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ABSTRACT
When a sensor network is deployed for monitoring a pro-
tected region, topology control is usually used to save en-
ergy consumption, especially in a dense deployment. In
this paper, we propose a new and simple topology control
protocol, Convergent SparseDT, which controls the network
density pretty well, and disposes of some important faults
of classical topology control protocols while working with
dense sensor network. It is a compromise between the en-
ergy consumption, network congestion and the area cover-
age. It guarantees the coverage of most of the monitored
area with almost negligible communication and computing
overhead. The performance of this protocol is thoroughly
analyzed and simulated in NS2 simulator.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Topology, Wireless Com-
munication, Distributed Networks

General Terms
Design, Theory, Performance, Experimentation

Keywords
Wireless sensor network, Topology control, Gravitational
field, Delaunay triangulation, Distributed algorithm

1. INTRODUCTION
Wireless sensor networks have been widely used in many

applications nowadays, especially in the area of environmen-
tal monitoring. Energy efficiency is the most critical issue in
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wireless sensor networks since sensors are all battery pow-
ered and have limited resources. Thus how to prolong net-
work lifetime attracts much our attentions. One of the most
important way to save energy is based on the scheduling sen-
sor activity so that only part of sensors remain on service
with others sleeping. It has been recognized that the energy
consumption in the sleep state is about tens times less than
that in the active state [20]. One of the metrics of network
service quality is coverage degree which has been handled
in many works. In general, the more sensors are active, the
better service this network could provide. But coming with
it might be severe communication congestion problem and
much higher energy consumption which is not preferred. We
should work out carefully a compromise between the energy
consumption and the service quality of sensor network in
the working area.

Several important topology control protocol have been
proposed in recent years. The authors in [21] proposed an
algorithm called Coverage Configuration Protocol(CCP) for
the connected k-coverage problem. This algorithm can dy-
namically configure the network to provide different cover-
age degrees requested by applications. The central part of
CCP is a local algorithm which determines the coverage of
all intersection points of the sensing range of all neighbors.
This local algorithm has computing complexity of O(n3).
It is also integrated with the SPAN protocol [6], which de-
cides if a node should be working or sleeping based on the
connectivity among its neighbors, to provide a 1-connected
k-coverage network.

In [25], Zhang and Hou proposed an algorithm called Op-
timal Geographical Density Control(OGDC). It ensures bal-
anced energy consumption over the whole set of vertices by
constructing the active network from scratch periodically. A
power-on message containing geographical location initiates
a message passing procedure at each round to locate work-
ing nodes according to their battery levels. This procedure
requires much communication overhead, and also a synchro-
nization scheme to lower the package collision probability.

Ye et al. [24] present PEAS, a probing based density con-
trol algorithm. In this work, a sleeping node wakes up occa-
sionally to check if there exist working nodes in its vicinity,
and it decides to be active or sleep again. The probing
range can be adjusted to achieve different levels of coverage
redundancy. It does not ensure that the coverage area of a
sleeping node is completely covered by other nodes, i.e., it
does not guarantee complete coverage.

Another classical protocol is GAF algorithm [23] which
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is grid based. It is the only protocol which is adopted in
the NS2 simulator because of its simplicity. GAF assumes
the availability of GPS and conserves energy by dividing
a region into rectangular grids, ensuring that the maximum
distance between any pair of nodes in adjacent grids is within
the transmission range of each other, and electing a leader
in each grid to stay awake and relay packets. The leader
election scheme in each grid takes into account of battery
usage at each node.

The most related work is a greedy algorithm from Amitabha
[13], which focuses on the minimum connected sensor cover
problem based on the notions of maximal independent sets
in static sensor network. In principle, the rule of letting
part of sensors to judge that most others be dead or alive,
is not fair. In other words, it could not balance the energy
consumption during the lifetime of total network.

We also noticed that there is some dense region in simula-
tion result of CCP/SPAN algorithm [21], and it is redundant
to have so many sensors active in this area only to guaran-
tee complete coverage. The verbose data it generated might
jam the network casually. This is especially not preferred in
a dense network. We suggest a new method in this paper
to circumvent this problem. This is in fact a compromise
between energy consumption and coverage degree just as
mentioned earlier. So in this paper, we do not guarantee
complete area coverage because only probabilistic coverage
degree is concerned in randomly deployed sensor network.

We present a new topology control protocol with almost
negligible communication and computing overhead. First,
we construct the Sparse Delaunay Triangulation (SparseDT)
topology structure [17] to balance the energy consumption
of different part of the sensor network. To increase the area
coverage along with the triangulation topology performance,
we make the topology converge to potential field equilibrium
under the sparseness constraint. This procedure densifies
total network evenly, and still maintains the nice attributes
of SparseDT graph.

The rest of this paper is organized as following. In sec-
tion 2, we define the problem formally, describe heuristic
potential field method from the celestial mechanics back-
ground, and propose an efficient distributed algorithm to
maintain the SparseDT topology. In section 3, we give the
upper bound of the number of active sensors, and the asymp-
totic coverage probability is also analyzed. Especially, we
prove that the algorithm will converge to Nash equilibrium,
and the run-time performance is analyzed thoroughly. In
section 4, we provide some simulation results which agree
with our analysis in section 3. Section 5 concludes this pa-
per.

2. CONVERGENT SPARSEDT TOPOLOGY
CONTROL

2.1 Preliminaries and Problem Formulation
We assume that all sensors are deployed in a two dimen-

sional space with Poisson spatial distribution. Every node
has the same sensing range Rs and communication range Rc

with the relation of Rc ≥ 2Rs. All sensors have been local-
ized in advance. We assume a deterministic sensing model
that a sensor node s can cover any point inside its sensing
circle, CRs

s , which is centered at s and has a radius Rs. That
is, any point x with distance to s less than Rs is covered by

s, which is denoted by x ∈ CRs
s . We define circle Cr

s in the
same way. We now give a detailed model of unit disk graph.

Definition 1. Given a set of nodes V in a two dimensional
space, we model a wireless sensor network with Unit Disk
Graph with unit length r, Gr(V, E) or Gr(V ), which is com-
prised of all nodes in V and all edges connecting nodes of V
whose distance is at most the unit length r, i.e., two nodes
u and v are direct neighbors if and only if |uv| < r.

It’s generally convenient for the analysis of coverage prob-
lems that we set the unit length in this model as r = Rs,
and r = Rc for the analysis of connectivity problems. With
different unit length, the edge sets could be quite different,
such as GRc(V, E1) and GRs(V, E2).

We now introduce the motivation of our distributed topol-
ogy control method. First, the total sensor network needs
to be distributed uniformly at every part of the region. We
model it as a dispersed network which is a maximal inde-
pendent set V ′ in GRs(V ), and its sparseness is denoted by
the gap between sensors which equals Rs here. Second, we
construct locally the SparseDT graph on node set V ′ with
only 1-hop neighbor information. It has been proved in [17]
that the SparseDT graph is a Delaunay triangulation with
unit length r =

√
3Rs as long as Rc ≥ 2Rs. Precisely, it

is UDelr(V
′) = Del(V ′) ∩ Gr(V

′), where Del(V ′) is the
full Delaunay triangulation of V ′. The asymptotic full cov-
erage of the dispersed network, as well as the connectivity
of SparseDT graph, is also guaranteed as long as n = |V |
approaches infinity.

But the dispersed network might not be dense enough to
afford the connectivity and coverage requirement and trian-
gulation perfectness. That is, there might be small regions
which are not triangulated in SparseDT graph. This kind of
region is called hole. We propose a potential field method in
this paper to deal with the hole problem considering the in-
equable node density in different part of the monitoring area.
Our approach is to increase the density of dispersed network
as possible as we can under the sparseness constraint. By
assigning each node value of special potential function and
competition mechanism, the dispersed network could reach
equilibrium, and the SparseDT graph constructed on it is
almost a full Delaunay triangulation.

Definition 2. We define the weight of an arbitrary edge
e ∈ E1 in GRc(V, E1) according to its Euclidean measure.

w(e) =

{
1/|e|, Rs ≤ |e| < Rc

−∞. 0 < |e| < Rs

With the edges weighted, we could formulate the optimiza-
tion purpose of our algorithm as following.

Definition 3. We define the Maximum Potential Problem
as the problem of finding the Maximum Induced Subgraph
GRc [V

′] of GRc(V, E1) with hereditary Property P, where
V ′ ⊆ V , and property P is that V ′ is an independent set of
GRs(V, E2).

In another way, we need to find an independent set V ′

in GRs(V, E2), and the total edge weight of the induced
subgraph GRc [V

′] of GRc(V, E1) should be the maximum of
all.

If P holds for arbitrarily large graphs, does not hold for all
graphs, and is hereditary (It holds for all induced subgraphs



of a graph whenever it holds for the graph), then it could
be verified that the problem of finding a Maximum Weight
Induced Subgraph with Property P is NP-complete(see GT21
in [12]) by reduction from maximum clique, and assigning
unit weight to edges and −∞ to non-edges. Examples of
such properties P are “being an independent set”, “being
m-colorable”, and “being a planar graph”. This problem
is closely related to the maximum edge subgraph [10] and
the maximum dispersion problem [15] which are also NP-
complete. With both node and edge weights, It has many
interesting applications in statistical physics [9] and other
areas [8].

If we sum the weights of the indent edges of node s, it ap-
proximates the potential [7] of node s in this gravitational
field in which each node has the unit mass. That is the
reason why we call it maximum potential problem, and an
appropriate method will be proposed to approach it in fol-
lowing sections.

2.2 Potential Field Theory
First, we give a brief introduction to the Potential Field

knowledge from celestial mechanics [7]. The solution of any
classical mechanics problem is first determining the equa-
tions of motion which one could choose from the formalism
of Lagrange or Hamilton. In the methods developed, the
correct formulation of the Lagrangian required knowledge of
the potential through which the system of particles moves.
In this way the more complicated vector equations of motion
can be obtained from the far simpler concept of the scalar
field of the potential.

It is generally a good first approximation to assume that
the potential of the sun and planets is that of a point mass.
This greatly facilitates the solution of Laplace’s equation
and the determination of the potential.

We now describe the method whereby the potential can
be calculated for an arbitrary collection of mass points to
an arbitrary degree of accuracy.

The gravitational field ~G is defined as the gravitational
force per unit mass so that

~G = ~F/m ≡ ∇Φ (1)

Here Φ is known as the gravitational potential, and ∇Φ is
the gradient of it. Now Newtonian gravity says that the
gravitational force between any two objects is proportional
to the product of their masses and inversely proportional to
the square of the distance separating them and acts along
the line joining them. The collective sum of the forces acting

on a node s of mass m will be
−→
Fs =

∑
GmMi

−→ssi/|−→ssi|3,
where Mi is the mass of node si and G is the gravitational
constant. The potential that will give rise to the force field
resulting from such a configuration is

Φs =
∑ GMi

|−→ssi| (2)

The scalar sum of equation (2) is ready for insertion in the
Lagrangian to determine the motion of nodes that compose
the mechanical system.

2.3 Gravitational Field Equilibrium
Assuming all sensor nodes have the same unit mass, we

regard the sensor network as a celestial mechanical system
forming a gravitational field except that the only permitted
motion of nodes is to sleep and wake up. It looks like a

multiple star system. The gravitational force pulls them to-
gether, and the repulsion force keeps them apart from each
other to avoid collapse, just as the universe is. We only
consider the gravitational force from the neighbors in com-
munication range, and a sensor node overcast its neighbors
in sensing range just like a nebular devors nearby star. So
is confined the push-pull action to local environment, and
fluctuates through total network.

Here we mix up the concept of gravitational field and po-
tential field. We know from potential field theory that a
system in a potential field must have some properties, such
as the energy dissipative property [7], to settle down or con-
verge to an equilibrium state. With these configurations,
everything else is trivial. Just let universal gravitation de-
cides everything. There is no real vacuity in universe, and
constellation will rearrange itself while new planet is born
in “Vacuum”.

Definition 4. We define the set of active neighbors of s
nearby in r range as

Nr
s = {si | 0 < |−→ssi| < r}

Definition 5. With the assumption that all nodes have
the same unit mass and only active neighbors are consid-
ered, we define the potential function δs of sensor node s in
the gravitational field as the sum of inversions of distance
between s and those distant neighbors, called legal neighbors
of s, which are at least Rs distance away from s. Ignoring
the gravitational constant G, it is also the total gravitation
force that those legal neighbors act on s. According to equa-
tion (2), δs could be formalized as a scalar sum,

δs =
∑

si∈Ns

1

|−→ssi| , Ns = {si | Rs ≤ |−→ssi| < Rc} (3)

Here, we only consider the active neighbors which could af-
fect node’s potential energy, and it is Ns = NRc

s −NRs
s with

definition 4. Those sleep or dead nodes are unaware of what
is happening in this virtual world.

We define the potential energy of a set of sensors S as
δS =

∑
s∈S δs, and energy of the total system is Φ, which

is the sum of potentials of all active sensors. According to
Definition 3, potential of the optimum solution to the max-
imum potential problem should be δopt = MaxV ′⊆V {δV ′},
where V ′ is an independent set of GRs(V, E2).

2.4 Distributed Algorithm
We propose a simple but efficient distributed algorithm to

deal with the sensor network topology control. The following
procedure only describes the action of a single node while it
wakes up.

There are several points worthy of note in this protocol.
First, sensors communicate with each other only through
broadcasting messages, which is the most likely manner in
sensor networks. The communication cost could be bounded
as long as the sparseness of the network is guaranteed, and
there is only negligible additional messages posted except
for neighbor discovery. Second, sensors only need to com-
pute the potential energy and local Delaunay triangulation.
There are many algorithms to construct the Delaunay tri-
angulation. One of the most commonly used is Randomized
Incremental Method with complexity of O(n log n). We use
CGAL routine [1] to construct the local Delaunay triangu-
lation at step 13 in Proc.1. The computing complexity of



Proc. 1 Convergent SparseDT Topology Control

Require: Sensor s wakes up while its wakeup timer expires.
Ensure: SparseDT topology is updated properly.

{Neighbor Discovery}
1: Sensor s broadcasts “Discovery” message
2: Collecting one-hop neighbor information
{Local Optimization}

3: if |NRs
s | = 0 then

4: s.state=active
5: else if |NRs

s | = 1 and δs > δs′ , s′ ∈ NRs
s then

6: s.state=active
7: s′.state=sleep; s′.wakeup timer=random
8: else
9: s.state=sleep; s.wakeup timer=random

10: end if
{Update Delaunay Triangulation Topology}

11: if s.state==active then
12: Sensor s broadcasts “Update” message
13: All si ∈ Ns

⋃
Ns′ call CGAL routine to update their

local Delaunay triangulation
14: end if

this step is O(|Ns| log |Ns|) for each node, and it is O(1)
as long as |Ns| could be bounded. Comparing with it, the
CCP/SPAN protocol [21] uses a local algorithm with com-
puting complexity of O(n3) to determine the coverage prop-
erty of a node’s surrounding area, and its space complexity
is O(n2) in worst case which is unbearable in wireless sensor
networks. Third, this sensor network topology control pro-
tocol does not need any time synchronization scheme which
is another subtle problem to be solved. Every sensor has
only timer triggered actions, and total network works asyn-
chronously.

We could see that a newly active sensor maximizes po-
tential energy among neighboring nodes within its sensing
range. It is in fact a local optimization technique. As for the
local optima problem, there is a little trick to circumvent it.
We could schedule sensors to sleep periodically, and escape
the local optima. Sensor’s sleeping action is quite like the
disappearance of an “attractor”, and new sensors will wake
up in this vacuum. We prove that this procedure converges
to Nash equilibrium in next section.

3. THEORETICAL ANALYSIS
In this section, we give some analysis results of our al-

gorithm. The number of active sensors and the coverage
probability are bounded, and the run-time performance of
this algorithm is analyzed thoroughly.

3.1 Coverage Probability Analysis
Suppose that all sensors are deployed in a rectangular

region with area A = L × L. We have the following bound
of the number of active sensors.

Theorem 1. The number of active sensors in dispersed
network is at most

NDT ≤ 2(L + Rs)
2

√
3R2

s

(4)

Proof. We expand the region from four directions each
with length Rs/2, and get an expanded region with area
A′ = (L + Rs)

2. Since all active sensors are at least Rs

apart from each other, the maximum number of active nodes
in dispersed network equals the maximum number of circles
with equal radius Rs/2 inside the expanded region such that
no two overlap and some (or all) of them are mutually tan-
gent. There is a well-developed theory of this transformed
problem which is called circle packing.

The densest packing of circles in the plane is the hexag-
onal lattice, which has a packing density of ηh =

√
3π/6.

Gauss proved that the hexagonal lattice is the densest plane
lattice packing, and in 1940, L. Fejes Tóth proved that the
hexagonal lattice is indeed the densest of all possible plane
packings. But it is still an open problem as for the problem
of packing circles in a bounded region, which is known as the
Hilbert’s eighteenth problem presented in 1990. However,
this value ηh can provide an upper bound for the solution
of the problem here. So we have the following estimation.

NDT ≤ A′ηh

π(Rs/2)2
=⇒ lim

L→∞
NDT

A
=

2√
3Rs

Theorem 2. The probability that a sensor node s is ac-
tive, PDT , is bounded asymptotically.

Proof. We suppose that the deployment of n sensors in
the area is subject to Poisson process. We set λ0 = nπR2

s/A.
Mark symbol x ≡ PDT for short, and We know that x ¿ 1
in a quite dense network. For any certain point X in the
area, the probability that X is covered by exactly k sensors
is Pk = e−λ0λk

0/k!. While sensor s is active, all sensors si

within its sensing range must be asleep. It means that the
following inequations should exist:

x ≤
n∑

k=1

(1− x)k−1Pk

=⇒x(1− x) ≤
∞∑

k=1

(1− x)kPk = e−λ0x − e−λ0 ≤ e−λ0x

=⇒xeλ0x ≤ 1

1− x
≈ 1 + x

=⇒λ0xeλ0x ≤ λ0(1 + x) ≈ λ0

=⇒x ≤ W (λ0)

λ0

(5)

In the solution we found, W is the Lambert W-Function [22]

which satisfies W (y)eW (y) = y.

As for the computing of the bound z = W (λ0)
λ0

in equa-

tion (5), We solve the equation λ0zeλ0z−λ0 = 0 numerically
in Matlab [2].

Suppose that 900 sensors with sensing range of 5 meters
are deployed in area of 50 by 50 meters according to our
simulation configuration in section 4, we have λ0 = 9π, and
PDT ≤ 0.0865. It means that the expected number of active
sensors in dispersed network is less than 78, which matches
the simulation result perfectly. Theorem 1 also bounds the
maximum number of active sensors as NDT ≤ 139.

Assume that the initial deployment of all sensor nodes
in set V0 takes the Poisson distribution with density λ0.
We bound the probability Pa that the dispersed network
fully covers the whole monitoring area, and this probability
approaches one as the total number n of all deployed sensors
increases.



The probability that there is a point x which is not cov-
ered in the dispersed network, is Phole = 1 − Pa. It means
that no sensors are active nearby, that is, ∀s ∈ V ′, x /∈ CRs

s ,
where V ′ is the set of active nodes. We have Phole =∑n

k=0 e−λ0λk
0/k!(1 − PDT )k ≤ e−λ0PDT , where PDT is the

probability that a deployed node is active in the dispersed
network. So that Pa ≥ 1− e−λ, where λ is the node density
of the dispersed network. It is also a result from stochastic
geometry [14] that the area coverage of the dispersed net-
work is Pa = 1− e−λ0PDT , which is also confirmed in [19].

We have limn→∞ Pa = 1, so that the dispersed network
is connected as long as Rc ≥ 2Rs. In fact, if there is
a hole with radius r which is not covered, according to
the attributes of dispersed network, there must be no sen-
sors deployed initially in this hole, which has the probabil-

ity P{∀s ∈ V0, x /∈ Cr
s} = e−nπr2/A approaching zero as

n →∞.

3.2 Convergence Analysis

3.2.1 Nash Equilibrium
We define a Nash equilibrium as a choice of action by each

node so that no node can improve its potential by changing
its state alone. For the maximum potential problem, a state
is a Nash equilibrium if for all active node s, δs > δs′ , ∀s′ ∈
NRs

s at this time. We will show that Nash equilibrium could
be found via local optimization.

Theorem 3. The gravitational field algorithm we proposed
in Proc.1 will converge at last.

Proof. From the algorithm, It could be easily verified
that the energy increment of total system is ∆Φ = 2(δs −
δs′), where s is the node that survived a single local exchange
step. It is guaranteed that δs is positive by our gravitational
field equilibrium algorithm. Since there are only a finite
number of different values for the energy of total system,
and we cannot cycle because Φ increases in each iteration,
We will definitely find a Nash equilibrium.

3.2.2 Expectation of Potential Increment
We only consider the case of Rc = 2Rs. Two prepositions

are made here to simplify our analysis. First, the potential
functions of two distinct sensor nodes are independent from
each other, even though there are some intersections be-
tween their neighborhoods. Second, the active sensors are
uniformly distributed in the deployed region, so that the
number of one’s legal neighbors, |Ns|, is subject to Poisson
distribution with density of NDT ·π(R2

c−R2
s)/A = 3λ, where

λ = NDT · πR2
s/A = λ0PDT . In fact, the second condition

could be deduced from the random competition policy of
our algorithm.

We consider an active node s and one of its legal neighbors
si ∈ Ns. The distance of s and si is d ∈ [Rs, Rc), and its
contribution to the potential of s is 1/d ∈ (1/Rc, 1/Rs].
The probability density function (p.d.f.) of d is fd(x) =

2πx
π(R2

c−R2
s)

= 2
3R2

s
x, and the p.d.f. of 1/d could be deduced

as a function of fd(x), i.e., f 1
d
(y) = fd( 1

y
)|( 1

y
)′| = 2

3R2
sy3 .

Its expectation is E( 1
d
) = 2

3Rs
, and the second moment is

E(( 1
d
)2) = 2

3R2
s
ln2.

Now, we could get the mathematical expectation and vari-
ance of the random variable δs, which is subject to a com-
pound Poisson distribution, µ = E(|Ns|)E( 1

d
), and σ2 =

E(|Ns|)E(( 1
d
)2), making use of the law of total cumulance [5].

According to Laplace central limit theorem [16], the distri-
bution of δs could be regarded as a bounded normal distribu-
tion N(µ, σ2), with the bound of δ ∈ (a, b], the p.d.f. f(x) =

1√
2πσ

e
− (x−µ)2

2σ2 , accumulative function φ(y) =
∫ y

−∞ f(x) dx,

and the variable z = (x−µ)/σ ∼ N(0, 1). We could estimate
the average increase of potential value:

E(∆δ) = E(δs − δs′ | δs > δs′)

=

∫ b

a

f(y) dy

∫ y

a

(y − x)f(x) dx

=

∫ b

a

f(y)yφ(y) dy −
∫ b

a

f(y) dy

∫ y

a

(σz + µ)f(x) dx

=

∫ b

a

f(y)(y − µ)φ(y) dy +

∫ b

a

f(y)
σ√
2π

e
− (y−µ)2

2σ2 dy

=

∫ b

a

f(y)(y − µ)φ(y) dy +
σ

2
√

π

=

∫ b

µ

f(y)(y − µ)(2φ(y)− 1) dy +
σ

2
√

π

= ∆1 + ∆2

(6)

In equation (6), the first item ∆1 is greater than zero. Sup-
pose that yo > µ and φ(y0) > 1/2, ∆1 could further be
concretized as

∆1 > (2φ(y0)− 1)

∫ b

y0

f(y)(y − µ) dy

= σ2f(y0)(2φ(y0)− 1)

(7)

With (y0−µ)/σ = 0.9, we’ll get ∆1 > σ√
2π

e−
0.92

2 (2×0.816−
1) ≈ 0.168σ. The second item ∆2 in equation (6) could be
estimated as 0.28σ. According to equation (6) and (7), we
get

E(∆δ) > 0.448σ. (8)

which will be verified in simulation.

3.2.3 Description of Algorithm Stages
In our algorithm, each node s wakes up at uniformly

scheduled time with period T , and checks if it could ini-
tiate a local exchange step. Supposing that the density of
active nodes is λ = NDT ·πR2

s/A while node s wakes up, and
the number of sleeping nodes n′ = n−NDT is also fixed.

We first model the collective scheduled wake-up events
as the superposition of n′ Renewal Processes [11]. Accord-
ing to the central limit theorem of point processes [18], the
superposition of n′ independent and identically distributed
renewal processes each with rate 2/T tends to a Poisson
process with rate λ′ = 2n′/T as n′ gets large.

While s wakes up, three scenarios might occur depending
on the local potential field of its neighborhood.

• Idleness: s has more than one active neighbors in Rs

range, and goes back to sleep again.

• Exchange: s has only one active neighbor s′ in Rs

range, and decides to be active while δs > δs′ , or go
to sleep again while δs ≤ δs′ . From symmetry, prob-
ability of the first case could be calculated as p1 ≈
P (|NRs

s | = 1)P (δs > δs′) = 1
2
P (|NRs

s | = 1) ≈ 1
2
λe−λ,

with the approximation to Poisson distribution.



• Increment : s has no active neighbors in Rs range, and
becomes active thereby. This probability p0 could not
be simply regarded as the Poisson probability of no
neighbors, because every node here is covered by an
active sensor initially according to our distributed al-
gorithm. This event could be reworded that all active
neighbors of s at the beginning of this stage have been
replaced until now.

We define the stage here as a continuous time slice dur-
ing which the density λ keeps unchanged. The expected
duration of a single stage, Tstage, will be estimated below.

First, we estimate the expectation of number of wake-up
events in a single stage, Nstage. Define Psi↓ as the proba-
bility of si having been replaced during this stage, and it
means that at least one local exchange step has happened
at si’s neighborhood since previous stage. Suppose that it
has been m steps, we have

Psi↓ ≈
m∑

j=1

(
m

j

)
P j

e (1− Pe)
m−j where Pe =

πR2
s

A
p1

≈ 1− e−mPe

While s wakes up, it finds that all neighbors have been
replaced at previous steps.

PNstage≤m ≥ PNstage=m|Nstage≥m ≈
∞∑

k=0

P|Ns|=k

∏
si∈Ns

Psi↓

So we get

E(Nstage) = limM→∞
M∑

m=0

(1− PNstage≤m)

≤ limM→∞
M∑

m=0

(1−
∞∑

k=0

λk

k!
e−λ(1− e−mPe)k)

≈ limM→∞
M∑

m=0

∞∑

k=0

λk

k!
e−λ · ke−mPe

≈ limM→∞λ ·
M∑

m=0

e−mPe

=
λ

1− e−Pe
≈ λ

Pe
=

2A

πR2
s

eλ = ceλ

(9)

We could see that λ keeps steady until the Increment sce-
nario happens, and then the evolution of total sensor net-
work comes into another stage. Since the scheduled wake-up
process we modeled has expected interval 1/λ′, the duration
of one stage could be estimated as E(Tstage) ≤ ceλ/λ′, which
increases exponentially with the density λ.

3.2.4 Metrics and Convergence Time Analysis
Suppose that the density of active sensors is λ1 initially,

and it becomes λ2 when the system converges. The corre-
sponding numbers of active nodes are n1 and n2 respectively.
We only consider the time, Tc, to reach maximum density
here. Given that the wake-up period T = 2n according to
the simulation configuration in section 4, Tc could be esti-

mated as following.

E(Tc) ≤
n2−1∑

NDT =n1

ceλ

λ′
<

∫ n2

n1

ceλ

λ′
dx =

∫ n2

n1

ce2x/c

1− x/n
dx

(10)
Because NDT is bounded as theorem 1 says, limn→∞ E(Tc) <
c2

2
eλ2 which is also bounded exponentially with λ2.
We have defined some metrics and symbols here to facil-

itate our analysis and simulation. Table 1 is a summary of
them.

n total number of all sensors
NDT number of active sensors
δs potential of a single node
Φ total potential of all active nodes
λ0 density of poisson distribution of all sensors
λ density of poisson distribution of active sensors
λ′ intensity of poisson process of the wake-up events
Nstage number of wake-up events in a stage
Tstage duration of one evolution stage
Tc time to reach maximum density

Table 1: description of metrics

From previous potential analysis, we have the average po-
tential value

E(δs) = µ =
πR2

c − πR2
s

A
NDT × 2

3Rs
=

2πRs

A
NDT ∼ λ

(11)
and the average total potential value

E(Φ) = E(δs)NDT =
2πRs

A
N2

DT ≈ 0.0126N2
DT ∼ λ2 (12)

These models will be verified in our simulation in next sec-
tion.

4. SIMULATION
We implement the Convergent SparseDT Protocol as an

agent in NS2 simulator [4] of version 2.30. All sensor nodes
use the IEEE 802.15.4 as the MAC layer protocol. It is
quite appropriate for monitoring applications with sensor
networks, and its dynamic performance is better than 802.11
and some other MAC protocols aiming at sensor networks,
such as s-mac and d-mac. We select two-ray ground model
as the radio propagation model.

We set the sensing radius Rs to be 5 meters, and commu-
nication radius Rc to be 10 meters. Hundreds of sensors are
deployed uniformly in area of 50 × 50 meters to simulate a
dense sensor network. The sensor sleeping duration submits
the uniform distribution with expectation of n seconds. So
that the collective scheduled wake-up events approximate a
Poisson process with rate λ′ ≈ 1, which facilitates our anal-
ysis and simulation. Several variables are also fixed, such as
c = 2A

πR2
s
≈ 63.7. No matter how large the total number n

of sensors is, we have NDT < 139, and the relaxed bound of

time to reach maximum density is E(Tc) < c2

2
e

2π√
3 . We vary

the total number of sensors, n, from 100 to 900, which rep-
resents the density of network from sparseness to denseness,
and find that the convergence procedure always terminates.

At the beginning, the network will take on a legal SparseDT
structure via a random selection scheme, which works like a



series of speedy Increment scenarios. It skips over the triv-
ial phase of initialization, and the convergence procedure
follows thereafter until the network reaches equilibrium.

We illustrate a representative sample case here, where
n = 900. Fig.1 is a random selected sparse Delaunay trian-

Figure 1: Delaunay tri-
angulation at the begin-
ning.

Figure 2: Convergent
SparseDT topology

gulation mentioned above, and Fig.2 is the SparseDT topol-
ogy while Proc.1 converges. We can see that the not trian-
gulated area of the region, i.e. the uncovered area, decreases
markedly, while the triangulation topology be retained.

The following figures illustrate the run-time performance
of our algorithm. In Fig.3, we could see that the total po-
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Figure 3: Plot of total potential with local exchange
steps.

tential Φ increases almost linearly with the exchange steps,
in that the average increments at different stages are almost
the same. The proportion approaches 0.22, which matches
the analysis result in equation (8). Where in my simulation
scenario of NDT = 70, we have λ ≈ 2.2, µ ≈ 0.3, σ ≈ 0.2, so
that E(∆δ) > 0.448σ ≈ 0.09, and E(∆Φ) = 2E(∆δ) > 0.18
according to theorem 3. Furthermore, ∆1 in equation (7)
could be calculated approximately to be 0.4σ using Maxima
software [3]. So the result value of E(∆δ) ≈ 0.68σ ≈ 0.136,
and E(∆Φ) ≈ 0.27.

Similarly, the total potential Φ in Fig.4 is approximately
proportional to NDT . But Φ is modeled as quadratic approx-
imation previously in equation (12), and the best quadratic
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Figure 4: Scatter plot of total potential with number
NDT of active sensors.

fitting curve y = 0.013x2 shown with dashed line in the fig-
ure matches this model perfectly. We could also use Max-
ima software to plot this model, and find that it matches
the simulation result. So there is no reason to refer linear
model.
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Figure 5: Increment of total potential with time

Fig.5 gives the diagram of run-time performance. Al-
though the duration of single stage increases exponentially
with the density according to equation (9), we could see that
NDT reaches maximum quickly and almost linearly, in that
the density λ doesn’t vary much in each stages. The tail in
the convergence procedure shows that the SparseDT struc-
ture is settling down at the last stage with maximum den-
sity. In fact, this stage is not needed since what we want is
just the densest Delaunay triangulation under the sparseness
constraint, and that is it when NDT reaches maximum. The
convergence procedure could also be approximated with an
inhomogeneous Poisson process, and this result could also be
simulated with Monte-Carlo method which is omitted here.



5. CONCLUSION
In this paper, we propose a new and simple topology con-

trol protocol, Convergent SparseDT, which controls the net-
work density pretty well. It is a compromise between net-
work density and the area coverage. While guaranteeing the
coverage of most of the monitored area, this protocol aims to
optimize the topology of sensor network and find the most
dense network topology under the sparseness constraint with
almost negligible communication and computing overhead.
In section 2, we formulate this purpose as the maximum
weight induced subgraph problem with property of sparse-
ness, and propose a potential field equilibrium method to
approach it. The performance of Convergent SparseDT pro-
tocol is thoroughly analyzed in section 3, where the number
of active sensors needed to maintain the SparseDT topology
and the coverage probability are bounded. We further point
out that the protocol we propose shall converge to Nash
equilibrium with bounded speed, and convergence procedure
be modeled with stochastic process. These models and ver-
dicts are validated with NS2 simulator in section 4, and the
result matches perfectly. In wireless environment, network
topology has always taken the idea of cluster or back bone
based form with data aggregating objective. On the other
hand, we propose the flat and triangulation based topology
with applications for environmental monitoring, and the el-
egant attributes of Delaunay triangulation will make it sur-
vive the stringent constraints of wireless communication.
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