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ABSTRACT* 
Statistics measurements are of great importance in data set 
description. Although there have been some papers about 
statistical analysis, little work focused on the flavors of 
measurements or privacy-preserving property. In this paper, we 
consider the applications of secure multi-party computation 
technology in statistics measurements computation to preserve 
privacy. Secure protocols of harmonic mean, geometric mean and 
mode are proposed. Detailed analyses about security and 
complexity of them are also presented.   

Categories and Subject Descriptors 
G.3 [PROBABILITY AND STATISTICS]: Statistical com-
puting; E.m [MISCELLANEOUS].  

General Terms 
Algorithms, Security, Theory. 
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1. INTRODUCTION 
Nowadays, privacy-preserving is more and more arresting in 
cooperation networks [1,3~4]. Privacy-preserving provides 
methods to find important messages correctly in shared data 
collection. It turns out to be attractively because it can seek more 
benefit for participants [2~3]. Meanwhile, secure multi-party 
computation makes cooperative calculation privately, and 
prevents participants’ data from leaking.  
Secure two-party computation (STC) was first investigated by 
A.C.Yao in [1]. He also proposed a general solution for SMC. 
From then on, many scholars dive into this field, and lots of fruit 
for special use of SMC come into being [4~5, 8, 10~11].  
Statistic is a subject studying the characters of the whole data set, 
which is important for understanding the essence of things to 
direct working. Statistics measurements, which include harmonic 
mean, geometric mean, mode and so on, is basal in statistic. Mean 
values tell us the big and small of data which are used frequently 
in normal work. Weighted mean react on calculating the 
numerical value with weights. Geometric mean and harmonic 
mean are used in statistical analysis more and more commonly. 
Although mode and median reflect the middling level as mean 
values, they are of more stringency when the swatch warps 
seriously. Mean values, mode and median are statistics 
measurement values describing the focusing trend of data. 
Meanwhile, average bias, collectivity deviation and sample 
deviation are statistics measurements describing the data’s 
discrete degree.  
In 2001, Wenliang Du introduced several applications of SMC in 
[3], and brought forward correlation and regression analysis 
problem of privacy-preserving statistical analysis firstly. Then he 
studied privacy-preserving multivariate statistical analysis in 2004 
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[5]. He gives a solution in two-party instance with his matrix 
product protocol. Wenjun Luo constructs a protocol to compute 
mean value recursively for multi-party, however its computational 
complexity is not desirable [12]. In 2005, Yonglong Luo et al. 
brings forward a method to calculate mean with secure sum 
protocol, while its security proof is not sufficiency [9]. Eike Kiltz, 
Gregor Leander and John Malone-Lee study two-party solution 
rigorously and analyze other methods’ shortage, however few 
studies focus on their application significance [6].   
In this paper, we study how to get statistics measurement values 
privately and securely, and this research satisfies the increasing 
need of privacy-preserving in normal days. In this paper, we 
describe measurement values, including harmonic mean, 
geometric mean, weighted mean, mode, median, root mean square 
(RMS), average bias, collectivity deviation and sample deviation, 
and solve the privacy-preserving statistics measurements 
computation with the experience of secure multi-party 
computation. Then, based on the known knowledge, we discuss 
and verify the problem comprehensively and concretely. We 
provide a feasible secure protocol for each measurement, discuss 
their difference and resemblance, and analyze their security and 
complexity.   
The paper is organized as follows. Section 2 contains the material 
necessary for understanding the protocols of this paper as well as 
their context. We give protocols for each statistics measurement 
in Section 3. Then in Section 4 we discuss the protocols’ 
complexity and prove their security theoretically. At last we 
conclude the paper in Section 5. 

2. PRELIMINARIES  
In this section, we introduce the preliminary information for the 
privacy-preserving protocols. Models, definitions and building 
blocks are also given. 

2.1 Secure Multi-party Computation 
In a multi-agent network, secure multi-party computation helps 
two or more parties complete the synergic calculation without 
leaking privacy information. Generally speaking, SMC is a 
distributed cooperation. In this work, each party hold a secret as 
input, and they want to implement the cooperative computation 
while getting nothing about other’s data except the final result [7].   

After [1], the technology of SMC has already come into more and 
more domains such as data mining [3, 8, 10], private information 
retrieval (PIR) [10], privacy-preserving computation geometry 
(PPCG) [3], scientific computation [4], quantum oblivious 
transfer [11] and so on. Secure multi-party computation for union 
and join of sets makes SMC useful in data mining. PIR uses the 
SMC conception for reference to retrieve answer without leaking 
other information. Privacy-preserving location determinant of two 
geometry graphics imports SMC into military affairs. With the 
rapid development of economy, scientific computation and 
statistical analysis will use SMC technique as one of the basic 
security tools.  

Former methods work on a third-party who is trusted by all 
parties. A trusted third-party (TTP) can get enough information to 
complete the calculation and broadcasts the result. But the 
hypothesis itself is insecure and unpractical. Therefore, an 
executable protocol which can preserve participants’ privacy 
becomes more and more dramatically. It is known that any secure 

computation problem can be solved by a circuit protocol, but the 
size of the corresponding circuit is always too large to realize. So 
investigators choose to design special protocol for special use. 

2.2 Models and Definitions 
Computation model: Generally speaking, there exist potential 
malicious attacks against any multi-party protocol. In this paper, 
we study the problem under a semi-honest model, in which each 
semi-honest party follows the protocol with exception that he 
keeps a record of all its intermediate computations, and he will 
never try to intermit or disturb with dummy data [7]. The model is 
practical and useful, because everybody in the cooperation 
expects the right result but not others’ privacy information. 

Security model: The classical definition of security is stated in [7] 
as follows. 
Let f  be a function that ip ( )1, ,i n= L  will compute 

cooperatively. If there is a protocol Π , for each ip  it can 
generate a simulator which can get all messages though the 
process only with its view and output, then it is secure. It is to say: 

A protocolΠ  to compute a function f  is secure when it satisfies 
the conditions as follows: 
There exists a probabilistic polynomial-time simulator 

iS ( )1, ,i n= L , it holds that  

( )( ){ }
( ){ }

1 2 1 1

1 1 2 1 1

, , , , , , , ,

, , , , , , , ,

i i i i i n

i n i i n

S x t t t t t t

view x x v v v v v

− +

Π
− +≡

L L

L L L
 

where ( )1 2, , ,i i nt f x x x= L , ( )1 2, , ,i i nv output x x xΠ= L .While the 
party’s view consists of its initial input, an auxiliary initial input 
(which is relevant only for modeling adversarial strategies), its 
random-tape, and the sequence of messages it has received so far. 

In this paper, we denote this security definition equation as 
( )*formula . 

2.3 Building Blocks 
Secure_SUM Protocol: Suppose there are ( )3n n ≥  parties 

1 2, , , np p pL  who join in the computation. Each ip  has his 
private information ix . They want to calculate the function 

1

n
kk

x
=∑  together, but no one is willing to leak his secret to 

others. We can get details about this protocol in [9]. 

Protocol 1 Secure_SUM{ 

// n  consumers compute 
1

n
kk

X x
=

= ∑  in security while each has 

a privacy data ix .  

1S∨ : Each ip  generates n  random shares ,i jx  for 1,2, ,j n= L , 

such that ,1

n
i i jj

x x
=

= ∑ ; 

//each partner divides his data into n  shares at random. 
2S∨ : Each ip sends ( ),,i j i jP P x→  for 1,2, , ,j n j i= ≠L ; 

3S∨ : Each ip do {  

          computes ,1
ˆ n

i j ij
x x

=
= ∑ ; 

//computes the sum of all gathered data. 



          broadcasts ( ix ); 
//broadcasts the local sum to other partners. 
} 

4S∨ : Each ip  computes
1

ˆn
ii

X x
=

= ∑ ; 

}//end protocol 

In Protocol 1, 3S∨  communicates 2n  times. If the number of 
messages is 1  at each transfer phase and each data has d  bits, 
then Protocol 1 has a bit complexity of 2n d . However, ip  sends 
n  message in 2S∨  and receives n  message in 3S∨ . In 1S∨ , 

ip  generates 1n −  numbers randomly in order to get n  random 

numbers satisfying ,1

n
i i jj

x x
=

= ∑ . Then ip  makes 
1

,1

n
in i i jj

x x x−

=
= −∑ . In 3S∨  and 4S∨ , each partner carries out a 

sum calculation, so they have the computational complexity of 
( )2O n  times basic operation totally. We generalize the protocol’s 

performance as theorem 1: 

Theorem 1: Protocol 1 has round complexity 2 3n +  for each 
party, communicational complexity ( )2O n  totally, bit 

complexity ( )2O n d , and time complexity ( )2O n  times basic 

operation.  

Data Perturbation: If the input x X∈  and r  are random and  
distributed uniformly, then we say x r×  protects x  secretly. 

Commutative Encryption: A commutative encryption is a pair 
of encryption functions f  and g  such that ( )( ) ( )( )f g v g f v= . 

Even the encryption is a combination of two functions, each party 
can apply their function first and still get the same result. 

3. PRIVACY-PRESERVING PROTOCOLS 
FOR STATISTICS MEASUREMENTS 
In this section, we design the secure protocol for each statistics 
measurement value which can preserve partners’ privacy. 

Let there be n  partners 1 2, , , np p pL  in the computation, ip  has 

in  privacy data which we saved as { }| 1, 2,...,i ik iD x k n= = . They 

want to have a statistical analysis on the data set
1

n

i
i

D D
=

=U , but 

each ip  wants to have the guarantee that his iD  will not be 
obtained by other parties. 

3.1 Schemes Using Secure_SUM as Sub-
protocol 
In this section, we describe protocols using Secure_SUM as a 
building block. 

In statistics measurements, many kinds of calculation are similar 
to mean where summation is the basic. Harmonic mean, weighted 
mean, RMS and discrete measurement such as average bias, 
collectivity deviation and sample deviation all use summation 
operation. Then, Secure_SUM is important in their security 
protocols. The tip of this kind of calculation is how to construct 
the local computation before and after Secure_SUM. It must 

ensure that all message exchanged is happened along 
Secure_SUM process. Meanwhile, this kind of protocols has the 
same security proof as Secure_H-Mean. In conclusion, we can 
take Secure_SUM into account when there is ( )ig x∑  in the 
statistics measurements. 

3.1.1  Secure_H-Mean Protocol  
The harmonic mean of n  positive numbers 1 2, , , nx x xL  equals 
to the inverse of mean value of their reciprocal. We denote it as 

1

1
1 1 1n

k
k

nH

n x X=

= =
∑ ∑

. 

To compute the harmonic mean of partners in D , each ip  sums 
up his privacy reciprocal firstly. Then they carry out Secure_SUM 
protocol together to get the sum. At last, everyone calculates the 
harmonic mean value according to the sum locally. 

1S∨ : Each ip  computes 
1

1in
i k

ik

H
x=

= ∑ ; 

//each one calculates the sum of all his privacy reciprocal locally. 
2S∧ : ( )1 2' _ , ,..., nH Secure SUM H H H← ; 

// n  partners carry out Secure_SUM protocol to get the sum. 

3S∨ : Each ip  computes 

1

1
1 1' n

k
k

nH
H

n x=

= =
∑

; 

}//end protocol 

In Protocol 2, the total computational cost of 1S∨  is ( )O n  and 

of 3S∨  is ( )O n . Because protocol 2 calls the Secure_SUM 

protocol only once in 2S∧ , we can get corollary 2 form theorem 
1 as follow: 
Corollary 2: Protocol 2 has round complexity 2 5n +  for each 
partner, communicational complexity ( )2O n  totally, bit 

complexity ( )2O n d , and time complexity ( )2O n n+  times basic 

operation.  

3.1.2 Secure_W-Mean Protocol  
There are n  numbers 1 2, , , nx x xL , and 1 2, , , nw w wL  are their 
corresponding weight. Then their weighted mean is 

1 1 2 2

1 2

n n

n

wXw x w x w x
x

w w w w
+ +

= =
+ + +

∑
∑

K

K
. 

To compute the weighted mean of partners in D , each ip  sums 
up his privacy weighted mean firstly. Then they carry out 
Secure_SUM protocol together to get the sum. At last, everyone 
calculates the weighted mean value according to the sum locally. 

Protocol 3 Secure_W-Mean{ 
1S∨ : Each ip  computes 

1
in

i ik ikk
W w x

=
= ∑  and 

1
' in

i ikk
W w

=
= ∑ ; 

//each one calculates the sum of all his privacy weighted mean. 
2S∧ : ( )1 2_ , ,..., nW Secure SUM W W W← ; 

( )1 2' _ ', ',..., 'nW Secure SUM W W W← ; 
// n  partners carry out Secure_SUM protocol together to get the 
sum and the weight sum. 



3S∨ : Each ip  computes 1

1
' '

n
ii

n
ii

WWX
W W

=

=

= = ∑
∑

; 

}//end protocol 

The total computational cost of 1S∨  is ( )O n  and of 3S∨  
is ( )O n . Because Protocol 3 invokes the Secure_SUM protocol 

twice in 2S∧ , we can get corollary 3 form theorem 1 as follow: 

Corollary 3: Protocol 3 has round complexity 4 8n +  for each 
partner, communicational complexity ( )2O n  totally, bit 

complexity ( )2O n d , and time complexity ( )2O n n+  times basic 

operation.  

3.1.3 RMS and Discrete Measurement  

RMS is 
2 2

2 1

n
kk

x X
x

n n
== =∑ ∑ , average bias is 1

n

k
k

x x

n
=

−∑
, 

collectivity deviation is 

2
2

12 2

2 21 1

n

kn n
k

k k
k k

x
x x

n
n n

σ μ

=

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠−

= = −

∑
∑ ∑

, and 

sample deviation is 
( )2

2 1

1

n

k
k

x x
s

n
=

−
=

−

∑
. 

RMS, average bias, collectivity deviation and sample deviation 
are similar to Secure_H-Mean protocol. They can be achieved 
with the help of Secure_SUM protocol in the same way. So, after 
modifying protocol 2, we can get corresponding secure protocols 
for RMS, average bias, collectivity deviation and sample 
deviation, and we omit them here for concision. 

3.2 Protocol Using Data Perturbation  
In this section, we describe protocols using data perturbation as a 
building block. 

Secure_G-Mean protocol: The geometric mean G  of n  
positive numbers 1 2, , , nx x xL  equals to the n th root of their 

production, i.e. 1 2 3
n

nG x x x x= ⋅ ⋅ ⋅ ⋅K . 

To compute the geometric mean of partners in D , it is necessary 
to get the product of all data firstly. Each ip  generates his 

auxiliary random number ir locally for privacy. Then, they 

calculate cooperatively for 
1

n

i i
i

x r
=

⋅∏  on the distributed network. 

At last, they pass the product in turns to divide ir ( )1, ,i n= L  and 

get the final 
1

n

i
i

x
=
∏ . 

Protocol 4 Secure_G-Mean{ 
//notice that i kp +  means ( )modi k np + . 

1S∨ ： Each ip  generates ir  at random, sets 0leader =  and 
0round = ; 

//each ip  generates ir  at random locally, and sets 0leader =  as 
the beginner on the ring, sets 0round =  to take count of round.  

2S∧ ：Run a distributed algorithm as follows: 
upon receiving no message:  

if i leader=  then  

{ round++ ; send ( ){ }1
,in

i ikk
r x round

=
⋅∏  to 1ip + ; } 

upon receiving M  from 1ip − :  
if round n<  then 

{ round++; send ( ){ }1
,in

i ikk
M r x round

=
⋅ ⋅∏  to 1ip + ;} 

if 2n round n≤ <  then 

{ round + + ; send ,
i

M round
r

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 to 1ip + ;} 

if 2 3n round n≤ <  then  
{ round + + ;send { },M round  to 1ip + ;} 

if 3round n=  then terminate. 
//all the n  partners run the distributed protocol as above to 
compute their private product. 

3S∨ ：Each ip  computes ( ) ( ) ( )1 2

1 21 1 1
... nn n n

n
k k nkk k k

G x x x
= = =

= ⋅ ⋅ ⋅∏ ∏ ∏ ; 

}//end protocol  

In Protocol 4, each participant products twice in phase 2S∧ , so 
2S∧  costs ( )2O n  product operation. 1S∨  could be finished in 

( )O n  and 3S∨  computes n th root. Then, we can get corollary 4 
as follow: 

Corollary 4: Protocol 4 has round complexity 2 2n +  for each 
partner, communicational complexity ( )O n  totally, bit 
complexity ( )O nd , and time complexity ( )O n  times basic 
operation. 

3.3 Protocols Using Commutative Encryption  
3.3.1  Secure_Mode Protocol  
The value or item occurring most frequently in a series of 
observations or statistical data is called a mode. Particularly worth 
a mention is that the mode does not always exist, and is probable 
not the unique one if it exists. 

To compute the mode of partners in D , commutative encryption 
is useful. Firstly, each ip  encrypts his owned data with private 
key then pass to the next partner. After all data are encrypted by 
all the partners, np  picks the cipher appears most frequently as 
the mode’s cipher. At last, the participants get mode’s plain after 
decrypting its cipher in turn along the ring. 

Protocol 5 Secure_Mode{ 
//notice that i kp +  means ( )modi k np + . 

1S∧ : Form the players into a ring structure.  



Mark ip ’s data as “ iM ”; set 0leader = ; set 
0round = ; 

//form a directional ring structure for passing message, and set 
0leader =  as the beginner on the ring, set 0round =  to take 

count of round.  
2S∧ : Run a distributed algorithm as follows:  

1. upon receiving no message: 
if i leader=  then 

{ round++ ; send ( )( ){ },1 ,i iE M round  to 1ip + }; 

2. upon receiving M  from 1ip − : 
if round n<  then 
{ round + + ; 'M = Φ ; 
for each message pair ( ),j jm mark in M  

{ jmark + + ; append ( )( ),i j jE m mark  to 'M ; 

append ( )( ),1i iE x  to 'M ;  

send { }',M round  to 1ip + ;} 
} 

if 2n round n≤ <  then  
{ round + + ; 'M = Φ ; 
for each message pair ( ),j jm mark  in M  

{if jmark n<  then  

append ( )( ),i j jE m mark ++  to 'M ; 

if jmark n=  then  

append ( ),jm n to 'M ;  

send { }',M round  to 1ip + ;} 
} 

//everyone encrypts data passed form previous. 
if 2round n=  then  
{ round + + ;  

ip  chooses the mode of encrypted data set M  and mark it as 

“ 0M ”;  

send ( ){ }0 ,iD M round  to 1ip + ;} 

  if 2 3n round n≤ <  then  
{ round + + ; send ( ){ },iD M round  to 1ip + ;} 

   if 3 4n round n≤ <  then  
{ round + + ; send M  to 1ip + ;} 

   if 4round n=  then terminate. 
//all participants decrypt the mode’s cipher in turn to get the 
corresponding plain. 
}//end protocol 
    In Protocol 5, each participant encrypts all data from others, so 

2S∧  costs ( )O n  times of encryption operation, and costs ( )O n  
times for decrypting mode’s cipher. Meanwhile, comparison 
appears ( )O n  times in 2S∧ . In order to form a ring structure 

in 1S∧ , we need another ( )O n  communication. 

Corollary 5: Protocol 5 has round complexity 2 2n +  for each 
partner, communicational complexity ( )2O n  totally, bit 

complexity ( )2O n d , and time complexity ( )O n  times of 

encryption operation and ( )O n  times of other basic operation. 

3.3.2 Secure_Median Protocol 
When a group of data is in ascending order or descending order, 
the midst one or the average mean of midst two is called median. 

There is an experiential formula between mean, median and mode: 
1.For a dissymmetrical frequency curve which has only one peak 
but tiny slope, it holds that ( )3mean mode mean median− = × − . 
2.For a symmetrical frequency curve which has only on peak, 
mean is the same as median and mode. 

Protocol 6 Secure_Median{ 
1S∧ : ( )1 2_ , ,...,mean nW Secure Mean p p p← ; 

//all the n  partners carry out the Secure_Mean protocol to get the 
mean in security. 

2S∧ : ( )1 2_ , ,...,mode nW Secure Mode p p p← ; 
//all the n  partners carry out the Secure_Mode protocol to get the 
mode in security. 

3S∨ : Each ip  computes ( )1 2
3 mean modeW W W= × − ; 

}//end protocol 

We have corollary 6 form corollary 2 and corollary 5 as follow: 
Corollary 6: Protocol 6 has round complexity 4 8n +  for each 
partner, communicational complexity ( )2O n  totally, bit 

complexity ( )2O n d , and time complexity ( )O n  times of 

encryption operation and ( )O n  times basic operation. 

4. ANALYSIS 

4.1 Complexity Analysis 
There are ( )3n n ≥  consumers 1 2, , , np p pL  who join in the 

computation. Each ip  has in  private data. Suppose each transfer 

phase and each data has d  bits. Then, we summarize the 
complexity of protocols as shown in Table 1. 

Table 1. Complexity summary  

 Round Commu
nication 

Bit Time 

SUM 2 3n +  ( )2O n  ( )2O n d  ( )2O n  

H-Mean 2 5n +  ( )2O n  ( )2O n d  ( )2O n n+  

W-Mean 4 8n +  ( )2O n  ( )2O n d  ( )2O n n+  

G-Mean 2 2n +  ( )O n  ( )O nd  ( )O n  

Mode 2 2n +  ( )2O n  ( )2O n d  ( ) ( )O n Encry O n+

Median 4 8n +  ( )2O n  ( )2O n d  ( ) ( )O n Encry O n+



4.2 Security Analysis 
An algorithm or protocol is said to be secure if there exists a 
simulator such that we can simulate the views of all parties on the 
known input and output, i.e. the output of the simulator is 
computationally indistinguishable from the real views of the party 
in the algorithm or protocol. A detailed discussion on security can 
be found in [7]. 

First, let us consider the security of protocols using Secure_SUM 
as building block. 

Theorem 7: Secure_H-Mean protocol is privacy-preserving. 

Proof: Suppose Secure_SUM protocol (denote it as 'Π ) is 
privacy-preserving. Then there exists a probabilistic polynomial-
time simulator 'iS  ( )1, ,i n= L  such that for function 'f , it holds 
that  

( )( ){ }
( ){ }

1 2 1 1

'
1 1 2 1 1

' ', ' , ', ', , ', ', , '

' ', ' , ', ', , ', ', , '

i i i i i n

i n i i n

S x t t t t t t

view x x v v v v v

− +

Π
− +≡

L L

L L L
 

 where ( )1 2' ' ', ', , 'i i nt f x x x= L , ( )'
1 2' ' ', ', , 'i i nv output x x xΠ= L . 

Now, we will construct a probabilistic polynomial-time simulator 
iS  by dint of 'iS  in order to simulate ( )1 2, , ,i nview x x xΠ L  

for ( )*formula  where we note Π  as Secure_H-Mean protocol.  

Though the protocol, what ip  observes and outputs are as 
follows: 

( ) { }
( ) ( ){ }

1 2 1

'
1 2 1 2

, , , , , , ,

, , , , ' ', ', , '
i

i i i
i n i n

i i in i n

view x x x x r m m

x x x view x x x

Π

Π

=

=

L L

L L
 

where 
1

1' in
i k

ik

x
x=

= ∑ , 

( ) ( )1 2 1 2, , , , , ,i n noutput x x x f x x xΠ =L L  

( )'
1 2' ', ', , 'i n

N
output x x xΠ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭L

. 

iS  is formed by the use of 'iS  and we discuss the process now. 

Each ip  has in  data, and there are n  parties, so 
1

n
ii

N n
=

= ∑  

and 
1

1i

k

n
i k

in

x
x=

= ∑ . For ip  to get iS , we sum the known 

1 2

1 1 1, , ,
ii i inx x x

L  and denote it as ix . Firstly, 'iS  ’s 'ix  is 

simulated by ix . Then, we use 'iS  by simulating Secure_SUM 
to get ( )'

1 2' ', ', , 'i noutput x x xΠ L . At last, ( )1 2, , ,i noutput x x xΠ L   is 

posed by
( )'

1 2' ', ', , 'i n

N
output x x xΠ L

. 

Note that 
( )( )

( ) ( ){ }
1 2

'
1 2 1 2

, , , ,

, , , , ' ', ', , '
i

i i i n

i i in i n

S x f x x x

x x x view x x xΠ=

L

L L
, 

and  

( )( ){ }
( ) ( ){ }

1 2 1 2 1 1

'
1 2 1 2

, , , , , , , , , , ,

, , , , ' ', ', , ' ,
i

i i i n i i n

i i in i n

S x f x x x t t t t t

x x x view x x x H

− +

Π=

L L L

L L
, 

( ){ }
( ) ( ){ }

1 2 1 2 1 1

'
1 2 1 2

, , , , , , , , , ,

, , , , ' ', ', , ' ,
i

i n i i n

i i in i n

view x x x v v v v v

x x x view x x x H

Π
− +

Π=

L L L

L L
, 

So 
( )( ){ }
( ){ }

1 2 1 2

1 2 1 2 1 1

, , , , , , , ,

, , , , , , , , , ,

i i i n n

i n i i n

S x f x x x t t t

view x x x v v v v vΠ
− +≡

L L

L L L
, 

where ( )1 2, , ,i i nt f x x x= L , ( )1 2, , ,i i nv output x x xΠ= L . 
And this completes the proof of theorem 7.                                  ■ 

For Secure_W-mean, Secure_RMS protocol, the corresponding 
security analysis is similar: 
Secure_W-Mean(denote as 2Π ): 

( )
( ) ( ){ }

2
1 2

'
1 2 1 2 1 2

, , ,

, , , , , , , , ' ', ', , '
i i

i n

i i in i i in i n

view x x x

x x x w w w view x x x

Π

Π=

L

L L L
 

 where 
1

' in
i ik ikk

x w x
=

= ⋅∑ , and 

( ) ( )2 '
1 2 1 2

1, , , ' ', ', , 'i n i noutput x x x output x x x
N

Π Π⎧ ⎫= ×⎨ ⎬
⎩ ⎭

L L .                       ■ 

Secure_RMS(denote as 3Π ): 

( )
( ) ( ){ }

3
1 2

'
1 2 1 2

, , ,

, , , , ' ', ', , '
i

i n

i i in i n

view x x x

x x x view x x x

Π

Π=

L

L L
 

 where 2
1

' in
i ikk

x x
=

= ∑ , and  

( ) ( )3 '
1 2 1 2

1, , , ' ', ', , 'i n i noutput x x x output x x x
N

Π Π⎧ ⎫⎪ ⎪= ×⎨ ⎬
⎪ ⎪⎩ ⎭

L L .                       ■ 

Second, let us consider the security of protocols using data 
perturbation. 

Theorem 8: Secure_G-Mean protocol is privacy-preserving. 

Proof: We prove the Secure_G-Mean (denote as Π )’s privacy-
preserving property by constructing a simulator. Though the 
protocol, what ip  observes and outputs are as follow: 

( )

( )
1 2

1 2 1 11

, , ,

1, , , , , , ,i

i

i n

n
i i in i i i ik n i n nk

i

view x x x

x x x r M r x M Q M Q
r

Π

− −=

⎧ ⎫
= ⋅ ⋅ ⋅ ⋅ ⋅⎨ ⎬
⎩ ⎭

∏

L

L
 

 where ( )1
1 1 1

ii n
i j jkj k

M r x−

− = =
= ⋅∏ ∏ ,

1 1

1

1
i i

jj

Q
r

− −

=

=
∏

. 

( )
( )

1 2

1 2

, , ,

, , ,
i n

n
n n n

output x x x

f x x x M Q

Π

= = ⋅

L

L
. 

Now, we begin to discuss the process how iS  simulates the 
protocol. 



iS  holds ( )1 2, , ,
ii i inx x xL , then it tosses a coin to decide the 'ir  

and chooses 1R , 2R  randomly, sets 3 n nR M Q= ⋅ . For iP , 1iM −  is 
the product of former 1i −  partners’ privacy data and random 
assistant. So, 1iM −  is computational indistinguishable from 1R  by 

the use of data perturbation theorem. Similarly, 2R  replaces 

1n iM Q −⋅ , 3R  equals to n nM Q⋅ .Because 1R , 2R  and 3R  
contains jP ( )j i≠ ’s random assistant, so this replacement can 
preserve other’s privacy. 
From the design above, we get that  

( ) ( )1 2 1 2 31

1, , , , , , , ,i

i

n
i i i i i in i i ikk

i

S x t x x x r R r x R R
r=

⎧ ⎫
= ⋅ ⋅ ⋅⎨ ⎬
⎩ ⎭

∏L ,  

so 
( ){ }1 2 1 1, , , , , , , ,i i i i i nS x t t t t t t− +L L  

( )1 2 1 2 3 31

1, , , , , , , ,i

i

n
N

i i in i i ikk
i

x x x r R r x R R R
r=

⎧ ⎫
= ⋅ ⋅ ⋅⎨ ⎬
⎩ ⎭

∏L . 

  Meanwhile, 
( ){ }1 2 1 2 1 1, , , , , , , , ,i n i i nview x x x v v v v vΠ

− +L L L  

( )1 2 1 1

1

{ , , , , , ,

1 , , }

i

i

n
i i in i i i ikk

n
n i n n n n

i

x x x r M r x

M Q M Q M Q
r

− =

−

= ⋅ ⋅

⋅ ⋅ ⋅ ⋅

∏L
. 

Now, we see that 
( ){ }

( ){ }
1 2 1 1

1 2 1 2 1 1

, , , , , , , ,

, , , , , , , , , ,
i i i i i n

i n i i n

S x t t t t t t

view x x x v v v v v
− +

Π
− +=

L L

L L L
. 

And this completes the proof of the theorem.                               ■ 

At last, let us consider the security of protocols using 
commutative encryption. 

Theorem 9: Secure_Mode protocol is privacy-preserving. 

Proof: We prove the Secure_Mode (denote as Π )’s privacy-
preserving property by constructing a simulator. Though the 
protocol, what ip  observes and outputs are as follow: 

( )1 2, , ,i nview x x xΠ =L { 

( ) ( )( )( ) ( )1 2 1 1 1 1, , , , ,i i i i i i ix E x E E E x E x− − − −L L

( )( )( ) ( )( )( )1 1 1 1 1, , ,n n n n iE E E x E E E x− −L L L  

( )( )( )1 1 1, ,
,i k i k i k i i k k n k

E E E x+ + + + + + + = −L
L

( )( )( )1 1 0 ,n n iE E E x mode− −L               } 

( ) ( )1 2 1 2, , , , , ,i n noutput x x x f x x x modeΠ = =L L . 
We discuss the process how iS  simulates the protocol below. 
Firstly, iS  chooses a commutative encryption algorithm E  and 

encryption key ia , chooses 1n −  another key ( )ka k i≠  

randomly. Secondly, according to mode, iS  generates a random 

set { }1 2 1 1', ', , ', ', ,i i nx x x x x− +L L  (holding two of the ( )'kx k i≠  
equals to mode, and each other else is different).  

However, we need to supply a specific. np  knows how many 

times mode and other candidates appears. So, nS  generates the 

random set { }1 2 1 1', ', , ', ', ,i i nx x x x x− +L L  according to the times 
each candidates present (except for mode, other candidate’s value 
is random). 
Then, iS  encrypts ix  with ia  to get ( )i iE x , and has an 
encryption to form  

( )( )( ) ( )1 2 1 1 1 1, ,i i i iE E E x E x− − − −L L ,  

( )( )( ) ( )( )( )1 1 1 1 1, ,n n n n iE E E x E E E x− −L L L  

and ( )( )( )1 1 1, ,i k i k i k i i k k n k
E E E x+ + + + + + + = −L

L  

with ( )ka k i≠  and { }1 2 1 1', ', , ', ', ,i i nx x x x x− +L L , where 

( )ka k i≠  is encryption key of kE  and 'kx  is plaintext in stead 

of kx . 
Because mode is the mode of  

{ }1 2 1 1', ', , ', , ', ,i i i nx x x x x x− +L L  
under our design,  then 

( )( )( ) ( )( )( )1 1 0 1 1' ' ' ' ' 'n n i n n iE E E x E E E mode− − − −=L L  holds. Meanwhile, 

for the property of commutative encryption, the mode of 
( )( )( ){ }1 1 1, ,

' ' 'n n i k k n
E E E x− −

= L
L  equals to the encryption in turn of  

{ }1 2 1 1', ', , ', , ', ,i i i nx x x x x x− +L L ’s mode.  
So, we get that ( )1 2' , , ,i noutput x x x modeΠ =L . 
Now,  

( ){ }1 2 1 1, , , , , , ,i i i i i nS x t t t t t t− + =L L { 

( ) ( )( )( ) ( )1 2 1 1 1 1, , ' ' ' ' , , ' ' ,i i i i i i ix E x E E E x E x− − − −L L

( )( )( ) ( )( )( )1 1 1 1 1' ' ' ' , , ' ' ' ,n n n n iE E E x E E E x− −L L L

( )( )( )1 1 1, ,
' ' ' ' ,i k i k i k i i k k n k

E E E x+ + + + + + + = −L
L  

( )( )( )1 1 0' ' ' ,n n iE E E x mode− −L              } 

Obviously,  
( )( ){ }
( ){ }

1 2 1 2

1 2 1 2 1 1

, , , , , , , ,

, , , , , , , , , ,

i i i n n

i n i i n

S x f x x x t t t

view x x x v v v v vΠ
− +≡

L L

L L L
. 

And this completes the proof of the theorem.                               ■ 

The proof of theorem 9 has a simple manner that each ip  has 

only one data ix  but not a series 1 2, , ,
ii i inx x xL . In fact, protocol 5 

can be performed safely in the latter instance. Even in two-party 
cooperation it will work well. But the protocols which use 
Secure_SUM or data perturbation as subprogram must have 3n >  
participants. 

5. CONCLUSION 
Privacy-preserving statistics measurements computation is 
important for secure multi-party statistical analysis, it offers basic 
tool to calculate conveniently. It is useful in science research and 
engineering technology. 



We have designed several protocols to gain a few kinds of 
concentrative and discrete measurements such as harmonic mean, 
geometric mean, mode, average bias and so on. Then, we analyze 
their complexity and prove their security. Although there have 
already been some previous works in this domain, our work is 
more comprehensive and rigorous. 
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