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ABSTRACT
In this paper, we consider the problem of filtering a contin-
uous stream of XML data efficiently against a large number
of branch XPath queries. Several approaches have been pro-
posed, and many of them improve their run-time efficiencies
by sharing some paths between branch queries. This paper
further improves the run-time efficiencies by classifying and
grouping semantically equivalent twig patterns, and iden-
tifying the common paths that are shared between these
groups. Query structure matching is done at index compi-
lation phase, and the paths shared between these groups of
queries are processed once. Experiments show that our pro-
posal is efficient and scalable compared to previous work.

1. INTRODUCTION
XML streaming processing has become an important re-

search field due to the increasing developments of a wide
range of applications that require efficient evaluation of XML
streaming data. These applications include automotive telem-
atics, precision agriculture, defense systems, telemedicine
and processing of scientific data [9, 17, 16]. One common
functionality that these applications must provide is how to
evaluate a large number of multiple complex user queries
against a set of data coming from streaming continuously.
A system which implements such a functionality is known
as a publish-subscribe system (also denoted as a pub-sub
system). With the popularity of XML as a data exchange
format, there have been several research efforts that address
the problems of building scalable and efficient XML filter-
ing systems in which users express their interests of data in
XPath.

In this paper, we consider pub-sub systems which already
know the structure of XML documents (i.e., DTD) that they
process, and propose techniques that utilize such informa-
tion. Subscribers of these pub-sub systems already have
such information and use the knowledge to formulate spe-
cific XPath queries for a particular set of incoming XML
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documents. One characteristic of such systems is, they pro-
cess many but similar XML documents that share a common
DTD against a set of XPath queries which are specifically
designed for that group of XML documents. The probability
of this set of queries being matched also tends to be higher
than a set of general and unspecific queries that are formu-
lated without such information. Many previous works ([4, 5,
6, 23, 18, 15, 3]) did not consider how queries with different
probabilities of matching could affect the performances of
pub-sub systems.

Using the information on document structures, we build
a query index for a specific set of documents that share the
same DTD, and pre-process given queries against the query
index prior to process incoming XML documents. An ad-
vantage of this approach is, most of query matching process
can be done at index compilation phase, and therefore only
the minimum operations required to evaluate queries are
performed in run time.

Unlike some previous works, we do not split queries with
branch paths—which we name them as branch queries—into
multiple smaller linear queries. In our approach, branch
queries are treated as twig patterns and evaluated to true
when there are documents that match the same twig pat-
terns. This approach, however, requires us to solve several
challenging problems in order to make it more efficient than
previous approaches. For instance, consider the following
queries, q1:a/b[d]/c/e and q2:a/b[c/e]/d, where the twig
patterns of the two queries are equivalent, but expressed in
different forms. Classifying a set of queries into smaller sets
of queries such that each set contains queries whose twig
patterns are the same is important. This is because the
effect of evaluating one query from a set is the same as eval-
uating all queries in the same set. For example, if q1 and q2

were in the same set, and q1 was evaluated to true, all other
queries including q2 would also be evaluated to true without
processing each of them. In this way, the scalability of the
system is not proportional to the total number of queries but
proportional to the unique number of twig patterns that rep-
resent queries. In addition, the process of identifying queries
must be more efficient than the one which evaluates queries
individually without performing such optimization.

Another challenging problem is that, there exist queries
with different twig patterns that look for the same parts of
a document. For example, a query q3:a/b[f]/c/e is differ-
ent from q1 (and q2), but also looks for the same branch,
a/b/c/e. Identifying such branch sharing and eliminating
any duplicate evaluation of branch paths can improve the
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overall performance of a system, since it reduces the total
number of branches that have to be evaluated in run time.
For example, the effect of processing the branch /a/b/c/e

once should be the same as evaluating the branch in q1, q2
and q3 individually. Similarly, the cost of the branch iden-
tifying process should be less than the cost of processing
similar queries individually.

In this paper, we propose efficient and scalable XML fil-
tering techniques which also address the above problems.
Our techniques are different from previous approaches in a
way that we pre-process branch queries at index compilation
phase to reduce duplicate processing of queries and share
partial results amongst queries when they are evaluated. At
index compilation phase, branch queries are applied to our
query index as twig patterns, and in run time, only contain-
ment relationships between elements are checked using our
label scheme. Before processing branch queries, we classify
queries into groups, each of which has the same twig pat-
terns. Moreover the common paths that are shared by these
groups of queries are identified, and in run time, only the
unique twig patterns and branch paths are evaluated. By
utilizing the information about document structures, both
run time and the scalability of the system are increased com-
pared to previous work. In addition, unlike approaches such
as [23, 18], we do not consider predicate ordering as we
believe there are more applications that require to ignore
such ordering. For example, we treat queries a/b[c][d]

and a/b[d][c] the same.
This paper is organized as follows. Section 2 describes

related work. Section 3 describes a data structure and a
SAX parser upon which our technique is built. Section 4
describes our techniques for processing branch queries. Sec-
tion 5 presents the experimental results of our techniques.
Finally, we conclude our paper in Section 6.

2. RELATED WORK
XFilter [1] is one of the earliest pub-sub systems in which

each XPath expression is modeled as a finite state machine.
However, it does not support branch XPath expressions, and
is designed towards handling small discrete XML documents
which makes it less effective against continuous stream of
XML documents.

XTrie [4, 5] is based on a trie which supports branch
XPath queries. It decomposes twig patterns into longest
substrings and uses a trie to detect occurrences of substring
matches for each event it receives. Decomposing to longest
substrings also lowers the probability of matching docu-
ments. Constructing an index of queries is similar to our
approach, but in our approach, query index is built on top
of a document structure. During index compilation phase,
shared paths between queries are also identified. In addition,
our index provides faster element matching at run time as
there are fewer number of nodes to look up.

YFilter [7, 6] is a successor of XFilter which supports
branch XPath queries. It improves the performance by shar-
ing some paths between branch queries, and also separates
filtering problem of XPath expressions into structural match-
ing and content matching parts. To achieve path sharing,
a Nondeterministic Finite Automaton of branch queries is
built. Similar to XTrie, branch queries are decomposed into
multiple linear queries, and in the post-processing phase,
the results from the structure matching part are combined.
In this approach, the processing cost is dominated in the

post-processing phase when all results are combined. Branch
queries are evaluated individually in the post-processing phase
whereas our approach only evaluates queries that have dif-
ferent twig patterns.

LazyDFA [13] shows how it evaluates a large number of
linear XPath queries using Deterministic Finite Automa-
ton. Its experiments demonstrate that it takes a constant
processing time independent of the query size. One draw-
back of this approach is the space requirement which is not
bounded as pointed out in their experiments. However, the
size of LazyDFA is kept minimal by building DFA at run
time lazily which results in having small document struc-
tures for data-oriented documents. Its approach is efficient
both in time and space for evaluating linear XPath expres-
sions for data-oriented documents. Our approach can also
be applied to process linear queries at constant time.

XPush [14] extends LazyDFA to process branch XPath
queries using deterministic pushdown automaton in a bot-
tom up way. Although, in theory, it takes constant time to
process each incoming element, it rarely achieves its theo-
retical performance due to a large requirement of memory.
In practice, the efficient of this approach is about linear to
the number of queries.

The work by Onizuka [20] is an improvement of LazyDFA
which reduces the number of states required to process com-
plex XML documents by grouping linear queries into several
clusters, and supports branch queries by building NFA which
is shared by DFA states. Similar to other approaches, it also
decompose branch queries and evaluate each linear query
by LazyDFA. As a result, the performance depends on the
number of event invocations from its XPath processor, which
also depends on the number of decomposed XPath expres-
sions. However, it shows how effective a DFA approach can
be compared to others.

Unlike previous approaches, Bloom Filter [12] improves
the efficiency of filtering XML data by sacrificing the accu-
racy of returning matching queries for incoming documents.
It uses Bloom filters to represent a group of linear queries,
and provides a hash-based approach to evaluate XPath ex-
pressions. Queries with the same prefix are shared to de-
crease the number of candidates. However, it does not sup-
port branch queries and is not suitable for applications that
allow any inaccuracy.

XSQ [21, 22] also builds a NFA for a branch query and
maintains its own buffer to store potential matching ele-
ments. This allows to return a set of matching elements for
a given query. However, only one query can be processed
at a time for an incoming document, and the buffer can be
overflowed for queries that return a large number of elements
such as the entire document.

PRIX [23] and its successor FiST [18] consider branch
XPath expressions and XML documents as twig patterns,
and transform each branch query into a sequence of ele-
ments using a tree preorder traversal or Prufer Sequence
repectively. It then matches the sequence of incoming el-
ements against sequences of branch queries. It does not
require to decompose branch queries into linear queries and
therefore combining them at a post-processing phase. It or-
ganizes the sequences into a hash based index to improve
efficiency. However, the implicit ordering created using the
preorder traversal or Prufer Sequence algorithm imposes the
implicit predicate ordering for branch queries. For example,
a query a/b[c] is matched only if element b appears before



c under a.
XPath-NFA [15] is a simplified version of YFilter which

builds NFA from XPath queries, but it converts NFA to
DFA through subset construction, and organizes automata
in a way that it utilizes CPU’s L2 cache. It identifies the
area where state transition occurs the most frequently in an
automaton, and places these area into an in-memory data
structure, called hot buffer, for fast cache access. Hot buffers
can also be configured to support incremental updates of
XPath queries.

AFilter [3] builds a reverse directed graph, prefix tree and
suffix tree from XPath queries, and when queries are eval-
uated, query results are shared amongst queries that have
the same prefix. By looking at the suffix tree, it reduces
the number of graph traversals needed when queries with
the same prefix are evaluated. However, it does not support
branch XPath queries.

There are some works that use XML algebra to efficiently
process queries. The work by Fegaras [10] transforms a
query into XML algebras to optimize it according to a query
plan, and processes XML documents that are fragmented
by its Hole-Filter approach. Raindrop [25] also transforms
a query into XML algebras, but uses NFAs to encode path
expressions in a query. Both approaches are for XQueries,
and cannot process multiple queries at a time.

Unlike all pub-sub systems above, which are light-weight
in-memory based, some systems such as [24, 30, 27] use rela-
tional database to support XML document filtering. In these
systems, XML subscriptions and documents are stored in
relational databases as tuples, and join operations are per-
formed to find matching subscriptions for each document.
The advantage of this approach is, the scalability of the
systems is not limited to the amount of physical memory
that systems have, and since all subscriptions are stored in
databases, the systems are not volatile. However, the perfor-
mance of this approach is also substantially slower compared
to other in-memory approaches.

In general, the problem of evaluating XPath expressions
efficiently can be solved by taking DFA approaches such as
LazyDFA and using path sharing concepts such as YFil-
ter. In addition, the performance can be further improved
by grouping queries that represent the same twig patterns
as it provides a way of eliminating duplicate processing of
queries and therefore reducing the total number of queries
to process. However, none of the previous approaches iden-
tifies queries that have the same twig patterns, and evaluate
only unique twig patterns using the paths that are shared
between these twig patterns.

3. PRELIMINARY
In this section, we introduce a data structure called Struc-

ture Index and a modified SAX parser upon which our tech-
nique is built. Let us first define terminologies that we use in
the following sections. A query tree is a tree representation
of a branch query. We name each location step of a query a
node. A query tree contains two types of nodes—(1) main
nodes which are the nodes that represent the main path of
a query, and (2) predicate nodes that represent the branch
paths of a query. A node is a leaf node if it does not have
any child nodes. A node is a branch node if it has at least
one predicate node as a child.

<a m="1">
<f>

<g>2</g>
<g>3</g>

</f>
<e>

<c>
<d>4</d>
<f>5</f>
<d>6</d>

</c>
<a>text</a>

</e>
<f/>
<b>

<f>7</f>
<e>8</e>

</b>
</a>

(a) XML document

<a>
<@m/>
<f>

<g/>
</f>
<e>

<c>
<d/>
<f/>

</c>
<a/>

</e>
<b>

<f/>
<e/>

</b>

(b) Structure Index

startElem("a")
startElem("@m")
endElem("@m")
startElem("f")

startElem("g")
endElem("g")
startElem("g")
endElem("g")

endElem("f")
startElem("e")

startElem("c")
startElem("d")

...
endElem("a")

(c) Modified SAX
events

Figure 1: Sample XML document, Structure Index
and modified SAX events

3.1 Structure Index
Structure Index is a minimum document structure repre-

sentation of a set of XML documents that share the same
DTD. It contains only unique element and attribute names,
and ignores (1) document ordering, and (2) both content
of elements and values of attributes. Figure 1(a) and 1(b)
show an example of an XML document and its Structure In-
dex. It is different from DTD in a way that DTD provides
the complete information about a document structure of an
XML document whereas Structure Index simplifies DTD by
removing recursive elements by expanding these elements up
to the maximum depth of incoming documents. It is simi-
lar to DataGuides [11] and ViST [29], but Structure Index
is used to extract data structures of documents in order to
preprocess and expand queries whereas the other indexes are
used to index data to improve query processing. The size
and complexity of Structure Index is small and simple in
practice for data-oriented documents [11], even though its
DTD allows more complicated structures such as infinitely
recursive elements. A study in [19] also discovered that, 99%
of a sample of 200,000 documents publicly available on the
Web have less than 8 levels of nesting. At index compila-
tion phase, each node in the Structure Index, denoted as
Index Node, is decorated with information that is needed to
process branch queries at runtime.

Before processing documents, the Structure Index is gen-
erated from a set of training documents, all of which rep-
resent various document structures of incoming documents
to filter. They can be randomly sampled from publishers
or generated randomly using a tool such as [8]. We refer to
the initial period of time during which the Structure Index
is constructed as update phase. We also refer to the stage
where updates of Structure Index do not or hardly occur as
stable phase.

3.2 SAX Parser and Element Processing
A SAX parser is modified in the following ways.

startElem(elem ) and endElem(elem ) process attributes as
they were child elements of the current element. Figure 1(c)
shows the events produced when a document in Figure 1(a)



is parsed.
Initially, a current Index Node is set to the root of the

Structure Index. On startElem(elem ) event, an Index Node
whose name is the same as elem is searched amongst the
children of the current Index Node. Only when such a child
node is found, that child node becomes the current Index
Node. The searching process takes O(1) since the names of
child nodes are hashed.

On endElem(elem ) event, the parent of the current Index
Node becomes the current Index Node if the name of the
elem is the same as the current Index Node and elem occurs
at the same level as the current Index Node. Each time
when an event is received, branch queries associated with the
current Index Node are processed. We describe our query
processing techniques in the following sections.

4. METHODS
In this section, we present a technique which is optimized

for evaluating a set of branch queries against a sequence of
incoming XML documents. The technique can also be sim-
plified to efficiently evalute linear queries. Before we pro-
cess branch queries, we label Index Nodes in the Structure
Index using a label scheme such as [2], and decorate the
nodes with the information that is obtained from the fol-
lowing three steps. In addition, we keep a global stack of el-
ements whose end tags have not yet received. An element is
pushed or popped from the stack when a startElem(elem )

or endElem(elem ) is received respectively. Each stack item
stores a set of labels that we discuss shortly.

4.1 Identifying Equivalent Twig Patterns
Figure 3 shows an example of a Structure Index from Fig-

ure 1(b) with branch queries from Figure 2 applied to it.
The attribute node representing @m is omitted in the fig-
ure for simplicity. There are two cases in which a leaf or
branch node of a query tree is assigned to more than one
Index Node. First, it is when a query contains either ‘//’s
between nodes or ‘*’s in a query, and second, it is when
Structure Index has more than one set of matching nodes
of the query. We use the term, query instance, to refer to
one set of matching Index Nodes of a query tree. In other
words, a query tree can have more than one query instance
if it satisfies one of the two conditions above. Conversely,
each Index Node contains a set of matching leaf nodes or
branch nodes of unique query instances. Linear queries only
contain leaf nodes and they are applied similarly.

We identify groups of query instances, each of which con-
tains the equivalent twig patterns as follows. For each query
tree, we identify groups of query instances, each of which
contains a set of matching leaf and branch nodes. For each
query instance, we sort the Index Nodes in the query in-
stance according to their Structure Index labels, and append
all decomposed paths of the query tree. We then insert (k, v)
pair to a multi-hashtable, where k is a sorted sequence of la-
bels of Index Nodes plus decomposed paths, and v is a query
ID. We repeat the process for all queries.

The resulting multi-hashtable, which is shown in Table 1,
contains groups of queries, and the queries in each group
represent the same twig pattern for this set of documents.
This is because they require the same set of leaf and branch
Index Nodes to be satisfied for this particular set of docu-
ments, and require the same set of nodes to be structured

in the same way. The table contains two rows of q7, since
q7 has two query instances. One may say that identifying
query instances could increase the number of queries to pro-
cess, but by grouping these query instances, we reduce the
total processing time, since the number of groups of query
instances is smaller than the total number of queries, and
evaluating one query from each group is sufficient to evalu-
ate all other queries in the same group. Furthermore, we do
not evaluate query instances once they have been reported
as matched. Algorithm 1 outlines the above procedures.

Query ID Branch Query

1 /a[f][b/f]/e/c[f]/d
2 /a[f][b/e]/e/c[f]/d
3 /a[f/g][e]/e[a]//d
4 //a[b//f][f]//c[d]/f
5 //a[f][.//e]//c[f]/d
6 /a[.//g][.//e]/e[a]//d
7 /a[e]//f

Figure 2: Branch queries

root

{1,2,3,4,5,6} {1,2,4,5}

{1,2,4,5,7}

{3,6}

{3,6,7}

{3,6}
{2,5}{1,4,7}

{1, 2, 3, 4, 5, 6}

d (8,9,4) f (10,11,4)

c (7,12,3) e (19,20,3)

b (16,21,2)

f (17,18,3)

e (6,15,2)

a (13,14,3)g (3,4,3)

f (2,5,2)

a (1,22,1)

{1,2,4,5}

{}

Figure 3: Identifying semantically equivalent branch
queries

Table 1: An example of a multi-hashtable

Label Query ID

(1,22,1)(2,5,2)(7,12,3)(8,9,4)(10,11,4)(17,18,3)
(/a/e/c/d,/a/b/f,/a/e/c/f,/a/f)

1,4

(1,22,1)(2,5,2)(7,12,3)(8,9,4)(10,11,4)(19,20,3)
(/a/e/c/d,/a/b/f,/a/e/c/f,/a/f)

2,5

(1,22,1)(3,4,3)(6,15,2)(8,9,4)(13,14,3)
(/a/e/c/d,/a/e,/a/e/a,/a/f/g)

3,6

(1,22,1)(2,5,2)(6,15,2)(/a/f,/a/e) 7
(1,22,1)(6,15,2)(17,18,3)(/a/b/f,/a/e) 7

4.2 Identifying Common Paths Between Queries
Although all queries in the Structure Index represent unique

twig patterns, we observe that some paths between leaf and
branch nodes, or branch and branch nodes are shared by
many other twig patterns. For example, in Figure 3, both
q1 and q2 require to have all c, d and f nodes to be matched
even though these queries represent different twig patterns.



Algorithm 1 ClassifyTwigs(SIRootNode, queryTrees)

1: multihashtable← {}, twigs← {}
2: for qi ∈ queryTrees do
3: {QueryInstance1..n}

← applyQuery(SIRootNode, qi)
4: for qii ∈ {QueryInstance1..n} do
5: sort(qii)
6: {paths1..n} ← getDecomposedQueries(qii)
7: keyi ← getLabel(qii) ∪ {paths1..n}
8: multihashtable.add(keyi, qii)
9: for keyi ∈ multihashtable do

10: {q1..n} ← multihashtable.get(keyi)
11: twigs.add(combineQueryTrees({q1..n}))
12: return twigs

In such a case, we group these queries, and when either
nodes c and d, or c and f are visited, we notify that ei-
ther the path between c and d, or c and f respectively are
matched for both queries q1 and q2. Note that q3 cannot
be in the same group as q1 and q2 as it requires a different
branch node (i.e., node e). The process of grouping is ap-
plied recursively from leaf nodes towards the root node of
the Structure Index.

The effect of this grouping is that, we instantly identify
which paths of what queries are matched by processing that
path only once. Let us name such a group a path group. Fig-
ure 4 illustrates such a grouping in which gID:{i..j}=>{n..m}
notation is used, where gID is a path group ID, i..j are query
IDs that are in the same group, and n..m are the list of ex-
pecting labels which are explained in the next section. In
the figure, at Index Nodes c, d and f, queries q1 and q2 are
in the same path group. This allows us to immediately iden-
tify that some paths of q1 and q2 are matched when node
f is visited. Algorithm 2 outlines the above procedures.

Algorithm 2 IdentifyCommonPaths(node)

1: //node is a Structure Index node
2: if !node.isLeaf() then
3: for childi ∈ node.children() do
4: IdentifyCommonPaths(childi)
5: queryGroups← {} // is of type multi-hashtable
6: for queryTreeNodei ∈ node.getQueryTreeNodes() do
7: branchNode

← getClosestBranchNode(queryTreeNodei)
8: if branchNode! = null then
9: queryGroups.insert(branchNode, queryTreeNodei)

10: else
11: node.addPathGroup(

createPathGroup(queryTreeNodei))
12: for vali ∈ queryGroups do
13: node.addPathGroup(createPathGroup(vali))

4.3 Building Sets of Expecting Labels
Having identified path groups of all queries, we construct a

set of expecting labels for each path group in an Index Node.
Each path group contains Index Node labels that satisfy
the following—(1) the Index Node labels are from the Index
Nodes that match either leaf or branch nodes of all query
trees inside the path group, and (2) these Index Nodes are
the closest descendant Index Nodes from the current Index
Node, where the path group is in. Figure 4 illustrates such
groups of labels inside path groups located in Index Nodes.
An expecting label is in INLabel:pID format, where INLabel
is a Index Node label, and pID is an ID of a path group.

root

1:{1,2}=>{}
2:{3}=>{}

1:{1,2}=>{}

1:{1,2,7}=>{}

1:{3}=>{}

1:{3}=>{(8,9,4):2, (13,14,3):1}
2:{7}=>{}

1:{3}=>{}
1:{2}=>{}1:{1,7}=>{}

1:{1}=>{(2,5,2):1, (7,12,3):1, (17,18,3):1}
2:{2}=>{(2,5,2):1, (7,12,3):1, (19,20,3):1}
3:{3}=>{(3,4,3):1, (6,15,2):1}
4:{7}=>{(2,5,2):1, (6,15,2):2}
5:{7}=>{(6,15,2):2, (17,18,3):1}

d (8,9,4) f (10,11,4)

c (7,12,3) e (19,20,3)

b (16,21,2)

f (17,18,3)

e (6,15,2)

a (13,14,3)g (3,4,3)

f (2,5,2)

a (1,22,1)

1:{1,2}=>{(8,9,4):1, (10,11,4):1}

{}

Figure 4: A Structure Index for branch queries

In this figure, the path group with pID 1 inside Index
Node (1,22,1) requires three expecting labels, (2,5,2):1,
(7,12,3):1 and (17,18,3):1. That means, to match q1,
all three path groups with pID 1 in (2,5,2), (7,12,3) and
(17,18,3) Index Nodes must be matched. A path group in
an Index Node is matched in two ways. Firstly, if the path
group does not contain any expecting labels, it is matched
when the Index Node is visited. Secondly, if the path group
contains expecting labels, it is matched only if all of its ex-
pecting labels have been matched. Finally, expecting labels
for each path group is recursively constructed. In addition,
leaf nodes do not have any expecting labels as they do not
have any descendant nodes.

4.4 Processing Queries
After building the Structure Index through the above three

steps, the matching process of groups of queries now be-
comes a simple checking process of labels against the set of
expecting labels for each path group. On startElem(elem )

event, we create a set of INLabel:pID labels for each path
group. A stack item representing the current element is
pushed to a global stack, and the set of these labels are in-
serted to each stack item of the global stack. Linear queries
are reported as matched if leaf nodes of linear queries are
found in the current Index Node.

On endElem(elem ) event, we iterate the path groups in
the current Index Node, and for each path group, we check
whether all of its expecting labels can be found from the
top element of the stack. For the case where all expecting
labels of a path group are found, we report all queries in
that path group as being matched. The process is repeated
for each path group. Finally, the top stack item is popped.
By popping the top stack item, all labels that are no longer
valid are removed. Note that we only process a path between
nodes once and identify all queries that share the same path.
Algorithm 3 and 4 outline the above procedures.

Algorithm 3 startElem(elem)

1: labels← {}
2: currentNode← currentNode.getChild(elem.getName())
3: stack.push(currentNode)
4: for pathGroupi ∈ node.getPathGroups() do
5: labels.add(makeLabel(node, pathGroupi))
6: for stackItemj ∈ stack do
7: stackItem.add(labels)



Algorithm 4 endElem(elem)

1: matchedQueries← {}
2: for pathGroupi ∈ currentNode.getPathGroups() do
3: match← true
4: for eLabelj ∈ pathGroupi.getExpectingLabels() do
5: if !stack.top().found(eLabelj) then
6: match← false
7: break
8: if match = true then
9: matchingQueries.add(pathGroupi.getQueries())

10: stack.pop()
11: currentNode← currentNode.parent()
12: return matchedQueries

5. EXPERIMENTS
We now present experimental results to support our ap-

proaches. All experiments were executed on a Pentium 4
3.2GHz machine with 1Gb ram running Ubuntu Linux. Our
approaches were implemented in Java 1.5. The SAX parser
we used was Xerces Java Parser 2.8.0 [26].

5.1 Settings

5.1.1 Documents
We used NASA dataset obtained from [28], and adopted

the experimental settings used for documents from [18]. In
this setting, each dataset was split into smaller documents,
and categorized into three datasets, each of which had ranges
[10kb,20kb), [20kb,30kb) and [30kb,60kb) in size. We then
randomly selected 250 documents from each dataset.

5.1.2 Queries
We generated all queries for the experiments in the fol-

lowing ways. Firstly, the set of XML documents obtained
from Section 5.1.1 was parsed and a super set of document
structures that represented all documents were extracted.
Secondly, a random element from the document structure
was selected, and all nodes on the path between that selected
node and the root node were scanned. While scanning nodes
on the path, we picked a node with a probability of 80% as
well as maintaining the ordering to the root node. We also
picked a node with a probability of 10% and replaced that
node with a ‘*’. For each selected node, we also assigned ‘//’
with a probability of 10%. From those selected elements, we
randomly picked p number of nodes which were to contain
branch paths. The branch path was generated in the similar
way except the node which would contain branch path was
treated as a root node. Lastly, all duplicate queries were
removed, and the second step was repeated until q number
of queries were produced.

In order to control the percentage of matching queries,
after generating q number of queries, we obtained a set of
queries that had at least one matching document by fil-
tering the documents generated from Section 5.1.1 against
these randomly generated queries. We also obtained a set
of queries that did not match any documents in the similar
way. These sets of queries were mixed to create queries with
various matching probabilities. This approach gives many
advantages over previous ways of generating queries such as
in [6]. By looking at the actual document structure rather
than entirely rely on the DTD of a document, it only gener-
ates queries with the elements that actually occur, and the
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Figure 5: Compilation time vs. number of queries
for various number of branches per query

depth of each query is no more than the maximum depth of
matching documents even though a DTD of a document al-
lows infinite depth. More importantly, it allows us to control
the probability of matching queries for a set of documents.

5.2 Results
Figure 5 shows the experimental results about the time

required to create Structure Index for various number of
queries with various number of predicates at index compila-
tion phase. The compilation time increases as the number
of queries increases since the operations required to identify
groups of queries is proportional to the number of queries.
Similarly, as the number of branch paths for each query in-
creases, the compilation time also increases. This is due
to the increased number of labels and path groups that are
required to process branch queries. For the following exper-
iments, the Structure Index created in this phase is used,
and all reported times are the processing times measured
while queries are evaluated in stable phase.

Figure 6 shows the run times to evaluate various number
of queries for various sizes of datasets. The probabilities of
queries that match a set of documents is set to 0% and 100%
respectively and each query has 2 branches. The run times
reported here are the average times taken to process 250 ran-
dom documents. In addition, we have also measured the run
time performance of YFilter [6] (excluding the time required
for its index compilation) and compared it against our sys-
tem. In this experiment, both systems show different run
times for queries with 0% and 100% matching probabilities.
Both systems perform better when the probability of match-
ing documents is low. This is because, for our system, the
number of label checking for startElem() and endElem()

are reduced, and for YFilter, the number of state transition
for startElem() and endElem() and operations required for
the post-filtering are reduced. When the matching proba-
bility is low, our system processes a large number of branch
queries very efficiently. This is because there are a small
number of labels that are successfully stored on top of a
stack. This makes the set operation very efficient. Moreover,
since a query is only satisfied when all its branch paths are
satisfied, a short cut evaluation can easily be applied. In a
short cut evaluation, a query is failed and is not further pro-
cessed once a failure of any of its branch paths is detected.
Similar patterns of graphs are observed when queries with
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Figure 6: Runtime vs. number of queries for various
sizes of data

partial matches (i.e., 20%, 40%, etc...) are evaluated by
both systems.

Figure 7 shows the run time to process various probabil-
ity of 150,000 queries with 2 branches against each group
of datasets. Our system shows a rapid increase for queries
with between 0% and 20% matching probabilities. This is
because a fair number of labels required to process queries
are generated in that range. The rate of increase in run time
is slowed down from around 40% as most labels required to
process queries have already been generated and many num-
ber of labels have started being shared between queries. As
the number of labels that are shared increases, the number
of newly generated labels decreases. Our system also shows
a constant run time increase for datasets that only differ in
size. Compared to YFilter, the constant run time increase
is smaller.

Figure 8 shows the run time to process various number of
queries against different number of branches. In this experi-
ment, we used 10k dataset, and the probability of matching
document was set to 100%. The run time increase of our
system for queries with different number of branches is due
to the increased number of label checking at run time. The
graph also shows that by removing duplicate evaluation of
both queries and paths, the rate of increase in run time of
our system is lower as the number of queries increases.
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6. CONCLUSION
We have presented an efficient approach of evaluating a

large number of branch XPath queries on XML streaming
data. Our approach uses Structure Index to classify branch
queries into groups of individual twig patterns, and identifies
the common paths that are shared between these groups.
These common paths are then processed by using our labels
to efficiently evaluate groups of queries that have the same
common paths. Our experiments show that our approach
can evaluate a large number of branch queries, and is more
scalable and efficient than the previous research work such
as YFilter.
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