security mechanism can be adjusted with the evolution of

SSBBSs.

3. DHT BASED DESIGN

3.1 Chord Based Approach
Chord lookup protocol [13] provides good performance in its

operation. With N nodes in a Chord ring, each node maintains

information about only O(log2N) other nodes, and a lookup only

needs O(log2N) messages. A new node only increases the N in the

O(log2N) lookup time. This means that the Chord is highly

scalable.

If a node fails and produces a gap in the Chord ring, it may cause

incorrect lookup. To increase robustness, each node maintains a

successor list of size r. Therefore, the Chord ring is robust and

failsafe, and the degree of reliability is tunable.

At runtime, a node can be removed from or added to the ring

requiring relatively little movements of keys [13]. Therefore, the

ring can be upgraded and maintained efficiently at runtime.

Therefore, use of Chord to design SSBs fulfills the requirements of

scalability, availability and reliability and runtime upgrade and

maintenance of SBBs (but not of components). To fulfill other

requirements we have added two layers above the Chord layer.

The first one is called the Replication Layer which provides data

preservation facility and dynamic connectivity. It also improves

reliability and fault tolerance and provides incremental upgrade

and maintenance of components. The second one which is called

Component Interaction Layer fulfills unified interface as well as

point to point and point to multi point transmission requirements.

The other two requirements R6 and R9 have not been considered in

our current research.

In our approach, each component and DIS has a unique ID (e.g., IP

address, name) to identify one from another. A consistent hash

function is used to convert the component ID into an m-bit key

(note that unlike Chord we call hashed ID of a component a key).

Similarly, same hash function assigns an m-bit unique hashed ID to

each of the DISs.

Like Chord, the keys and DIS hashed IDs are treated as points and

they are ordered on a circle modulo 2m. Fig. 2 shows a circular

keyspace (with m=5) used to implement an SSB. The circular

keyspace is split into contiguous segments whose endpoints are the

DIS hashed IDs. If i1 and i2 are two adjacent hashed IDs, then the

node with hashed ID i2 owns all the keys that are greater than i1 and

less than or equal to i2. This ownership of keys represents which

component is tapped to which DIS in the SSB. If a component c has

a key k, the component will be tapped to the first DIS whose hashed

ID is equal to or follows k in the ordered circle. Like Chord, we call

this DIS the successor of k.

3.2 SSB Architecture
We organize the functionalities of a DIS into three different layers

as shown in Fig. 3. Each layer may have some vertical interfaces

through which a layer communicates with its upper or lower layer

or the components (in case of the top most layer) and horizontal

interfaces through which it communicates with a peer layer in a

another DIS. The vertical interfaces within a DIS are implemented

by function calls, while horizontal interfaces by some RPC/RMI.

3.2.1 Routing Layer
The bottom layer of a DIS is the Routing Layer. This layer has

functionalities similar to the Chord Layer used in Cooperative File

System [4, 5] or Key Based Routing Layer described in [6]. Its two

principal functions are to keep the finger table up to date in case of

joins, failures or departures of DISs and to find the successor of a

component or a DIS.

3.2.2 Replication Layer
This layer has three main functions which are described bellow.

I) Managing Redundant Components

We assume that an SSBBS may contain redundant copies of critical

and/or frequently used stateless components. Each copy has a

Routing Layer

Replication Layer

Interaction Layer

Components

DIS A

Routing Layer

Replication Layer

Interaction Layer

Components

DIS B

SSB

Fig. 3: Architecture of an SSB and interaction with components

31 K
Key 28

24

G
Key 18

D
Key 23 17

L

Key 15

J
Key 17

13

E
Key 10

F
Key 6

H
Key 11

Key 32

I

A
Key 4

C
Key 5

5

B
Key 30

Components

DIS

Fig. 2. Chord based SSB in a circular keyspace with m=5.

different ID from one another. The purpose of redundant copies of

a component is three fold: a) fault tolerance, i.e., if one copy of a

component fails, the others will serve resulting in minimum effect

on the system, b) load balancing, i.e., the load of frequently used

components will be distributed over the redundant copies, and c)

improving routing performance, i.e., the message is most likely to

travel to the nearest (in the overlay) copy of a component.

The Replication Layer creates a circular linked list of the

redundant/replica components’ DISs. In Fig. 4 each of the

components of A, K, D, P, M with keys 1, 6, 7, 10, 18 respectively

is a copy of another and they are connected to the DISs 3, 7, 7, 13,

20 respectively. Then these DISs form a circular one way linked

list. The linked list is sorted according to the hashed IDs of the

DISs. Each node in the linked list contains the set of the keys of the

components participating in the redundancy.

To improve load balancing and routing efficiency, we use the

concept of redundant component list cache. When a component

sends a data/instruction to another component, as part of the

message, its DIS sends the redundant key set of the sending

component. Next time the destination DIS can reroute a

data/instruction to the nearest redundant component. In this way

requests to a component can be rerouted by a DIS to the nearest

component in the overlay resulting in improvement of load

balancing as well as routing efficiency. A cache is valid only for a

time duration which we call cache validity time.

II) Replicating

Replication is made by a DIS to r number of successors. Two types

of data are replicated: the data/instructions that can not be

delivered to the components because of the unavailability of the

components due to failure or deliberate departure for upgrade,

maintenance or other reasons and current session information, i.e.,

information related to the connected components including the

redundant component lists.

III) Forwarding Data/Instructions

After receiving a data/instruction from the Component Interaction

Layer, the Replication Layer applies the hash function on the

address of the destination component and produces the key. It then

calls the interface of the Routing Layer to find out the IP address of

the successor DIS of the key. The Replication Layer then sends the

data/instruction to this DIS.

3.2.3 Component Interaction Layer
The data/instructions received by this layer from the components

are handed over to the Replication Layer to send to the destination

components. After getting a data/instruction from the lower layer, it

is delivered to the components by this layer also.

Multicast communication is obtained by grouping the components

in this layer and enforcing the components of a group to tap to one

arbitrary DIS. We achieve the grouping of components by simply

appending an additional field in the ID of a component to designate

the group. Obviously, the hash function now must be applied on

the group ID field. If one component does not want to be included

in a group, it can simply repeat its own ID in the group field.

4. DISCUSSION
In this section, we check, against each of the requirements, if our

design is able to fulfill or not.

R1 is satisfied. An SSB implemented using our design is scalable

because adding a new DIS only increases N in O(logN) routing

table size and lookup time. Cost of adding, removing or recovering

a DIS is not very high due to consistent hashing [13].

As the number of components increases the Component Interaction

Layer needs to keep track of more number of sessions. However,

for a typical DIS, how many sessions or how much communication

load or what frequency of arrival and departure of components are

tolerable, can only be known after evaluating our design

experimentally or with simulator.

R2 is satisfied. We have achieved the data preservation facility by

storing and replicating data/instructions in the destination DIS.

R3 is partially satisfied. An SSBS will fail, if no DIS is running.

Current technology can not ensure that a machine runs all the time.

The Chord ring will fail only if r number of consecutive DISs fails

simultaneously. But probability of such failure is very low for a

reasonable value of r.

R4 is satisfied. Even if a connected DIS fails, the running

components connected to it will not be disconnected, rather using

the replicated session information the components will be

reconnected to the new responsible DIS automatically. But at the

first time, in order to connect to an SSB, like any other P2P system,

a new component or DIS must know the address of aq running DIS.

R5 is satisfied. We have considered incremental runtime upgrade

and maintenance where all the DISs or components can be

upgraded or maintained one or more at a time but not at all. Since a

component or a DIS can easily be removed from or added to an

SSB without hampering the services, it provides a good

environment for incremental upgrade and maintenance. However,

in such upgrade and maintenance mechanism, as both the old and

new versions will run in the same system, they must be compatible.

R6 is not satisfied. Our design itself does not provide sufficient

facilities to automatically adapt to changes in the environment or

the system itself. This is one of our future works.

Interaction Layer

Replication

Layer

Routing Layer DIS N

Address of next DIS

in the linked list

Keys of redundant components

DIS 7 DIS 13 DIS 20 DIS 3

{1, 6, 7, 10, 18} {1, 6, 7, 10, 18} {1, 6, 7, 10, 18} {1, 6, 7, 10, 18}

Keys of redundant components {A, K, D, P, M, R}

Fig. 4(a)

Fig. 4(b)

Fig. 4: (a) Structure of a node of the linked list (b) The linked

list of the redundant components’ DISs.

R7 is satisfied. Many to many communication primitive is adopted

using group based communication. A component can send

messages to all the members of a group by only one request.

However, if a component wants to send messages to a subset of the

group or outside the group, multiple messages must be sent by the

component. These cases are inefficient but rare in an SSBS.

R8 is satisfied. The Component Interaction Layer has some APIs

which are used by all the components in order to interact. In this

way an SSB provides unified interface.

R9 is not satisfied. We have not considered the security issues in

this paper because we think that ensuring security would be

premature at the current stage of our research.

5. RELATED WORKS
SSBs are neither publish/subscribe (e.g., Heremes[11],

TIBCO[14], Siena[1]) nor RPC/RMI (e.g., Java RMI, CORBA)

based middlewares. Unlike publish/subscribe paradigm, which

does not fit in many types of systems, each component must know

to which component it is going to send a message. Unlike

RPC/RMI based middleware, which does not scale well, SSBs are

asynchronous. Message Queuing middlewares like IBM MQSeries

[8] and Oracle Advanced Queuing usually integrate some form of

publish/subscribe-like interaction. These server oriented

middlewares do not scale well to large populations of consumers

because of the use of traditional IP based (or similar) networks

other than overlays and the additional interactions need to maintain

transactional, timing, and ordering guarantees.

SSBs require providing supports to the systems having a point to

point or point to multi-point communication model in a paradigm

where communicating components must know each other. To our

knowledge, this is the first attempt to use P2P overlay network in

such a paradigm. Traditional way of building such distributed

systems directly over IP like networks are not naturally scalable.

Chord and other structured P2P based DHT is mainly used in

cooperative file systems (e.g., CFS [5], PAST [7]). In such systems

files or part of files (fragmented) are mapped to the overlay nodes

based on the key produced from the files or attributes of the files.

Other DHT based systems uses almost similar approach by storing

values in the nodes selected based on keys. A DHT based approach

usually implements a simple store and retrieve functionality.

Unlike traditional DHT based approach, we are using the overlay

network as a channel to communicate among components but not

as a storage. Although in an SSB the data/instructions are stored

temporarily, they are not retrieved or searched like in a cooperative

file system. In addition, we have included a new functionality in the

layer above the Chord Layer – managing the redundant

components.

6. CONCLUDING REMARKS
DHT based Chord protocol has been an attractive substrate for

distributed applications for its simplicity, provable correctness and

good performance. Chord has already been used in many

applications [5]. In this paper we use Chord to design SSBs -

middlewares for an scaleable, long lived, highly reliable, runtime

upgradeable and maintainable system called an SSBBS.

However, our design has not been evaluated experimentally yet.

Currently we are in the middle of building a simulation based on

OverSim [10] in Omnetpp [9] simulation environment. This

simulation will evaluate our design from a number of perspectives

including performance, load balancing, scalability and robustness.

7. REFERENCES
[1] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Achieving

scalability and expressiveness in an internet-scale event

notification service. In Proc. 19th ACM Symposium on

Principles of Distributed Computing (PODC 2000), 2000.

[2] J. Cheng. Comparing Persistent Computing with Autonomic

Computing. In Proc. of 11th IEEE-CS Int. Conf. on Parallel

and Distributed Systems. Vol. II, pp. 428-432, 2005.

[3] J. Cheng. Persistent Computing Systems as Continuously

Available, Reliable, and Secure Systems. In Proc. of 1st

IEEE-CS Int. Conf. on Availability, Reliability and Security,

pp. 631-638, 2006.

[4] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger. Building

peer-to-peer systems with Chord, a distributed lookup service,

In Proc. of 8th Workshop on Hot Topics in OS, 2001.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I.

Stoica. Wide-area cooperative storage with CFS. In Proc. of

the 18th ACM Symposium on OS Principles, 2001.

[6] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz and I.

Stoica, Toward a Common API for Structured Peer-to-Peer

Overlays. In Proc. of the 2nd International Workshop on

Peer-to-Peer Systems (IPTPS '03), 2003.

[7] P. Druschel and A. Rowstron, PAST: A large-scale, persistent

peer-to-peer storage utility, HotOS VIII, Schoss Elmau,

Germany, 2000.

[8] R. Lewis. Advanced Messaging Applications with MSMQ

and MQSeries. QUE, 1999.

[9] OMNet++: Discrete Event Simulation System.

http://www.omnetpp.org/

[10] OverSim: A Flexible Overlay Network Simulation

Framework. http://www.oversim.org/

[11] P. R. Pietzuch. Hermes: A Scalable Event-Based Middleware.

Technical Report, Computer Laboratory, University of

Cambridge, 2004.

[12] M. R. Selim, T. Endo, Y. Goto, and J. Cheng. A Comparative

Study between Soft System Bus and Traditional Middlewares,

in R. Meersman, Z. Tari, P. Herrero et al. (Eds.), “On the

Move to Meaningful Internet Systems and Ubiquitous

Computing: OTM 2006 Workshops, Montpellier, France,

Oct. 30 – Nov. 3, 2006”, LNCS 4278, pp. 1264-1273,

Springer-Verlag, 2006.

[13] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M.

Kaashoek, F. Dabek, H. Balakrishnan. Chord: a scalable

peer-to-peer lookup protocol for internet applications.

IEEE/ACM Transactions on Networking, Vol. 11, Issue 1, pp.

17 – 32, 2003.

[14] TIBCO. TIB/Rendezvous (White Paper), 1999.

	1. INTRODUCTION
	2. SOFT SYSTEM BUSES
	3. DHT BASED DESIGN
	3.1 Chord Based Approach
	3.2 SSB Architecture
	3.2.1 Routing Layer
	3.2.2 Replication Layer
	3.2.3 Component Interaction Layer

	4. DISCUSSION
	5. RELATED WORKS
	6. CONCLUDING REMARKS
	7. REFERENCES

