
A Polymorphic Shellcode Detection Mechanism in the
Network*

Hsiang-Lun Huang, Tzong-Jye Liu,
Kuong-Ho Chen†, and Chyi-Ren Dow

Department of Information Engineering and Computer
Science

Feng Chia University
Taichung, Taiwan, R.O.C.

{m9405100, tjliu, crdow}@fcu.edu.tw
†cyne@pluto.iecs.fcu.edu.tw

Lih-Chyau Wuu
Institute of Computer Science and Information

Engineering
National Yunlin University of Science and Technology

Yunlin, Taiwan, R.O.C.

wuulc@yuntech.edu.tw

ABSTRACT
Buffer overflow attack is a major security problem in recent years.
The polymorphism technique for shellcode becomes more and
more popular along with development of Internet. This paper
proposes a method to detect the polymorphic shellcode for Win-
dows operating system. The proposed approach relies on an IA-32
CPU emulator that executes instruction sequences and analyze the
behavior of polymorphic shellcode. The experimental results
show that the approach is able to detect polymorphic shellcode
accurately.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General-Security
and protection (e.g., firewalls)

General Terms
Security

Keywords
Buffer overflow, intrusion detection system, polymorphic shell-
code.

1. INTRODUCTION
As the popular of Internet, the network attack becomes a big prob-
lem. Many software packages today are implemented using
C/C++, which may generate some bugs due to the flexible syntax
of C/C++ language. The hackers are able to exploit these bugs to
attack vulnerable hosts.

Buffer overflow vulnerabilities were in 10 of the 31 advisories
published by CERT [9] in 2002 and 17 of the 28 advisories pub-
lished by CERT [10] in 2003. The well-known examples of the
remote code injection are the buffer overflow vulnerabilities such
as the Code Red [8] worm in 2001, the W32/Blaster [11] worm in

2003 and the Sasser [17] worm in 2004. These worms attack
many network hosts and propagate through Internet. They cause
serious threats on Internet.

Several solutions have been proposed to solve the buffer overflow
attacks, which can be divided into two classes: host-based solu-
tions and network-based solutions. Host-based solutions are either
compile-based such as [13], [14] or hardware-based techniques
such as [22]. For network-based solutions such as [2], [4], [5], [6],
[24], [27], they detect the malicious codes in the network packets
sent by the attackers.

In this paper, we focus on the network-based solution. We pro-
pose an algorithm for detecting the malicious codes in the network.
For such purpose, analysis concerning the code reusing behavior
of polymorphic shellcode was done using emulation. The pro-
posed approach relies on an IA-32 CPU emulator that executes
instruction sequences. Experimental results show that the detector
is able to execute safely and catch common polymorphism tech-
niques for shellcode accurately.

The rest of this paper is organized as follows. First, we present the
related researches about the prevention of buffer overflow attack
in Section 2. In Section 3, we discuss the common conception of
buffer overflow attack. The layout of the shellcode and obfusca-
tion techniques for shellcode are also discussed. In Section 4, the
proposed network-based solution to detect polymorphic shellcode
is introduced. In Section 5, the experimental results are introduced.
Conclusion is given in Section 6.

2. RELATED WORKS
As was mentioned in the previous section, the solutions to solve
the buffer overflow attack can be divided into two classes. First,
we discuss host-based solutions. Then, we discuss network-based
solution.

2.1 Host-based Solutions
StackGuard [13] is based on the compile technique. It adds many
random values, called canary, next to the return address. It detects
the change of the return address to check if some canary word has
been modified when the function is called and before the function
returns.

Return Address Defender (RAD) [12] is a simple compiler patch.
It creates a safe area to store the return address of a program stack.
Then, it automatically duplicates these return addresses to this
area. The main idea is to compare the original return address with
the duplicate one. An attack is detected if the return address is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Infoscale’07, June 6–8, 2007, Suzhou, China.
Copyright 2007 ACM 978-1-59593-757-5/07/0006…$5.00.

* This research was supported by the National Science Council of the
Republic of China under the Contract NSC-95-2221-E-035-071.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.225

modified. RAD is also operated on the compile-time. So, pro-
grammers do not modify the source code; they just have to re-
compile the source code.

2.2 Network-based Solutions
Network-based solutions are mostly signature-based. Signature-
based network intrusion detection system (NIDS) detects attacks
by comparing the packet strings with a signature database that
describes the known attacks. If a sequence of bytes match the
signature, an alert is generate.

Buttercup [23] is a network-based solution. It attempts to detect
polymorphic buffer overflow attacks by identifying the ranges of
the possible return addresses for existing buffer overflow vulner-
abilities.

Some existing detecting mechanisms focus on detecting sled
component. A sled is a string of bytes that are either NOP instruc-
tions or NOP-equivalents instructions. Toth and Kruegel proposed
the Abstract Payload Execution (APE) [27] method and P. Akriti-
dis et al. proposed the STRIDE [2]. These methods rely on disas-
sembling the IA-32 CPU instructions to check the existence of a
NOPs sled or a NOP-equivalents sled.

In addition, some approaches employed emulation technique to
detect the buffer overflows attacks. For example, Michalis Poly-
chronakis et al. [24] describe a network-level polymorphic shell-
code detection engine by emulating general IA-32 CPU instruc-
tions to run the shellcode. This method is to set a payload reads
threshold (PRT) to check if the number of memory accessing is
greater than PRT or not.

In [4], [5], [6], the authors proposed the network-based code in-
jection attacks by using sandboxing technique. This method traces
the system call by using ptarce and Detours on Linux and Win-
dows respectively to detect if the packets have the buffer overflow
attacks or not.

3. BACKGROUND OF BUFFER
OVERFLOW ATTACK
This section discusses the technique to cause the stack buffer
overflow attacks and the layout of the shellcode. We also discuss
the techniques to evade the intrusion detection system.

3.1 The Concept of Stack Buffer Overflow
Attacks
If a programmer declares a buffer and accesses it without check-
ing its boundary, a bug is generated such that attackers can exploit
it to attack and change the normal execution flow to execute at-
tackers’ code. Shown in Figure 1 are the memory maps that are
before and after the attack.

Since programmers did not check the boundary of the buffer, at-
tackers can inject code into the buffer. Since the size of the inject-
ing code is larger than the buffer size, overflow is guaranteed to
be caused, and injected code will overwrite local variables in
higher memory addresses that contain the stack pointer frame and
the return address which, if modified, will change the normal
execution. Since the return address will be pop to change the pro-
gram counter register after the function call is finished, the pro-
gram counter will point to the address that is overwritten by the
attacker. This attack is called the Buffer Overflow Attack. A tuto-

rial for the buffer overflow attacks was provided by Aleph One
[3].

argument 2

argument 1

return address

SPF

local variables

vulnerable
buffer

argument 2

argument 1

return address

SPF

local variables

vulnerable
buffer

after
attacking

low memory
address

high memory
address

attack code

Before buffer overflow attack After buffer overflow attack
Figure 1. Memory maps of buffer overflow attack.

3.2 The Architecture of Attack Codes
Figure 1 is the actions that attackers want to perform after attack-
ing. An attack code attempts to spawn a shell (hereby called shell-
code) to gain the complete control of the target system. Attackers
can construct a shellcode to perform arbitrary actions under the
privileges of the buggy service. Figure 2 shows the layout of
shellcode. Although the location of the code injection, relative to
the start of the vulnerable buffer, is known to the attackers, it is
only approximately known because the location varies between
systems, even for identical executable programs. So attackers
need to place a sequence of NOP (no-operation) instructions to
increase the probability of the execution of the shellcode. This
sequence is usually called a sled. The length of a sled is usually
ranged around a few hundred bytes.

address of attack codeshellcodesled

low memory address high memory address

Figure 2. The layout of shellcode.

After the overwritten return address is popped, if attackers do not
place the sled, the probability of error is very high because the
overwritten return address is unable to jump to the accurate loca-
tion to execute the shellcode. If attackers append the shellcode
fragment to the sled, the overwritten return address may jump to
execute NOP instruction. After executing a sequence of NOP
instructions, the program counter will go to the start of shellcode
and then perform the actions of attacks. We will describe tech-
niques for sled component in the following subsection.

Table 1. List of IA-32 one-byte nop-equivalents instructions [30].

Code (Hex) Opcode Code (Hex) Opcode Code (Hex) Opcode Code (Hex) Opcode
27 DAA 4A DEC EDX 57 PUSH EDI 95 XCHG EBP,EAX
2F DAS 4B DEC EBX 58 POP EAX 96 XCHG ESI,EAX
37 AAA 4C DEC ESP 59 POP ECX 97 XCHG EDI,EAX
3F AAS 4D DEC EBP 5A POP EDX 98 CWTL
40 INC EAX 4E DEC ESI 5B POP EBX 99 CLTD
41 INC ECX 4F DEC EDI 5D POP EBP 9B FWAIT
42 INC EDX 50 PUSH EAX 5E POP ESI 9C PUSHF
43 INC EBX 51 PUSH ECX 5F POP EDI 9E SAFH
44 INC ESP 52 PUSH EDX 60 PUSHA 9F LASHF
45 INC EBP 53 PUSH EBX 90 NOP F5 CMC
46 INC ESI 54 PUSH ESP 91 XCHG ECX,EAX F8 CLC
47 INC EDI 55 PUSH EBP 92 XCHG EDX,EAX F9 STC
48 DEC EAX 56 PUSH ESI 93 XCHG EBX,EAX FC CLD

3.3 One-byte NOP-equivalents Sled
A sequence of NOP instructions is detected easily by intrusion
detection systems because this signature is easy to generate. Ex-
perienced attackers may use some instructions that do not affect
the operation of program to replace NOP instructions. For exam-
ple, the ADMmutate [19] engine uses this technique with a list of
52 one-byte NOP-equivalents instructions to generate the sled.
Table 1 shows the list of 52 one-byte NOP-equivalents instruc-
tions under IA-32 architecture [30].

3.4 Multi-byte NOP-equivalents Sled
Attackers can use one-byte NOP-equivalents sledge to evade de-
tection technologies that scan NOP-based. Attackers can also use
multi-byte NOP-equivalents sledge to evade detection. However,
it is impossible to use any multi-byte NOP-equivalents instruc-
tions available in the IA-32 instruction set because a sled must be
executable at every offset. Figure 3 shows an example of multi-
byte NOP-equivalents sled [1].

BB B0 BF 2C B6 27 67 2F 4A 1B F9 shellcode
mov ebx,0xb62cbfb0bb

mov al,0xbf
mov edi,0x6727b62c

sub al,0xb6
mov dh,0x27

daa
a16 das

das
dec edx

sbb edi,ecx
stc

Figure 3. Multi-byte NOP-equivalents sled example [1].

If the execute flow is transferred to the leftmost byte, it will exe-
cute following instructions sequentially: “mov ebx,0xb62cbfb0ff”,
“daa”, “a16 das”, “dec edx” and “sbb edi, ecx”. Any byte of sled
can correspond to the opcode of IA-32 instructions. Therefore,
when the execute flow is transferred to any byte of sled, it always
executes correctly and the program counter will come to the start
of shellcode.

3.5 No Sled
In addition, dark spyrit [16] had presented a method that use
known locations of “JMP ESP” in system memory to transfer
instruction pointer to the start of shellcode. This method is to find

the system memory address of existing code within a dynamically
linked library or the static program binary. This code is disassem-
bled to a call such as “JMP ESP”. The attack is called the register
spring [15].
Attackers can use the memory address of code of register spring
to overwrite the original return address. Therefore, attackers do
not need to place sled because the vulnerable program will exe-
cute the shellcode directly when the program counter jump to
memory address of “JMP ESP” and execute this instruction. The
operation is shown in Figure 4.

argument 2

argument 1

return address

SPF

local variables

vulnerable
buffer

low memory
address

high memory
address

at
ta

ck
 c

od
e

memory address
of JMP ESP

shellcode

… …

…
JMP ESP

…

Figure 4. The operation of register spring.

In Figure 4, the first step transfers the execution flow to system
address of the “JMP ESP” instruction and pop; the current ESP
register points to the start of the shellcode. The second step is to
execute the “JMP ESP” instruction. After executing, the execution
flow will sprint to shellcode and execute it.

3.6 Polymorphism and Obfuscation
Techniques
Obfuscation techniques for shellcode will be discussed in this
subsection.
Plain shellcode usually needs to face some challenges. First, it
maybe has some different restricted characters such that every
buffer overflow point is different. Most buffer overflow cases are

to exploit some function that terminates until encountering a ter-
minating character such as strcpy, strcat, strncpy, strncat, etc.
Therefore, shellcode cannot contain terminating character. It is
because that the null-termination byte make the shellcode cannot
completely send to vulnerable program. Second, the plain shell-
code may be detected by intrusion detection system.
Experienced attackers may use some tricks to solve the challenges
of shellcode. Most popular ways are to encrypt the shellcode. It is
called the Polymorphic Shellcode. Attackers can select one value
and use this value to exclusive-or (XOR) each byte of shellcode to
eliminate the null-termination byte or encrypt the shellcode.
Therefore, using this way can cause NIDS obfuscate because the
pattern of the malicious code are encrypted.
Figure 5 shows an example of polymorphic shellcode. Line 0005
and line 0007 are FPU instructions. When line 0007 is executed,
the FPU instructions pointer will be saved and this pointer points
to the last FPU instruction before fsetenv/fnsetenv [18] instruction.
This pointer stores the value 0005 after executing fnsetenv in-
struction. A series of actions in Figure 5 are to get the program
counter to be the base address to relocate address. The detail is
discussed in “History and Advances in Windows Shellcode” [26].

0000 33 C9 xor ecx,ecx
0002 83 E9 DD sub ecx,0FFFFFFDDh
0005 D9 EE fldz
0007 D9 74 24 F4 fnstenv [esp-0Ch]
000B 5B pop ebx
000C 81 73 13 F1 F1 59 06 xor dword ptr [ebx+13h],659F1F1h
0013 83 EB FC sub ebx,0FFFFFFFCh
0016 E2 F4 loop 000C
0018
．．． < encoded payload >

Figure 5. An example of decrypt part of shellcode.

4. THE PROPOSED APPROACH
The proposed approach detects the malicious code in packet
streams by attempting to execute the network packets in a virtual
environment, in which executable codes, if any, would be de-
tected. There are many kinds of virtual environment, e.g., Xen
[29], QEMU [25], Bochs [7], and VMware [28], which are stand-
alone virtual machine environment. In this paper, we develop a
simple emulator to emulate some general IA-32 CPU instructions.
This way, malicious codes can be executed safely on the detector
and do not affect the target operating system. Figure 6 shows the
proposed detection algorithm.

01 for (pos = Buf_Start ; pos < Buf_Len; pos++)
02 {
03 reset_register();
04 Init();
05 ExecutedCount = 0;
06 for (IP = pos ; IP < Buf_Len && ExecutedCount < 2048; IP += Len)
07 {
08 Len = Disasm_and_Emulate(buf [IP]);
09 if (CodeReuse && MemoryAccess && ExecutedCount >= 5)
10 return TRUE;
11 else if (MemoryAccessViolation)
12 {
13 ExecutedCount = 0;
14 break;
15 }
16 }
17 }
18 return FALSE;

Figure 6. Pseudo-code for the detection algorithm.

Since register spring technique was presented by dark spyrit [16],
the solutions that detect sled component may be bypassed. As the
polymorphic engines are gaining their popularities, here the pri-
mary focus is on the detection of polymorphic shellcode. We aim
at decrypt component of shellcode to analyze its behavior.

Network packet streams are sequences of hexadecimal signs
which cannot be intuitively distinguished between data and code;
since the entry of shellcode is unknown, the system will emulate
the instruction from the start of buffer. Line 1 in Figure 6 is a loop
to select a position to be the entry of shellcode. In first loop, the
reset_register function is to assign the negative one to all general-
purpose registers. The Init function is to initiate all state of the
virtual process. Line 2 is the second loop to perform a series of
actions of fetching, decoding and emulating. The Dis-
asm_and_Emulate function in line 8 is implemented to disassem-
ble and emulate the packet stream. It will return the length of cur-
rent instruction. Emulator will break and shift to next byte from
original entry to be a new entry and fetch and decode instructions
from new entry again if hex signs are data instead of code because
hex signs that are data may cause memory access violation. The
MemoryAccessViolation is set nonzero if it execute from a wrong
entry. Therefore, we shift each byte to be the entry of shellcode
could find the correct entry accurately if the network stream con-
tains the polymorphic shellcode.

The layout of polymorphic shellcode is to place a decoder before
the shellcode. The decoder decrypts the encoded shellcode. There
are two signatures in decryption process. First, in order to decrypt
the encoded shellcode, the decoder will execute the same code
repetitively, called code reuse. Second, the decoder will access
memory in decryption process. Therefore, we get these two signa-
tures to be detection condition.

In Disasm_and_Emulate function, we emulate IA-32 instructions
to execute the contents of the received packet streams. Code that
is written by attackers can be executed correctly. In contrast, data
cannot disassemble and will get error when it executes. So, we
will check if the behavior of code is a code reuse or not. The pro-
posed system will alert an alarm if the detector detects a code
reuse or a loop behavior.

However, common data maybe has the code reuse behavior as
same as the real code. So, we set a threshold to decrease false
positive. The threshold is the counter of continuous executable
instructions. The minimal number of executable decryption in-
structions is 7 in Figure 7.

Figure 7. Numbers of executed decryption instructions of

each encryption engines.

We take the Alpha2, ShikataGaNai, JmpCallAdditive, PexFnsten-
vMov, PexAlphaNum, Pex and PexFnstenvSub shellcode encryp-
tion engines of the Metasploit Framework [20] to count their re-
spective amount of executed decryption instructions.

On the other hand, the execution of the polymorphic shellcode
produced by Alpha2 encryption engine or PexAlphaNum encryp-
tion engine takes more then 10 instructions due to these two en-
gines produce alphanumeric shellcode.

It was found that the minimal instruction count of decryption part
of polymorphic shellcode is 5. Figure 8 is an example of minimal
instruction counts which contains 5 instructions. It was assumed
that the polymorphic shellcode is to encrypt a block plain shell-
code, not just to encrypt certain instructions. A decoder must have
at least 5 instructions to decode a block of encoded payloads be-
cause it uses two instructions (line 0000 and line 0005) to get the
program count to be the base address for relocate address. One
instruction would initiate register ECX (line 0006) to set the
length of plain shellcode because this case decodes payloads from
the end of polymorphic shellcode. Then, one instruction (line
000B) would decode the encoded payloads. At the end, LOOP
instruction (line 0010) would be used to jump to decode the en-
coded payloads repetitively. So we choose the value of 5 to be the
threshold of ExecutedCount.

Hackers may use the current value of register ECX at the time of
buffer overflow. Therefore, the decoder could eliminate the action
of initiating in line 0006. This trick is only able to run when the
value of register ECX is somewhat greater than the length of plain
shellcode. If the value of register ECX is far greater than the
length of plain shellcode, the operating system in vulnerable host
will cause failure. Therefore, the risk of attacking failure is too
high for attackers. So we do not consider this case.

0000 E8 00 00 00 00 call 0005
0005 5B pop ebx
0006 B9 23 01 00 00 mov ecx,0123h
000B 80 74 0B 0C 77 xor byte ptr [ebx+ecx+0Ch],77h
0010 E2 F9 loop 000B
0012
．．． < encoded payload >

Figure 8. An example of minimal instruction counts of de-
coder part of polymorphic shellcode.

If code reuse behaviors are detected in the contents by Dis-
asm_and_Emulate function, the value CodeReuse will be set to
nonzero and the value ExecutedCount is to count the number of
executed code. Once the value CodeReuse is set nonzero and the
value ExecutedCount is equal or greater than 8, the detector will
set an alarm to inform the network administrator.

In order to avoid the detector occurring infinite loop or hang up,
we use the execution threshold (XT) that Michalis Polychronakis
et al. [24] proposed to be our threshold. If ExecutedCount is
greater than 2048, the detector breaks the second loop.

5. THE PROPOSED ARCHITECTURE AND
EXPERIMENTED RESULTS
The proposed approach modifies the disassembler of OllyDBG
versions 1.04 [21] to become the IA-32 emulator. This package is
an open source and includes the source code of 32-bit disassem-
bler. We use this disassembler to decode instructions first. Then,
we add function of emulation within disassembler to emulate IA-
32 instruction set. We have implemented some general-purpose

instructions and FPU instructions, but no MMX, SSE and SSE2
instructions. The emulator stops when it encounters an unimple-
mented instruction. The main purpose of the emulator is only to
decode it and go to the next instruction.

We evaluate the ratio of accuracy of detection and its false posi-
tive ratio. The proposed system runs on a PC with a 3.0GHz Pen-
tium 4 processor, 1GB RAM and the system operates in Windows
XP Service Pack 2.

We generate the testing polymorphic shellcode by using the en-
coders of the Metasploit Framework [20]. Then, we take the po-
lymorphic shellcode into a sequence of random values that we
generate by the random number generator. The size of each test-
ing data is 1024 bytes and the total numbers of testing samples are
1000. The encoders that we use in the experiment include
PexFnstenvSub, Pex and PexFnstenvMov.

Table 2 shows the results of detection with polymorphic shellcode.
The proposed detector catches the polymorphic shellcode that
encode by above three encoders.

Table 2. The results of detection with polymorphic shellcode.

Encoder Name Detected
PexFnstenvSub Yes
Pex Yes
PexFnstenvMov Yes

In addition, we also test the false positive ratio. We generate a
sequence of random data without polymorphic shellcode and take
these data to be tested by the detection system. Table 3 shows the
results of false positive, which is 5.2% of the total testing samples
without ExecutedCount threshold. This is because the random
data may contain the short branch instructions such as the opcode
is E2 F4 (LOOP short address) or EB F4 (JMP short address).
Like these short branch instructions, it will cause the false positive
if the address of branch is before current branch instruction and
fetch, decode instruction from the address which branched is not
affect decode of original branch instruction. It has code reuse
behavior in this situation and cause false positive. We may de-
crease the probability of false positive if we set the Executed-
Count threshold.

Table 3. The results of false positive without polymorphic
shellcode.

Testing Random Data
False Positive without Executable-

Count Theshold
False Positive with ExecutableCount

Theshold
5.2 % 0 %

Figure 9 shows the performance of the detection algorithm. We
insert the polymorphic shellcode into the random data. The x-axis
is the percentage of the polymorphic shellcode in 1000 samples.
The y-axis is the average detection time that the detector checks
one sample. The performance can be improved. However, the
accuracy ratio of detection and the false positive that discussed
early are excellent.

Figure 9. The performance of the detection algorithm.

6. CONCLUSION
The proposed system focuses on polymorphic shellcode. The pro-
posed system detects the shellcode before executing actual pay-
load. Currently, the proposed system cannot detect plain shellcode
because it may uses some techniques to get address of system
dynamic link library or call system API address directly. The pro-
posed system is a network-based solution. It cannot get the operat-
ing system information.

In addition, the performance is not good due to shift each byte to
check whether contain the polymorphic shellcode or not. Al-
though most shellcode has no terminating character, the shellcode
contains the terminating character in special case. In order to de-
tect all types of shellcode, we need to survey and find the signa-
ture to increase performance. We will combine the network intru-
sion detection system with our algorithm to detect real network
data.

In this system, we propose a network-based solution to analyze
the behavior of polymorphic shellcode. The proposed detection
algorithm is simple and clear. It detects accurately whether con-
tain the shellcode or not. In addition, we can solve the problems of
self-modify that bypass some previous solutions.

7. REFERENCES
[1] Advances in Exploit Technology. Go online to

http://www.metasploit.com/confs/core05/core05_metasploit.
pdf, 2005.

[2] Akritidis, P., Markatos, E. P., Polychronakis, M., and
Anagnostakis, K. G. Stride: Polymorphic sled detection
through instruction sequence analysis. In 20th IFIP
International Information Security Conference.

[3] Aleph One. Smashing the stack for fun and profit. Phrack
Magazine, vol. 14, no. 49, Go online to
http://www.phrack.org/archives/49/P49-14, Nov. 1996.

[4] Andersson, S., Clark, A., and Mohay, G. Network based
buffer overflow detection by exploit code analysis. In
Proceedings of AusCERT Asia Pacific Information
Technology Security Conference (AusCERT2004): R&D
Stream, Gold Coast, Australia, 2004. University of
Queensland. ISBN: 1-86499-774-5.

[5] Andersson, S., Clark, A., and Mohay, G. Detecting network-
based obfuscated code injection attacks using sandboxing. In
Proceedings of AusCERT Asia Pacific Information

Technology Security Conference (AusCERT2005): Refereed
R&D Stream, Gold Coast, Australia, 2005. University of
Queensland. ISBN: 1-86499-799-0.

[6] Andersson, S., Clark, A., Mohay, G., Schatz, B., and
Zimmermann, J. A framework for detecting network-based
code injection attacks targeting Windows and UNIX. In
Proceedings of the 21st Computer Security Applications
Conference, Dec. 2005.

[7] Bochs: the Open Source IA-32 Emulation Project (Home
Page). Go online to http://bochs.sourceforge.net/.

[8] CERT Coordination Center. CERT Incident Note IN-2001-
08 Code Red Worm Exploiting Buffer Overflow in IIS
Indexing Service DLL. Go online to
http://www.cert.org/incident_notes/IN-2001-08.html, June
2001.

[9] CERT Coordination Center. CERT Coordination Center
Advisories for 2002. Go online to
http://www.cert.org/advisories/#2002, 2002.

[10] CERT Coordination Center. CERT Coordination Center
Advisories for 2003. Go online to
http://www.cert.org/advisories/#2003, 2003.

[11] CERT Coordination Center. CERT Advisory CA-2003-20
W32/Blaster worm. Go online to
http://www.cert.org/advisories/CA-2003-20.html, Aug. 2003.

[12] Chiueh, T. C. and Hsu, F. H. RAD: a compile-time solution
to buffer overflow attacks. In Proceedings of the 21st
International Conference on Distributed Computing Systems,
pp. 409-417, Apr. 2001.

[13] Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie,
S., Grier, A., Wagle, P., Zhang, Q., and Hinton, H.
StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks. In Proceedings of the 7th
USENIX Security Conference, San Antonio, Texas, pp. 63–
78, Jan. 1998.

[14] Cowan, C., Beattie, S., Johansen, J., and Wagle., P.
PointGuardTM: Protecting pointers from buffer overflow
vulnerabilities. In Proceedings of the 12th Usenix Security
Symposium, Aug. 2003.

[15] Crandall, J. R., Wu, S. F., and Chong, F. T. Experiences
using Minos as a tool for capturing and analyzing novel
worms for unknown vulnerabilities. In Proceedings of GI
SIG SIDAR Conference on Detection of Intrusion and
Malware and Vulnerability Assessment (DIMVA), 2005.

[16] Dark spyrit AKA Barnaby Jack. Win32 Buffer Overflows.
Go online to http://www.phrack.org/archives/55/P55-15,
Sept. 1999.

[17] F-Secure Corporation. F-Secure Virus Descriptions: Sasser.
Go online to http://www.f-secure.com/v-descs/sasser.shtml,
May 2004.

[18] Intel® 64 and IA-32 Architectures Software Developer's
Manuals vol. 1-3. Go online to
http://www.intel.com/products/processor/manuals/index.htm.

[19] K2. ADMmutate. Go online to
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.

[20] Metasploit project. Go online to http://www.metasploit.com/.

[21] OllyDBG disassembler. Go online to
http://www.ollydbg.de/disasm.zip.

[22] Özdoganoglu, H., Vijaykumar, T. N., Brodley, C. E.,
Kuperman, B. A., and Jalote, A. SmashGuard: A Hardware
Solution to Prevent Security Attacks on the Function Return
Address. In Proceedings of the IEEE Transactions on
Computers, pp. 1271- 1285, Oct. 2006.

[23] Pasupulati, A., Coit, J., Levitt, K., Wu, S. F., Li, S. H., Kuo,
J. C., and Fan, K. P. Buttercup: On network-based detection
of polymorphic buffer overflow vulnerabilities. In IEEE/IFIP
Network Operation and Management Symposium, May 2004.

[24] Polychronakis, M., Anagnostakis, K. G., and Markatos, E. P.
Network-level polymorphic shellcode detection using
emulation. In Proceedings of the GI/IEEE SIG SIDAR
Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), Jul. 2006.

[25] QEMU (Home Page). Go online to
http://fabrice.bellard.free.fr/qemu/.

[26] Sk. History and advances in windows shellcode. Phrack
Magazine, vol. 7, no. 62. Go online to
http://www.phrack.org/archives/62/p62-
0x07_Advances_in_Windows_Shellcode.txt, Jun. 2004.

[27] Toth, T. and Krügel, C. Accurate buffer overflow detection
via abstract payload execution. In Proceedings of the 5th
International Symposium on Recent Advances in Instrusion
Detection (RAID), pp. 274-291, 2002.

[28] VMware: Virtualization, Virtual Machine & Virtual Server
Consolidation (Home Page). Go online to
http://bochs.sourceforge.net/.

[29] XenSource: Delivering the Power of Xen (Home Page). Go
online to http://www.xensource.com/.

[30] XFOCUS team. NOP Equivalent opcodes for shellcodes -
Canonical List. Go online to
http://www.xfocus.org/articles/200203/363.html, Mar. 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

