
A Study of Scalable Search Algorithm on Unstructured
P2P System

(Work-in-Progress)
Fuyong Yuan

College of Information Scienceand
Engineering, Yanshan University

Qinhuangdao, China

fyyuan@ysu.edu.cn

Jian Liu
College of Information Scienceand
Engineering, Yanshan University

Qinhuangdao, China

chinafather@163.com

Chunxia Yin
College of Information Scienceand
Engineering, Yanshan University

Qinhuangdao, China

lovelyfatbear@163.com

ABSTRACT
We proposed a search algorithm to unstructured P2P network,
which consists of ranked neighbor caching, queryhit caching, and
file replication to free riders. And the simulation results show that
the algorithm can extend the search region but reduce the search
traffic, and also balance the network load, so that acquires the
whole network scalable.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval –Search process, Selection process

General Terms
Algorithms, Experimentation

Keywords
flooding-based, Gnutella, search, unstructured P2P networks

1. INTRODUCTION
While the Gnutella model has managed to succeed thus far, in
theory its scalability isn’t well. The number of queries and the
number of potential responses increases exponentially with each
hop. And the Gnutella protocol itself does not provide a fault
tolerance mechanism. The hope is that enough nodes will be
connected to the network at a given time such that a query will
propagate far enough to find a result. However, the distributed
nature of the protocol does not guarantee this behavior. In fact,
some studies have shown that only a small fraction of Gnutella
users actually remain online long enough to respond to queries
from other users. Additionally, many of the peers in Gnutella are
free riders, which only waste traffic without contribution. To
improve search efficiency and reduce unnecessary traffic in
Gnutella, we propose an algorithm based on [1] and [2]. It can
extend the search region but reduce the search traffic, and also

balance the network load, so that acquire the Gnutella networks
scalable. Ranked neighbor caching, queryhit caching, and file
replication to free riders are three parts of our proposed algorithm.

2. PROPOSED ALGORITHM

2.1 Ranked Neighbor Caching
In ranked neighbor cache scheme, neighboring peers assign each
other trust ranks. And the higher the rank for a peer B at its
neighbor peer A, the more likely A would forward the query
message to B. When B replies A with a valid queryhit message, A
should add one to peer B’s rank value which must be initialized to
zero and updated based on one-step feedback mechanism.
Suppose A has s neighbors N1, N2, … , Ns (s > 0), and ri indicates
the rank peer A assigns to its neighbor Ni. Then, peer A will
choose neighbor Ni as its query “receiver” with the forwarding

probability:
1
()()

=
= ++ /∑ n

n
i i

s
p r rr r . The risk factor r must

satisfy the constraint r >- ri (i = 1, … s) to ensure that the
forwarding probabilities are positive for all neighbors [1]. In the
scheme, every peer needs to cache not only its neighbors’ ranks
but also the probabilities of them. Figure 1 shows an example that
the peer A searched a file in the network and found it at H.

The scheme increases the scalability of the network by extending
the search region and reducing the traffic. However, the traffic is
tend to centralized to a few links which are connected to the high
ranked peers. The reason is that the high ranked peers have more
chance to send queryhit message, and then their rank turn to
higher and higher. So we proposed following two schemes.

2.2 Queryhit Caching
In Gnutella, the queryhit message includes the information about
the file, but not the address of the requester. Thus every peer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Infoscale 2007, June 6-8, 2007, Suzhou, China.
Copyright 2007 ACM 978-1-59593-757-5/07/0006…$5.00.

Figure 1. Search procedure of the scheme.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, or republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.197

needs to cache not only queryhit message but also the direction of
the queryhit message sent. Since queryhit caching scheme leads
the query to the peer, which downloads the file from the high
ranked peer, not to the high ranked peer, this scheme can reduce
the load of the high ranked peer.

2.3 File Replication to Free Riders
When a file is transferred, if there are some free riders on the way
to destination peer, the file is replicated to the free riders. After
that, if these free riders receive request for that replicated file from
other peers, they can reply and transfer the file directly. This
scheme changes the free riders to file suppliers to reduce
unnecessary traffic and also realize load balancing of the whole
networks.

2.4 Process of the Whole Algorithm
Firstly, when a peer searches a file, the peer checks its queryhit
cache. If the file information is cached in the queryhit cache, then
the peer propagates the query along the connection where the peer
owns the file. Secondly, the peer does not broadcast query to all of
the neighbors, instead the peer only sends to one according to the
ranked neighbor cache scheme. If the neighbor cached the file in
file cache space, the peer downloads the file from that peer
directly and quits the propagation. Otherwise the neighbor checks
its queryhit cache. If the file information is cached in the queryhit
cache, then the neighbor peer propagates the query along the
connection where the peer owns the file. If there is no file
information in queryhit cache, then the neighbor sends query to
next neighbor according to the ranked neighbor cache scheme. At
last, the peer downloads the file after finding it. Thirdly, queryhit
was copied to peers in the search path according to the queryhit
cache scheme. And file was replicated to free riders according to
file replication to free riders scheme.

3. SIMULATION RESULTS
In this section, we design a Gnutella simulator employed a
power-law like distribution topology with one thousand peers.
Each peer generates 100 queries and issues one query per time slot,
and peers may be normal peers or free riders in the network [2].
And, we suppose every query message passes n peers every time.

3.1 Traffic of the Network
We test the traffic of the simulator with the proposed algorithm,
and compared with the classic flooding-based search. Figure 2
shows the throughput of the whole network per minute. The
throughput of flooding-based search is 84.6 MB/min, ranked
neighbor caching is only 12.6 MB/min. The ranked neighbor
caching scheme generates much lower traffic than flooding-based
search. And we also compared the value of n when the number of
connections to each peer is 4 to 7 and TTL value is 7. With ranked
neighbor caching scheme, query passes extremely fewer peers
than flooding-based search. Therefore, the ranked neighbor
caching scheme, presents good performance in traffic.

3.2 Load Balance
As shown in Figure 3(a), the query response rate of 1% high
ranked peers is measured. With no cache, that is flooding based
search, the average query response rate of is 90.2%, and with
ranked neighbor caching scheme, the query response rate is 94.1%.
However, with queryhit caching and file replication schemes,

these peers only manage 64.2% of the query messages. Obviously,
these two schemes are efficient to balance the load of network.

3.3 Success Rate
We simulate other two related algorithms for comparison, and
name our proposed algorithm as P-search. One is random walk
search, named as R-search, which means a peer forwards queries
to a randomly chosen neighbor at each hop in the network [3].
Another is Max-Degree-biased search, named as M-search, which
means a peer forwards queries to the highest-degree neighbor at
each hop in the network [4]. The comparison for three algorithms’
success rates as TTL varies is shown in Figure 3(b). P-search
achieves a very high query success rate and a fast response time.
Peers using P-search to forward queries are most likely to find the
desired resources.

4. CONCLUSION
We proposed a search algorithm to unstructured P2P network,
which include ranked neighbor caching, queryhit caching and file
replication to free riders. Ranked neighbor caching is efficient to
extend the search region and reduce the traffic effectively. And
through other two schemes, the traffic cannot centralized in a few
links, the free riders become useful peers, and they also balance
the network load. Then, comparisons show that the algorithm
achieves a high query success rate while greatly reduces traffic
volumes. So, the network can be more scalable.

5. REFERENCES
[1] H.ai Zhuge, X. Chen and X. Sun, Preferential Walk: towards

Efficient and Scalable Search in Unstructured Peer-to-Peer
Networks, International World Wide Web Conference, 2005.

[2] L. Quan, T. R. Eom, K. G. Lee, J. Jang and S.Y. Lee,
Retrieval schemes for scalable unstructured P2P system,
ISICT, 2004.

[3] C.Gkantsidis, M.Mihail and A.Saberi, Random walks in
Peer-to-Peer networks, INFOCOM, HongKong, China, 2004.

[4] M.Ripeanu and I.Foster, Mapping the Gnutella network:
macroscopic properties of large-scale Peer-to-Peer systems,
in IPTPS, Cambridge, MA, 2002.

Figure 2. Traffic of the network.

Figure 3. Comparisons of the performance.

