
Slide: A Model to Seamlessly Switch Zones
for MMOG

Jingbo Shen
Computer Science Department

University of Science and Technology of China
Hefei, China, 230027

zxfsjb@mail.ustc.edu.cn

Xufa Wang, Shanshan Liu, Jinlong Li
Computer Science Department

University of Science and Technology of China
Hefei, China, 230027

[xfwang|jlli]@ustc.edu.cn, ssliu@mail.ustc.edu.cn

ABSTRACT
Recently, P2P networks have been used to support massively
multiplayer online games (MMOG). Because players in MMOG
have localized interests, the whole game space is divided into
multiple sub-spaces to reduce network traffic and increase
scalability. However, when players switch sub-spaces or sub-
spaces are partitioned or merged frequently, system jitter will
occur. The ‘Slide’ model that we propose includes: (1) an
advance resource discovery mechanism, which uses common
peers to help each other to discover resources, in order to balance
network traffic and reduce the dependence on super peers; (2) an
event delivery mechanism delivering action messages instead of
state messages, to reduce network traffic of the system; (3) a
buffer technique to seamlessly switch zones, which sets buffers
between zones to avoid players frequently switching zones. We
compared the Slide model with the SimMud model, and the
results show that the Slide model can reduce network traffic to
25.94% compared to that of the SimMud model, and thus avoid
system jitter.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems, Performance
evaluation (efficiency and effectiveness)

General Terms
Design, Experimentation

Keywords
Zone Model, System Jitter, Resource Discovery, Event Delivery

1. INTRODUCTION
In recent years, Massively Multiplayer Online Games (MMOG)

have become popular. In order to reduce bandwidth consumption
and the burden of server and increase scalability of MMOG, the
scalability of peer-to-peer (P2P) overlay has been taken into
account [1]. Because of the lack of support from central server in
MMOG based on P2P, we need to conquer problems of resource
discovery and event delivery. Besides, some MMOGs have
latency requirements below 500ms [2], such as EverQuest, Star

Wars Galaxies and so on. Most peers in MMOG have localized
interests. It means they only need part of information in the
whole game world. To reduce the traffic and latency, an efficient
method is to divide whole game world into some zones [3], and
design game based on zones. But in those zone models, when
players frequently do some special actions, such as switching
zones, the network traffic and latency will suddenly increase for a
while, which we called system jitter. System jitter will affect the
availability and scalability of MMOG.

In this paper, we analyze the cause of system jitter for MMOG
based on zones, propose a zone model called ‘Slide’ to prevent
system jitter, and achieve seamless switching of zones. This
paper is organized as follows: After discussing the related work in
Section 2, we present our novel model in Section 3. A
comparison of our model with other model is reported in Section
4. Finally we conclude the paper in Section 5.

2. ZONE MODEL FOR MMOG
In the literature, some studies have been performed on zone

models for MMOG. Most of them have the problem of system
jitter.

Limura et al. proposed ZF model [4] using Distributed Hash
Table (DHT) for resource discovery. There are two kinds of
super peers in each zone, one is zone owner and the other is data
holder. Data holder is responsible for resource discovery by
storing all resources in its zone. Zone owner keeps connections
with all peers in its zone, and is responsible for computing and
delivering the global states. When a player joins or leaves the
game or switches zones, it may cause the changes of super peers,
which will bring a lot of traffic, and may cause system jitter when
it happens frequently.

Gauthier Dickey et al. proposed N-Tree protocol [1] which
divides the game world into sub-spaces for resource discovery,
and allows peers to deliver updates by themselves. The model
dynamically partitions and merges zones based on the number of
peers in each zone. So when a player joins or leaves the game or
switches zones, zones may be partitioned or merged, which cause
the N-tree overlay to be rebuilt and the resources in each zone to
be checked. It will cause a lot of traffic and a high delay, and
may cause system jitter when it happens frequently.

Knutsson et al. proposed SimMud model [5] which divides the
game world into fixed zones, and uses Pastry protocol [6] for
resource discovery and Scribe protocol [7][8] for event delivery.
SimMud limits each player to listen in one zone at a time to keep
its prototype simple. But in real games there are some zones

* Conference name:Conference infoscale 2007
* Version: 7.5.441
* Virus Database: 268.17.32/677 - Release Dage:2/8/2007 9:04
PM

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.208

which are too big for single coordinators to be responsible for
updating the states of objects. So they are needed to be divided
into several small zones, it means that peers have to join several
multicast trees to communicate with players in other zones.
When players move through some special positions, peers need to
join new multicast trees to get resources, and may cause system
jitter when it happens frequently.

Y.He et al. [9] thought it is difficult to merge parallel sub-
spaces caused by network outages in SimMud. It will cause a lot
of traffic and conflict adjustments. It is also a cause of system
jitter. They proposed a fully distributed algorithm based on state-
stack matching to resolve the merging issue, but they did not
solve system jitters which are caused by other reasons such as
peers change multicast trees.

Above-mentioned analysis indicated that system jitter related to
the existent of sudden increase of resource discovery, the method
of event delivering which excessively relies on super peers, the
method which players choose when they switch zones frequently.
Based on these three causes for system jitter, we propose a model
which uses progressive resource discovery, directly delivers
action messages to reduce the dependence on super peers, and sets
buffers on the boundaries of zones to reduce and balance network
traffic of the whole system. The model can avoid system jitter,
and achieve seamless switching zones for MMOG.

3. SEAMLESS SWITCHING ZONES FOR
ZONE MODEL

To avoid system jitter caused by changing of super peers,
partitioning and merging of zones, switching zones and so on, we
propose a novel zone model called ‘Slide’ to achieve the goal of
seamless switching zones. The base structure of Slide is
presented first.

3.1 Base Structure of Slide
Some definitions are given:

Figure 1: a Small Part of Virtual Environment of a Game

Zone: a sub-space of the game in geometry, including all
resources in the sub-space, such as players and objects. Objects
include foods, weapons, non-player-characters (NPC) and so on.
As shown in Figure 1, we use rectangles to represent zones. A
zone does not overlap with others in Slide. All zones compose
the whole game world.

The sizes of zones should be set first. If the size of a zone is
too large, the number of peers in a zone will be too large, which is
likely to increase the computation and communication of a peer.
If the size of a zone is too small, the peer will have to switch
zones frequently, which increases unnecessary communications.
The size of a zone should be set according the requirement of a
real game. Slide lets the size of a zone equal to vision coverage
area.

Vision Coverage Area: the set of resources which a player can
see or perceive.

The vision coverage area of a player is related to player’s
perceptive capability, not restricted by the area of a zone. A
player’s vision coverage area can relate to four zones at most. In
Figure 1, AB is Player P’s vision coverage area when he stands at
Position B.

B

The vision coverage area of an object is the area in which a
player can see the object. In Figure 1, Ac is an object’s vision
coverage area when it stands at Position c.

Computation Area: the set of resources which a player has to
compute and storage.

A resource’s computation area is the intersection of resource’s
vision coverage area and the zone which the resource belongs to,
to prevent from cheating. And the state of a resource is not
computed by a single peer, but by all peers in vision coverage
area of the resource and zone which the resource belongs to. In
Figure 1, Player P’s computation area is area AB∪ZB 5 and the
computation area of the object in Position c is Ac∪Z9.

Super Peer: the peer taking charge of a zone. Super peer has
the same storage and computation area as a normal peer standing
at the same position. It just saves and computes states of all
players and objects in its vision coverage area and zone which it
belongs to.

As a special peer in Slide, super peer is mainly used to help
other peers discover resource and deliver updates. When a peer
enters a new zone, it has to get addresses of all peers and states of
all objects in the zone from the super peer of the zone; when a
peer can not get the resources which it needs from other peers in
its computation area, it has to ask the super peer of the related
zone for resource discovery.

To simplify problem, super peers are random selected in Slide.
If a super peer left or failed, it is just needed to select a new super
peer. Because super peer has the same storage as a normal peer,
no date is needed to be transferred from one super peer to its
successor.

3.2 Avoiding System Jitter in Slide
Slide avoids possible system jitter in three ways: resource

discovery, event delivery and seamless switching zones, and can
implement a seamless zone model for MMOG.

3.2.1 Resource Discovery in Slide
In Slide, each peer holds three lists: an addresses list of relevant

peers, an addresses list of relevant super peers, and a states list of
resources. The addresses list of relevant peers contains addresses
of all peers in computation area. The addresses list of relevant

super peers contains addresses of super peer of the zone and super
peers of eight zones around the zone which the player belongs to.
The states list of resources contains states of all resources in
computation area.

When the computation area changes, there will be some new
resources present to computation area. The player needs to
confirm those new resources and add them to the states list of
resources, which called resource discovery.

Every peer holds the states of all players and objects in its
computation area, and only when a player just joins the game or
moves it need to discover resource. When a player just joins a
game, the peer holds no information of any players or objects.
When a player moves, vision coverage area changes along with
the player moving. Each step, the peer must discover resource to
confirm whether there are some new players or objects present to
its vision coverage area. Just like in Figure 2, if Player P made a
move from Position B to Position C, vision coverage area moves
one piece left. Player P’s vision coverage area is AC now, and it
has to find whether there are some resources in area M and N.
This process is coherent.

Figure 2: the Area to be Discovered Resource in Slide

1. Player Pi moves one step

2. Pi sends update to all relevant players

3. Pi computes the area Ei for resource discovery

4. Pi searches for a Player Pk in relevant players whose vision coverage
area contains Ei

5. If there is a Pk existed

 Pi asks Pk for resource discovery in Ei

 else

 Pi asks the super peer of Ei for resource discovery

6. Pi gets the states of objects and addresses of players Pj in Ei

7. Pi sends Pj the state of itself and asks for the state of Pj

8. Pi gets the state of Pj

Figure 3: the Flow Chart of Resource Discovery in Slide
A progressive method is used to discover resource while

moving, and the flow is presented in Figure 3. This progressive
resource discovery method divides massive resource discovery
into several small quantities of resource discovery to proportion

the suddenly increase traffic. As cost, the times of resource
discovery increases, and because each communication of resource
discovery contains ask messages and control messages, the total
network traffic will increase. But these ask messages and control
messages are small, and are distributed to each time of resource
discovery, will not cause an obvious effect to peer.

In order to reduce the burden of super peers, Slide mostly uses
normal peers to help for resource discovery. When a Peer Pi
wants to discover resource in a new Area Ei, the peer has to first
check its addresses list of relevant peers in order to find a Peer Pk
whose vision coverage Area Ek contents the follow expression:

i kE E⊆

If there is a Peer Pk existed, Pi can ask Pk for resource discovery.
Only when there is no Pk existed, Pi has to ask super peer for help.

In Figure 2, when Player P at Position C needs to discover
resource in area M and N, the peer has to first check its addresses
list of relevant peers, and will find that Player PJ and Player PK
can help for resource discovery. The peer then sends messages to
PJ and PK in order to get resources in area M and N. If there is no
Players PJ and PK existed, the peer has to ask super peers of Zone
Z1 and Z4 instead.

In order to assure the rate of resource discovery, ask message
will not be transmitted. The method discovers resource in Ο(1)
hops, and can reduce the delay of resource discovery efficiently.

Players can compute and deliver their states themselves directly.
And when Player PA saw Player PB, not only Player PB A needs to
get the state of Player PBB, but also Player PB needs to get the state
of Player P

B

A. So when resource discovery result is a player,
answer message only contains address of the peer. Then Peer PA
will connect with Peer PBB, get the state of PB and send it self’s
state to P

B

BB. It will reduce the traffic of peers which help for
resource discovery, because message of address is much smaller
than message of state.

When resource discovery result is an object, the object dose not
have the capability of compute and communicate, so the peer
which helps for resource discovery has to send answer message
which contains state of the object.

The method of resource discovery distributes traffic to the
process of players’ moving, to avoid sudden increase of traffic
caused by massive resource discovery. It basically uses normal
peers for resource discovery, which efficiently reduces the burden
of super peers and the possibility of system jitter.

3.2.2 Event Delivery in Slide
The changed state of resource should be sent to all peers in

vision coverage area, and maintain the latest edition. This process
is called event delivery.

To improve the security, resources in Slide are multiple
controlled. It means that all changes of a resource are computed
by all peers in computation area of the resource. So it is
unnecessary to send message of state. Instead, message of action
is sent in order to notify of the change, and the traffic will be
efficiently reduced, because the size of action message is much
smaller than that of state message.

The change of a player’s state is sent by the player self using a
message of action, and then peers in the player’s computation area
compute new state of the player.

Objects have no capability of computing and can not deliver
updates by themselves, so some methods are needed to deliver
updates of objects. The spontaneous changes of an object, such as
change of object’s color, are caused by random number of the
object. And all peers in object’s computation area have known
the random number and are computing the object, so they can
figure out the changes. So the spontaneous changes of an object
do not need to be sent. The passive changes of an object are
changes such as the reduction of a monster’s life caused by a hit
from a player in the game. The passive changes of an object can
not be figured out from random number, so event delivery is
needed. Instead of object, the player who made an action to
object figures out the passive change of object, and sends the
action message, such as action message of “be hit by a shoot
which execution is 50”, to all peers in object’s computation area.

The method of event delivery that peers send messages of
action directly can reduce the traffic of system and the
dependence of super peers, will avoid multiple hops and reduce
the latency of the network.

3.2.3 Seamless Switching Zones in Slide
In Slide, when players move inside of a zone, resource

discovery is needed each step to avoid sudden massive traffic and
system jitter. But when a player moves across the boundary of a
zone, the resource in new zone is needed, because that player’s
computation area is intersection of the zone which the player
belongs to and player’s vision coverage area. The player needs to
get the resources in new zone which are not yet in vision coverage
area, and it may cause a sudden massive traffic.

Figure 4: the Change of Computation Area

In Figure 4, when Player P moves from Position B to Position

C, the player needs to get all resource in area 3 BZ A∩ . The
traffic is much larger than the traffic caused by player moving
inside a zone. If a player moves around the boundary of a zone, it
may cause system jitter.

In order to solve the system jitter caused by switching zones,
Slide uses buffers to cushion the traffic. Beside the boundary of a
zone, a piece of area is reserved for buffer. The size of buffer
should be adjusted based on demand. If the buffer is too large,
computation area is large, which will increase the burden of peer.
If the buffer is too small, players move across the buffer

frequently, and seamless switching zones will not be achieved. In
Slide, the size of buffer beside the boundary of a zone is set to be
1/8 of a zone, but it could be adjusted according the requirement
of a real game. If the size of a zone is too large, the size of buffer
will be reduced; and if the speed of player moving is too fast, the
size will be increased.

There is a Player P moving from Z4 to Z3. When he just moved
across the boundary, he will not change the zone which he
belongs to, and still gets the resources in new vision coverage
area each step by progressive resource discovery method. Only
after he moved across area M, does he change the zone which he
belongs to. Then he belongs to Zone Z3, gets and computes all
resources in Zone Z3.

Figure 5: the Buffer between Zone Z3 and Z4

Though the buffer helps for seamless switching zones, it brings
some of confusions to the system. In Figure 5, the Player PA and
PB are all standing in Zone ZB 3. But Player PA is a peer moving
from Z4 to Z3, who still stands in the buffer, and still belongs to
Zone Z4. However, Player PBB belongs to Zone Z3. It means that
different peers standing in the same place may belong to different
zones, so we can not use the position of a peer to estimate the
zone which it belongs to. An identifier is needed for a player to
indicate the zone which it belongs to.

The method of buffer can prevent system jitter caused by
frequently switching zones in a short time. And before player
changes zones, vision coverage area has already covered more
than half of the new zone, so the resources which need to be
discovered are much smaller than the resources which need to be
discovered, while a player just moves across the boundary and
changes zones immediately. The traffic is reduced too. This
method can reduce the burden of switching zones, and help for
seamless switching zones.

4. PERFORMANCE ANALYSIS
We compare the performance of Slide model with SimMud

model, and analyze the latency of network and traffic from theory
and experiments.

4.1 Performance Analysis
The analysis is carried on two conditions. One is player’s

common actions, and the other is player’s frequently moving
across the boundary.

There are some suppositions which are similar to the simulation
of SimMud:

1) The game world is divided to rectangles the size of which is
40*30 unit2. A player can move 1 unit each step.

2) There are 10 players and 10 objects evenly distributed in
each zone.

3) A player moves once per 500ms, and the direction will be
“up”, “down”, “left” or “right”.

4) A player battles or takes food every 20 seconds, which will
not change its position but change its state.

5) There is a player joining and a player leaving per second for
each zone.

6) A player delivers its update through multicast trees every
150ms in SimMud, and the update will achieve in 2 hops.

Basic symbols: the latency of network is T; the network traffic
is M; the time to transmit a message once is t, it means the time of
a hop is t; the state message of a player is MS; the address
message of a peer is MA; the action message of a peer is MM; the
route message of Pastry is MR; the number of peers in the game
world is N.

4.1.1 Common Actions of Players
In SimMud model, action messages of moving, taking food and

battling need not to be sent. Peers can get changes of other
player’s states through periodical event delivery. So in SimMud,
there are only messages which related to a peer joining, leaving
and multicasting to be sent per second. At most time, vision
coverage area relates to four zones, so a peer has to join four
multicast trees at one time.

In Slide model, the messages which need to be sent per second
contain action messages of a player moving, battling, taking food
and system messages of a peer joining or leaving. When a player
stands at the position of boundary point of four zones in Figure 6,
it’s the worst condition in Slide. In this condition, only a quarter
of player’s vision coverage area is still in the zone which the
player belongs to, and player’s computation area is 7/4 zones.

Figure 6: the Worst Condition in Slide

We analyze the traffic and delay of the two models under each
player’s common actions in the worst condition, and compare the
total traffic of a zone with the same size per second in Table 1.

Table 1. The performance contrast of SimMud model and
Slide model under player’s common actions

 SimMud Slide
 traffic delay traffic delay

Join 480MR 2.5t 26.5MA+53.5MS 8t
Leave 16MR t 17.5MM t

Multicast 26.67MS 3t —— ——
Battle or take

food —— —— 17.5MM t

Move —— —— 17.5MM+MS+0.33
MA

5t

Total traffic 496MR
+266.7MS

—— 27.16MA+55.5MS
+53.375MM

——

Table 1 shows that the total traffic of a zone per second in Slide
model is about 20.81% of the traffic in SimMud, because state
message MS is much larger than address message MA and action
message MM. And the traffic in SimMud is related to routing of
Pastry which is related to the number of peers in the whole game
world. Along with increase of the number of peers, the traffic in
SimMud increases too, which will affect scalability of the whole
game.

In the condition of peer joining, the traffic in Slide is smaller
than in SimMud, but the latency is higher. However, when a
player just enters a game, the game has not gotten under way, so
waiting for a short time is acceptable, and will not affect the other
peers in the game. Here we use the supposition of Pastry in [5]:
when there are 1000 peers, the average delay of a peer joining is
2.5 hops, and average traffic is 120 route messages.

In the condition of peer leaving, the traffic and delay in Slide is
the same as in SimMud.

In the condition of player’s other common actions in the game,
traffic in Slide is smaller, but latency is two hops higher when
players move. But it is the latency of resource discovery, not the
delay of event delivery. In the process of resource discovery,
other actions do not need to be blocked, so it will not affect
consistency of the game. Besides, the area which needs to be
discovered is at the border of player’s vision coverage area, it
means the border of screen might display slower than other place
of screen. So we can make area to be displayed on the screen a
few smaller than vision coverage area in order to solve the
problem. After that, the display is seamless and will not affect
current actions of players.

From above analysis we can see that Slide model can
effectively reduce the traffic of the whole system under player’s
common actions.

4.1.2 Player’s Frequent Moving across the Boundary
In SimMud model, if a player moves around the boundary of

two zones, the most serious system jitter will happen when each
step of player’s moving caused the changing of multicast trees,
and each step the player left two multicast trees and joined two
new multicast trees. From the above supposes, a player moves
twice each second, and will cause two times of changing multicast
trees at most. Assume system jitter will happen when a player
continuously has changed multicast trees ten times.

Assume that there are 5 units of buffer at each side of a zone in
Slide model, so there are 10 units of buffer between two zones,
and system jitter will happen when a player continuously has
moved across the buffer ten times between two zones.

We analyze and compare the probability and traffic of the two
models when system jitter happens in Table 2.

Table 2. The performance contrast of SimMud model and
Slide model under player’s frequently moving across the

boundary

Probability Total network
traffic

Average
network traffic

per second
SimMud 1.0808*10-6 9600MR 1920MR

Slide 1.1333*10-30 265MA+535MS 5.3MA+10.7MS

Table 2 shows that the probability of system jitter in Slide
model is much smaller than in SimMud model, which can be
thought as an impossible event from probability. Even if it did
happen, the average traffic per second when system jitter
happened in Slide is much smaller than in SimMud. It means that
Slide model can achieve the aim of seamless switching zones.

4.2 Experiments and Analysis
We implement a prototype system based on the proposed

method. To simplify the experiment, we have modified some
suppositions which were used in performance analysis. We take
every 20s as a time slice. All basic actions will be taken at least
once in every 20 seconds.

4.2.1 Resource discovery and Event delivery
Our first experiment is about resource discovery and event

delivery in Slide model and SimMud model. In our first
experiment, we measure 10000 seconds of 1000 simulated game
peers. We random select a peer as the observed peer, and take
every 500ms as a sampling period. In every sampling period for
the observed peer, the number of resource which needed to be
discovered, the number of relevant peers and the total network
traffic will be recorded, the average and variance of all these
results will be computed in Table 3.

Table 3. Statistical result of the observed peer

The number of
resources to be

discovered

The number of
relevant peers

The total
traffic(Kb/500m

s)
 Slide SimMud Slide SimMud Slide SimMud

ave 0.948 0.868 15.08 38.954 1.987 7.659

var 2.544 5.795 4.254 6.799 0.616 1.414

Table 3 shows: the average number of resources which needed
to be discovered in Slide per sampling period is similar with in
SimMud, but the variance is 43.90% of in SimMud. It proves that
the jittery from resource discovery in Slide is much smaller than
in SimMud. It is because progressive resource discovery is taken
in Slide. The load of resource discovery is distributed into each
step, so when players changed zones, the resources which needed
to be discovery at one time are reduced. But in SimMud, though
players do not need to discover resources at most time, when

players changed multicast trees, all resources in new zones will be
discovered at one time.

The number of relevant peers in Slide is 38.71% of in SimMud,
and the variance is 62.57% of in SimMud. It is because: Relevant
peers in Slide are the peers in computation area, and the number is
the number of resources in 1~7/4 zones. But in SimMud, relevant
peers are the peers in relevant multicast trees which the player
joined, and the number is the number of resources in 4 zones.

In Slide, the total network traffic of observed peer per sampling
period contains traffic of resource discovery, traffic of updates
delivered and received. In SimMud, the total traffic contains
traffic of resource discovery, traffic of deliver update to
coordinator, and traffic of receiving updates from multicast trees.
Table 3 shows the total traffic of observed peer in Slide is 25.94%
of in SimMud, which is coincident with the result of performance
analyze. And the variance is 43.56% of in SimMud.

4.2.2 Buffers
The second experiment is about the effect of buffers. We

implement our experiment on 1000 peers and take every 20s as a
sampling period.

First, we implement our experiment without buffers around the
boundaries of zones. A peer is made to move across the boundary
repeatedly, called test peer. Each step, test peer will move from
one zone to another. And we random select a normal peer for
contrast.

0

100

200

300

400

500

600

700

Agent Object Relevant Change

Normal Peer Test Peer

Figure 7: the Contrast of Normal Peer and Test Peer in the

Condition without Buffers

0

50

100

150

200

0 20 40 60

run time [20s]

m
e
s
s
a
g
e
s

o
f

a

p
e
e
r

[
K
b
/
2
0
s
]

Normal Peer Test Peer

Figure 8: the Contrast of Normal Peer and Test Peer in the

Condition without Buffers
Figure 7 and Figure 8 show: test peer’s time of change zones is

much large than normal peer’s time, so the number of resource for

discovery is larger too. Though the number of relevant peers is
similar, the test peer’s average total traffic is about three times of
normal peer’s traffic.

Then we implement our experiment with buffers around the
boundaries of zones. A peer called cross zone peer is just like test
peer above. A peer called cross buffer peer is the peer move from
one side of the buffer between two zones to the other side of the
buffer repeatedly. A normal peer is random selected for contrast.
Supposed the size of buffer in each side of a zone is 5 unites, so
the cross buffer peer will change zone every 11 steps.

0

100

200

300

400

500

600

Agent Object Relevant Change

Normal Peer Cross Buffer Peer Cross Zone Peer

Figure 9: the Contrast of Normal Peer, Cross Buffer Peer and

Cross Zone Peer in the Condition with Buffers

0

10

20

30

40

50

60

0 20 40

run time [20s]

m
e
s
s
a
g
e
s

o
f

a

p
e
e
r

[
K
b
/
2
0
s
]

60

Normal Peer Cross Buffer Peer

Cross Zone Peer

Figure 10: the Contrast of Normal Peer, Cross Buffer Peer

and Cross Zone Peer in the Condition with Buffers
Figure 9 and Figure 10 show that the number of resources for

discovery, the number of relevant peers and the total traffic of
these three kinds of peers are similar. Cross buffer peer has the
largest time of change zones, so its traffic per 20s is the largest.
Cross zone peer has the smallest time of change zones, so its
traffic per 20s is the smallest. But the difference of traffic
between these three kinds of peers is small, about 10% of the
normal peer’s traffic.

The performances of normal peer in these two kinds of
experiments are similar, so we can take it as the datum mark. We
contrast the ratio of Test Peer to Normal Peer in Figure 7 and the
ratio of Cross Buffer Peer to Normal Peer in Figure 9 about the
number of players and objects for discovery, the number of
relevant peers, the time of change zones and the average messages

per 20s in Table 4. Result shows system jittery by changing
zones can be avoided by setting buffers around the boundaries of
zones.

Table 4. The contrast of Test Peer / Normal Peer in Figure 7
and of Cross Buffer Peer / Normal Peer in Figure 9

 TestPeer

NormalPeer
in Figure 7

CrossBufferPeer

NormalPeer
in Figure 9

Agent 12.50 1.78
Object 13.13 1.75

Relevant Peers 1.05 0.99
Change Zones 37.96 4.73

Average Messages 3.21 1.13

From these experiments above we find that the progressive
resource discovery method and event delivery method in Slide
can reduce the network traffic, so the possibility of system jittery
will be reduced too; and the buffers in Slide can avoid system
jittery which happened under some special condition such as
frequently changing zones.

5. Conclusion
We have proposed a game model based on P2P called Slide,

which can achieve seamless switching zones. The model uses
normal peers to help each other for resource discovery. When
there is no normal peer to give a help, peers will discover resource
under the aid of super peers. With the change of vision coverage
area, progressive resource discovery is distributed to each step, in
order to avoid sudden massive resource discovery. Players send
action messages as updates to relevant peers directly, to reduce
the dependence of super peers. The new states of resources are
computed by all peers in computation area, so the chance of cheat
is reduced. Action messages are sent when states of resources
changed, to avoid sending unnecessary messages and reduce the
traffic. The buffers are used to reduce frequent traffic when
players move across the boundaries of zones, to switch zones
seamlessly. The size of buffer should be adjusted to different
demands. The state of a resource is computed by several peers at
one time, so the results from different peers may be different for
lost of package, wrong event orders and so on. It is likely to
cause the issue of inconsistency, and we will study this issue in
future.

6. ACKNOWLEDGMENTS
Our thanks to Jin Zhang and Ping Zhu for their useful comments
and valuable feedbacks, and give special thanks to Jin Zhang for
proofreading.

7. REFERENCES
[1] C.GauthierDickey，D. Zappala, et al. (2004). "A Distributed

Architecture for Massively Multiplayer Online Games",
Proceedings of 3rd ACM SIGCOMM workshop on Network
and system support for games, ACM.

[2] Chris GauthierDickey，Virginia Lo，Daniel Zappala
（2005）. "Using N-Trees for Scalable Event Ordering in
Peer-to-Peer Games", Proceedings of the international

workshop on Network and operating systems support for
digital audio and video: 87 - 92.

[3] Anthony, Y. and T. V. Son. “MOPAR: a mobile peer-to-peer
overlay architecture for interest management of massively
multiplayer online games”. Stevenson, Washington, USA,
ACM Press.2005

[4] Iimura. T., H. Hazeyama, et al. (2004). "A Peer-to-peer
Approach to Scalable Multiplayer Online Games."
Proceedings of 3rd ACM SIGCOMM workshop on Network
and system support for games Game infrastructure: 116 - 120.

[5] Knutsson, B., H. Lu, et al. (2004). "Peer-to-peer support for
massively multiplayer games"，INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and
Communications Societies 1: 107

[6] Antony, I. T. R. and D. Peter (2001). “Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems”, Springer-Verlag

[7] Castro, M., M. B. Jones, et al. (2003). "An evaluation of
scalable application-level multicast built using peer-to-peer
overlays"，INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications
Societies. IEEE 2: 1510- 1520 vol.2

[8] Castro, M., P. Druschel, et al. (2002). "Scribe: A Large-Scale
and Decentralized Application-Level Multicast
Infrastructure." IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS VOL. 20, NO. 8: 1489-1499.

[9] He, Y., Y. Zhang, et al. (2005). "On Mitigating Network
Partitioning in Peer-to-Peer Massively Multiplayer Games",
Networking and Mobile Computing Volume 3619/2005:
481-490.

[10] Morgan, G. and K. Storey. “Scalable collision detection for
massively multiplayer online games”. Advanced Information
Networking and Applications, 2005. AINA 2005. 19th
International Conference on 2005.

[11] Stefano, F. and R. Marco, “Fast delivery of game events with
an optimistic synchronization mechanism in massive
multiplayer online games”. Proceedings of the 2005 ACM
SIGCHI International Conference on Advances in computer
entertainment technology. 2005, Valencia, Spain: ACM
Press 405-412.

[12] Kutten, S. and D. Peleg, “Asynchronous resource discovery
in peer-to-peer networks”. The 21st IEEE Symposium on
Reliable Distributed Systems, 2002: p. 224- 231.

	1. INTRODUCTION
	2. ZONE MODEL FOR MMOG
	3. SEAMLESS SWITCHING ZONES FOR ZONE MODEL
	3.1 Base Structure of Slide
	3.2 Avoiding System Jitter in Slide
	3.2.1 Resource Discovery in Slide
	3.2.2 Event Delivery in Slide
	3.2.3 Seamless Switching Zones in Slide

	4. PERFORMANCE ANALYSIS
	4.1 Performance Analysis
	4.1.1 Common Actions of Players
	4.1.2 Player’s Frequent Moving across the Boundary

	4.2 Experiments and Analysis
	4.2.1 Resource discovery and Event delivery
	4.2.2 Buffers

	5. Conclusion
	6. ACKNOWLEDGMENTS
	7. REFERENCES

