
Multi-stream Synchronization for 3D Tele-immersive and
Collaborative Environment

Zhenyu Yang
School of Computing and Information Sciences

Florida International University
11200 SW 8th, Miami, FL, USA

yangz@cis.fiu.edu

ABSTRACT
The 3D tele-immersive and collaborative environment pro-
vides a virtual space for the interaction of remotely dispersed
users. To achieve multi-perspective rendering and realistic
3D visual effect, it is needed to transmit multiple seman-
tically correlated 3D video streams from the source to the
destination with stringent synchronization requirement. In
this paper we discuss the issue of multi-stream synchroniza-
tion from the general context of the multicast routing with
delay and delay variation constraints, which was proved as
an NP-complete problem. Then we propose a heuristic to
construct a multicast network on an overlay content dis-
semination architecture for the solution, and show that our
algorithm is asymptotically more advanced in the time com-
plexity than existing ones. Empirical studies further verify
the performance of our algorithm regarding to the temporal
efficiency in various sizes of input data.

Keywords
3D tele-immersion, delay and delay variation constraints,
multicast

1. INTRODUCTION
The 3D tele-immersive and collaborative environment pro-

vides a virtual space for the interaction of remotely dispersed
users [6]. In such an environment, multiple 3D cameras are
mounted to capture a physical scene from various spatial
points, with each 3D camera corresponding to one 3D video
stream [8]. With an overlay content dissemination archi-
tecture [9], those streams are transmitted to the destination
where a joint virtual space immersing the participants is ren-
dered from multiple perspectives in real time. The proposed
multicast-based overlay architecture allows a more efficient
multi-stream content delivery [9]. Under such mechanism, a
user can dynamically manipulate his/her viewpoint and the
system automatically responses by selecting an appropriate
subset of streams to be transmitted. Further, users of similar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMMERSCOM ’09, May 27-29, 2009, Berkeley, CA USA.
Copyright C 2009 ICST ISBN # 978-963-9799-39-4 ...$5.00.

viewpoints may share the streams of the intersection instead
of requesting them directly from the source (Figure 1).

It is observed that there is a tight semantic correlation
among multiple streams generated from the same scene ac-
quisition source as the underlying 3D cameras are calibrated
and highly synchronized. To extend the general concept of a
video frame, we define a set of n 3D video frames captured
from n cameras bearing the same timestamp as a macro-
frame [8]. In this paper, we are interested in the problem of
synchronized transmission of macro-frames. That is, each
individual frame of one macro-frame must be received by
the rendering sites within a bounded delay window (the δ in
Figure 1). As pointed out in [4], the synchronization issue of
macro-frame delivery is very crucial for 3D tele-immersive
systems based on the multi-stream model, which has strong
impact on the 3D rendering and the support for real-time
interaction.

multi‐stream source
gateway A

macro‐frame Ft

t C

s1

s2

gateway C

δ…

sn

gateway B

Figure 1: Multi-stream distribution architecture

The synchronization issue of the overlay and multicast
networks has been brought to the attention of the commu-
nity with the problem formulated as delay and delay vari-
ation bounded multicast network (DVBMN) [5, 2, 1]. The
DVBMN problem concerns about building a multicast net-
work spanning from one source node to a set of destination
nodes to satisfy the quality-of-service (QoS) requirements
on not only the maximum delay of every path but also the
maximum delay variation between any pair of paths.

Due to the NP-completeness of the DVBMN problem [5],
several heuristics are proposed in the literature [5, 2, 7, 1].
As shown in recent research trends, one promising approach
for solving the problem is to first derive the k shortest paths
from the source node to every destination node as the candi-
date set where the maximum delay bound is imposed. This
first step is carried out using the most efficient k shortest
paths algorithm (e.g., [3]). If we define m as the number of

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IMMERSCOM 2009, May 27-29, Berkeley, USA
Copyright © 2009 978-963-9799-39-4
DOI 10.4108/immerscom.2009.6583

destination nodes, the candidate set will contain at most mk
paths. Then in the second step, paths from the candidate
set are compared with each other to search for an optimal
subset of paths with the minimum delay variation. By far,
the most efficient algorithm in the second step achieves the
tightest delay variation bound under the time complexity of
O(m2k) with a somewhat complicated procedure [1].

The solution we propose in this paper for the multi-stream
synchronization follows the similar two-step framework. How-
ever, for the second step, we apply a different procedure for
comparing candidate paths. Not only is the new procedure
much simpler, it also achieves the same level of minimum
delay variation as in [1] but much more efficiently with the
time complexity of O(mk log(m)).

The paper is organized as follows. The DVBMN problem
is formulated in Section 2. The solution is given in Section 3.
The evaluation of performance is presented in Section 4. The
conclusion and future work are discussed in Section 5.

2. PROBLEM DEFINITION
The DVBMN problem is defined as follows. There is a di-

rected graph G = 〈V,E〉 where V denotes the set of vertices
and E the set of edges. An edge delay function D : E → <+

is defined which assigns a non-negative delay to each edge.
Given a single source vertex s ∈ V and a set of destina-
tion vertices M ⊆ V − {s} (let m = |M |), the contents are
transmitted through a multicasting subgraph T = 〈VT , ET 〉.
The subgraph T spans between the source vertex s to every
vertex v ∈M . Let pT (s, v) denote the path from the source
vertex s to one destination vertex v through the edges in ET .
The delay along the path is expressed as Σe∈p

T
(s,v)D(e).

The problem has two bounding parameters, namely the
delay tolerance ∆ and the delay variation tolerance δ. The
goal is to construct a particular T such that constraints (1)
and (2) as shown below are satisfied.

∀v ∈M,
∑

e∈p
T

(s,v)

D(e) ≤ ∆ (1)

∀v, u ∈M,

∣∣∣∣∣∣
∑

e∈p
T

(s,v)

D(e)−
∑

e∈p
T

(s,u)

D(e)

∣∣∣∣∣∣ ≤ δ (2)

The DVBMN problem as described above is shown to
be NP-complete [5], which has aroused lots of attention to
search for efficient heuristics [5, 2, 7, 1]. The interested read-
ers may refer to [1] for a brief survey. Meanwhile, to evaluate
the performance of those algorithms, a third parameter δT

is defined as in (3),

δT = max
∀u,v∈M

∣∣∣∣∣∣
∑

e∈p
T

(s,v)

D(e)−
∑

e∈p
T

(s,u)

D(e)

∣∣∣∣∣∣
 (3)

which is called the maximum delay variation. To simplify
the expression, from now on we use D(p) to denote the ad-
ditive delay of path p (i.e., D(p) =

∑
e∈pD(e)). Thus, we

can rewrite 3 as below.

δT = max
∀u,v∈M

(|D(pT (s, u))−D(pT (s, v))|) (4)

3. SOLUTION
By far, one promising approach for the solution of DVBMN

problem was based on the k shortest paths algorithm (e.g., [3])
with two major steps. In the first step, the k shortest paths
algorithm is executed which returns a path list P(v) for ev-
ery v ∈M . Each path list P(v) contains at most k shortest
paths from the source vertex s to the destination vertex v
(i.e., pG(s, v)). Also, all the paths in P(v) satisfy the delay
tolerance (i.e., ∆) and are sorted in the ascending order of
path delay. Note, the value of k is pre-selected according to
certain criteria such as the graph size, edge density and the
number of destinations [1].

The k shortest paths algorithm generates m path lists
with each list containing at most k paths. Thus, there are
at mostmk paths which forms the candidate set. The second
step examines those paths of the candidate set to derive an
optimal set of paths (i.e., T).

In [1], Banik et al. proposed an algorithm to search for
the optimal T in terms of minimizing δT . Clearly, a naive
approach would exhaustively search all the possible combi-
nations with a time complexity of O(km). Hence, one im-
portant contribution made by Banik et al. was their search
algorithm that returned the optimal set of paths with the
time complexity of O(m2k).

The solution we propose in this paper follows the similar
framework as above. However, in the second step we use an
even more efficient search algorithm which achieves the same
result as [1] but with the time complexity of O(mk log(m)).
Meanwhile, our algorithm is much simpler compared to theirs.

For the rest of the section, we introduce our algorithm
in two parts. In the first part, we focus on illustrating the
main idea by using a more straightforward but a little slower
algorithm with the time complexity of O(m2k). Note that,
even this slower algorithm has already matched the best
performance so far. Next, we describe how to evolve this
algorithm to achieve the time complexity of O(mk log(m)).

3.1 The Slower Algorithm
We present the algorithm by referring to a sample graph

in Figure 2. To simplify the graph, we assume each edge is
bi-directional and has symmetric delay. The source vertex
is vs and the set of destination vertices is M = {v2, v6, v8}.

V1
V2

25

8
5

18 15
13

V V

18 15

12VS V3
V8

V4

9

10

12

V6

16
18

10
7

13
9

V5

616

8

9

V7

11

Figure 2: A sample graph

Path List k Shortest Paths (k = 4) Path Delay

vS → v1 → v3 → v2 31

P(v2)

vS → v1 → v3 → v2 31

vS → v1 → v2 33

vS → v1 → v3 → v4 → v2 37vS → v1 → v3 → v4 → v2 37

vS → v1 → v3 → v6 → v4 → v2 45

v → v → v → v 23

P(v6)

vS → v1 → v3 → v6 23

vS → v1 → v3 → v4 → v6 29

v → v → v 32vS → v5 → v6 32

vS → v5 → v7 → v6 35

v → v → v → v → v 34

P(v8)

vS → v1 → v3 → v4 → v8 34

vS → v5 → v7 → v8 36

40vS → v1 → v3 → v6 → v7 → v8 40

vS → v1 → v3 → v6 → v4 → v8 42

Figure 3: The results of k shortest paths

Then, the k shortest paths algorithm is executed with
k = 4. The results are shown in Figure 3. There are three
points to be noted here. First, as mentioned earlier all the
paths in the same path list are sorted in the ascending order
of delay. Second, generally some path lists may contain less
than k paths. It will not affect the correctness of our al-
gorithm. However, to ease the description we assume every
resultant path list contains k paths. Third, the value of de-
lay tolerance ∆ is not specified here but the readers should
be aware that during the execution of k shortest paths algo-
rithm the constraint of ∆ is already applied.

We denote the candidate sets from the k shortest paths al-
gorithm as P(v) for v ∈M . For convenience, we apply a to-
tal order for all the vertices in M (i.e., M = {v1, v2, ..., vm}).
Then we can simplify the notation of P(vi) as Pi. Given a
set of path lists P = {P1,P2, ...,Pm}, we say that a path
set P is derived from P if and only if P = {p1, p2, ..., pm}
and pi ∈ Pi for 1 ≤ i ≤ m. The goal of the second step is to
find an optimal set of paths T derived from P such that the
maximum delay variation δT is minimized (as shown in (5)).

T = arg min
P derived from P

(
max
∀pi,pj∈P

(|D(pi)−D(pj)|)
)

(5)

The pseudo-code of the search algorithm is given in Ta-
ble 1. After the execution of the program, the optimal set of
paths is saved in T where T [i] stores the path from s to vi for
vi ∈M (note that, T [i] ∈ Pi), and the related minimum δT

is saved in the variable of min δT . Recall that the set Pi is
sorted in ascending order of path delay. Therefore, the first
element (denoted as pi) always holds the path of minimum
delay in the current set of Pi and we can keep removing the
first element without violating this property (as in Line 4,
18, and 22 of the pseudo-code).

Before we examine the algorithm in more detail, let us
first get an intuitive sense of how the program actually runs
using the aforementioned sample graph (Figure 2) and the
output from the k shortest paths (Figure 3). Figure 4 il-
lustrates the runtime snapshot of the search algorithm with
each grid representing one iteration of the while loop (Line
7 to 24 in Table 1). For example, in the grid 1 each column
of the table shows the initial elements of path list Pi and
the paths of minimum delay of each path list are located in

Table 1: The pseudo-code of searching for the opti-
mal combination of paths to minimize δT

1 search(P1,P2, ...,Pm)
2 min δ ←∞
3 for i = 1 to m do
4 pi ← the 1st element of Pi

5 end for
6 done ← false
7 while not done do
8 pmin ← arg minp∈{p1,p2,...,pm}(D(p))
9 pmax ← arg maxp∈{p1,p2,...,pm}(D(p))
10 D ← D(pmax)−D(pmin)
11 if D < min δ then
12 min δ ← D
13 for i = 1 to m do
14 T [i]← pi

15 end for
16 end if
17 let l be the index of pmin s.t. pmin ∈ Pl

18 Pl ← Pl − {pmin}
19 if Pl = ∅ then
20 done ← true
21 else
22 pl ← the 1st element of Pl

23 end if
24 end while

the first row.∗ Since pmin = 23 and pmax = 34, the cur-
rent min δ is 11 (as shown beside the right arrow). After
that, the smallest delay (i.e., 23) is removed and the pro-
gram evolves to the next iteration until one of the path lists
becomes empty. The minimum δT is 2, which is found the
first time in the fourth iteration and the program terminates
at the seventh iteration where P2 = ∅. It is noted that sev-
eral combinations achieve the same minimum δT (e.g., the
fifth and the seventh iteration). In that case, only the one
with minimum delay is selected as in the fourth iteration,
achieving small stretch. Figure 5 shows the selected paths
spanning from vs to v2, v6 and v8.

Time Complexity
For the search algorithm listed in Table 1, the time com-

plexity of Line 3 to 5 (i.e., the for loop) is O(m). Within the
while loop, Line 8 takes O(m) to find the minimum element
within m elements and the same for Line 9. The for loop
to keep track of the optimal set (Line 13 to 15) takes O(m).
The rest lines within the while loop take O(1). Each itera-
tion removes one path (Line 18). Since there are at most mk
paths to be removed, the maximum number of iterations is
mk. Therefore, the total time complexity is O(m2k). The
performance matches the best algorithm proposed so far but
is significantly simpler.

Correctness
The correctness of the slower algorithm is stated as the

following theorem. We leave the proof in Appendix.

Theorem 3.1. When the search algorithm terminates, it
finds the minimum delay variation (i.e., δT) for any set of
paths P derived from the given set of path lists P.
∗ To save space, only the delay is shown and the actual

path is omitted.

P(v2) P(v6) P(v8)

31 23 34

33 29 36

11

1 P(v2) P(v6) P(v8)

33 32 34

37 35 36

2

P(v2) P(v6) P(v8)

37 35 36

45 40

2

74

33 29 36

37 32 40

45 35 42

37 35 36

45 40

42

45 40

42

P(v2) P(v6) P(v8)

31 29 34 5

2 P(v2) P(v6) P(v8)

33 35 34 2

5

T = {31, 23, 34} T = {33, 32, 34} T = {33, 32, 34}

31 29 34

33 32 36

37 35 40

5 33 35 34

37 36

45 40

2

45 42 42

P(v2) P(v6) P(v8) P(v2) P(v6) P(v8)3 6

T = {31, 29, 34} T = {33, 32, 34}

P(v2) P(v6) P(v8)

31 32 34

33 35 36

3

P(v2) P(v6) P(v8)

37 35 34

45 36

2

3 6

37 40

45 42

40

42

T = {31, 32, 34} T = {33, 32, 34}

Figure 4: The snapshot of the search algorithm

25V1
V2

8
5

18 15
13

18 15

12V V9

10

12VS V3
V8

V4

16
18

10
7

13
9V616

8

9

V5

6

11

V7

Figure 5: The selected multicast paths with the min-
imum δT

3.2 The Faster Algorithm
As mentioned earlier, the slower algorithm has the time

complexity of O(m2k). The slower algorithm is used to il-
lustrate the idea and as the basis for the improvement. If
we examine the pseudo-code more carefully, we assume Line
8 and 9 use linear search to find the path of minimum and
maximum delay which has the time complexity of O(m).
Obviously, we could improve this part by using more ad-
vanced searching algorithm such as the priority queue. The
faster algorithm is listed in Table 2.

The faster algorithm is essentially the same as the slower
algorithm except the usage of priority queue to accelerate
the searching. Note that, we only use priority queue to
search for pmin and we simply use one variable pmax to keep
track of the current maximum delay path. For brevity, we
will not spend more space to discuss its correctness. For the
time complexity, Line 4 to 10 take O(m log(m)) to insert m
elements into the priority queue. Inside the while loop (Line
12 to 30), each iteration takes O(log(m)) for the enqueue
and dequeue operations. The total number of iterations is
O(mk). Therefore, the total complexity is O(mk log(m)).

Table 2: The pseudo-code of searching for the opti-
mal combination of paths to minimize δT

1 search(P1,P2, ...,Pm)
2 min δ ←∞
3 pmax ← 0
4 for i = 1 to m do
5 p← the 1st element of Pi

6 insert p to a priority queue: q.enqueue(p,D(p))
7 if D(p) > D(pmax) then
8 pmax ← p
9 end if
10 end for
11 done ← false
12 while not done do
13 pmin ← q.head()
14 D ← D(pmax)−D(pmin)
15 if D < min δ then
16 min δ ← D
17 end if
18 let l be the index of pmin s.t. pmin ∈ Pl

19 Pl ← Pl − {pmin}
20 if Pl = ∅ then
21 done ← true
22 else
23 q.dequeue()
24 p← the 1st element of Pl

25 q.enqueue(p,D(p))
26 if D(p) > D(pmax) then
27 pmax ← p
28 end if
29 end if
30 end while

It is observed that the faster algorithm does not generate
the optimal combination of paths (i.e., T). In the slower
algorithm, the step of keeping track of T takes O(m) and it
could happen at each iteration in the worst case. A simple
way to fix it is to run the faster algorithm twice. In the first
run we record δT , and in the second run we use δT to decide
when to record T (for only once). Since each run takes
O(mk log(m)), the total complexity is still O(mk log(m)).

The time complexity of the most efficient k shortest paths
algorithm is O(|E|+|V |k log(|E|/|V |)) such as in [3]. Adding
the cost of Banik’s algorithm, the total time complexity
of minimum delay variation algorithm would be O(|E| +
|V |k log(|E|/|V |)+m2k) [1]. Thus, with our new algorithm,
the time complexity is reduced to O(|E|+|V |k log(|E|/|V |)+
mk log(m)), which can be simplified asO(|E|+|V |k log(|E|)).

4. EVALUATION
We implement the slower and faster version of the search

algorithm. For comparison, we also implement a variant
from the algorithm proposed by Banik et al., called Chains [1].
The time complexity of Chains is O(m2k), similar to the
slower search algorithm. However, it is more complicated
which involves several scans. In the first scan, all path lists
(i.e., {P1,P2, ...,Pm}) are merged into one list in the as-
cending order of path delay with the time complexity of
O(mk log(m)).† After that, some data structures are ini-

† In their paper, the authors claimed the merge can be

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 50 100 150 200

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Size of Multicast Group (m)

slower algorithm
faster algorithm

variant of Chains

Figure 6: A comparison of execution time of slower
algorithm, faster algorithm and Chains (k = 6)

tialized in a second scan over the merged list with the time
complexity of O(m2k). Then, a third scan is performed to
finally output the optimal set of paths. Compared with their
approach, the slower program only takes one scan.

From the description in their paper, we are not very sure
about the details of the second scan of Chains. Thus, we
substitute it with a routine that establishes somewhat simi-
lar data structures but with the time complexity of O(mk).
By taking this approach, we feel confident that although
they are not exactly the same, nevertheless the variant shall
not run slower than the Chains algorithm to justify the com-
parison.

Since both our algorithm and the Chains algorithm as-
sume the output from the k shortest paths algorithm, to fa-
cilitate the experiment we generate random path lists with
various combinations of m and k for the performance evalu-
ation. We set k to be 6 and select m ranging from 10 up to
1000. The results are plotted in Figure 6 where each point
is calculated over an average of 6 runs.

Figure 6 demonstrates the advantage of the slower algo-
rithm over the faster algorithm with small to medium size
of input. Meanwhile, although asymptotically similar, the
slower algorithm runs much faster than the Chains algorithm
due to its simplicity. For larger input size, Table 3 illustrates
the performance of the faster algorithm as compared with
that of the slower algorithm.

Table 3: A comparison of execution time of slower
algorithm and faster algorithm with large input size
(Unit: second)

m = 400 m = 600 m = 800 m = 1000

slower 0.000186 0.001157 0.001684 0.002095
faster 0.000319 0.000811 0.000930 0.001029

As shown in Table 3, the faster algorithm starts to win
over its slower counterpart at the point of m = 600. At
the current state, a multicast group for collaborative work
may not involve such big size. Therefore, it seems that the
slower algorithm would be a better choice in most of the sit-
uations. However, we envision that in the near future with

done in O(mk) which we believe is incorrect.

the increasing popularity of multi-site/multi-stream 3D tele-
immersive and collaborative environments, we may need to
consider the synchronization issue for large scale collabora-
tive group. In those scenarios, a multicast session involving
hundreds of nodes would become more usual than bizarre
and the faster algorithm will certainly show its potential.

5. CONCLUSION AND FUTURE WORK
In this paper, we investigate the issue of multi-stream syn-

chronization for the support of 3D tele-immersive and col-
laborative environment. The problem is modeled under the
context of delay and delay variation bounded multicast net-
work (DVBMN), which is NP-complete. Thus, we study one
promising approach based on the k shortest paths algorithm.
The approach leverages on the execution of the k shortest
paths algorithm to derive a candidate set of mk shortest
paths from one single source to m destinations. Later, a
search procedure is applied to find a set of paths out of the
candidate set to minimize the maximum delay variation. By
far, the best searching algorithm achieved the time complex-
ity of O(m2k). As an improvement, we propose two ver-
sions of a new searching algorithm. For the slower version,
its asymptotic complexity matches that of the previously
proposed algorithm but is much faster in practical experi-
ments due to its simplicity. Furthermore, the faster version
achieves the time complexity of O(mk log(m)) and shows its
potential over the slower version with larger input size of
data.

So far, the issue of synchronizing multicast group has only
involved with single source. As our next step, we will con-
sider the synchronization problem with multiple sources,
which is very much needed for the research community of
immersive and collaborative applications. Also, we will in-
vestigate the embedding of the synchronization component
into the current multi-stream delivery architecture (e.g., [9])
and the issue of dynamics.

6. REFERENCES
[1] S. M. Banik, S. Radhakrishnan, and C. N. Sekharan.

Multicast routing with delay and delay variation
constraints for collaborative applications on overlay
networks. IEEE Transactions on Parallel and
Distributed Systems, 18(3):421–431, 2007.

[2] S. Kapoor and S. Raghavan. Improved multicast
routing with delay and delay variation constraints. In
GLOBECOM ’00: Proceedings of the Global
Telecommunication Conference, volume 1, pages
476–480, Irvine, CA, USA, 2000.

[3] V. Manuel, J. Pelayo, and A. M. Varo. Computing the
k shortest paths: A new algorithm and an experimental
comparison. In WAE ’99: Proceedings of the 3rd
International Workshop Algorithm Engineering, pages
15–29, London, UK, 1999.

[4] D. E. Ott and K. Mayer-Patel. Coordinated
multi-streaming for 3d tele-immersion. In
MULTIMEDIA ’04: Proceedings of the 12th annual
ACM international conference on Multimedia, pages
596–603, New York, NY, USA, 2004. ACM Press.

[5] G. N. Rouskas and I. Baldine. Multicast routing with
end-to-end delay and delay variation constraints. IEEE
Journal on Selected Areas in Communications,
15(3):346–356, 1997.

[6] R. Sheppard, M. Kamali, R. Rivas, M. Tamai, Z. Yang,
W. Wu, and K. Nahrstedt. Distributed virtual
collaboration through tele-immersive dance (ted): A
symbiotic creativity and design environment for art and
computer science. In MULTIMEDIA ’08: Proceedings
of the 16th annual ACM international conference on
Multimedia, pages 579–588, Vancouver, Canada, 2008.

[7] P.-R. Sheu and S.-T. Chen. A fast and efficient
heuristic algorithm for the delay- and delay variation
bound multicast tree problem. In ICOIN ’01:
Proceedings of the 15th International Conference on
Information Networking, pages 611–618, Beppu City,
Oita, Japan, 2001.

[8] Z. Yang, K. Nahrstedt, Y. Cui, B. Yu, J. Liang, S. hack
Jung, and R. Bajscy. Teeve: the next generation
architecture for tele-immersive environments. In ISM
’05: Proceedings of the 7th IEEE International
Symposium on Multimedia, pages 112–119, Irvine, CA,
USA, 2005.

[9] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo, and
R. Bajcsy. Viewcast: view dissemination and
management for multi-party 3d tele-immersive
environments. In MULTIMEDIA ’07: Proceedings of
the 15th international conference on Multimedia, pages
882–891, New York, NY, USA, 2007. ACM Press.

APPENDIX
A. PROOF OF THEOREM 3.1

We prove the theorem based on the techniques of loop
invariant and induction. To distinguish the state of variables
from one iteration to another, during the proof we use the
superscript notation, for example Pj indicates the content
of P in the jth iteration. To start with, denote pj as the
path of minimum delay in the jth iteration of the while loop
(actually, it should be pj

min to be more consistent but we
simplify the notation here). From the pseudo-code (Table 1),
it is easy to observe that D(pj1) ≤ D(pj2) for any j1 < j2.

For convenience, given P derived from P define an index
function id for p ∈ P where id(p) = i if and only if p ∈ Pi.
Also, define min(P) = arg minp∈P (D(p)) and so as max(P).
We will notify in case such usage of min and max may cause
confusion. First, we prove the following lemma.

Lemma A.1. Given a set of path lists P = {P1,P2, ...,Pm},
the jth iteration finds min δ = min(δP) where P is any set
of paths derived from P and P includes at least one path
from {p1, p2, ..., pj}.

Proof. The proof is by the induction on j, the number
of iterations. First, consider the base case of j = 1. De-
fine P 1 = {min(P1

1),min(P1
2), ...,min(P1

m)}. Thus, p1 =
min(P 1), which is the path of minimum delay in the first
iteration. According to Line 10, the min δ is calculated as
follows.

min δ = D(max(P 1))−D(p1) (6)

We only need to show that min δ ≤ min(δP) for any set of
paths P derived from P which includes p1. By contradiction,
suppose there is another path set Q with Q derived from P
and Q includes p1, and δQ < min δ.

Since Q includes p1 and p1 is the path of minimum delay
over all paths in P. The calculation of δQ must include p1

as the minimum delay path according to its definition, such
that δQ = D(max(Q)) − D(p1). Let qmax = max(Q) and
p1

max = max(P 1
min). Therefore, we have that

D(qmax)−D(p1) < D(p1
max)−D(p1) (7)

or

D(qmax) < D(p1
max). (8)

Obviously, id(qmax) 6= id(p1
max). Since D(p1

max) is the
path of minimum delay in its path list, its delay should not
be bigger than another path in the same path list. Let i1 =
id(qmax) and i2 = id(p1

max) (so i1 6= i2). Let q ∈ Q and
id(q) = i2. Then, the following must hold.

D(qmax) ≥ D(q) ≥ D(p1
max) (9)

This contradicts to (8).
Next, we assume the induction hypothesis (IH) that the

Lemma A.1 is true for j = n − 1 and consider the case of
j = n. Again, let Pn = {min(Pn

1),min(Pn
2), ...,min(Pn

m)},
pn = min(Pn) and pn

max = max(Pn). There are two possi-
bilities regarding to min δ (case (a) and (b) below).

(a) min δ ≤ D(pn
max)−D(pn). In this case, min δ remains

unchanged. Now consider any set of paths P derived from P
and P includes at least one path from {p1, p2, ..., pn−1, pn}.
(a.1) Suppose P only includes path from {p1, p2, ..., pn−1},
then by the IH min δ < δP . (a.2) Suppose P only includes
pn but none of {p1, p2, ..., pn−1}, which is actually the same
situation as j = 1 since pn is currently the path of minimum
delay. Thus, we have D(pn

max)−D(pn) as the minimum vari-
ation for any set of paths P derived from P which includes
pn but none of {p1, p2, ..., pn−1}. Combining (a.1) and (a.2),
it is proved that min δ is the minimum delay variation for
any set of paths P derived from P which includes at least
one path from {p1, p2, ..., pn−1, pn}.

(b) min δ > D(pn
max) − D(pn). In this case, min δ is

assigned the new value of D(pn
max)−D(pn). The rest of the

proof is similar to that of (a) and is omitted for brevity.
Therefore, Lemma A.1 is proved.

Theorem 3.1 is now straightforward given the previous
lemma. First, the search algorithm checks one path in every
iteration and will never check it again. Thus, it will termi-
nate either after all the paths are checked or one of the path
lists, namely Pl, is exhausted (i.e., Pj

l = ∅). Second, due to
Lemma A.1, the algorithm guarantees to find the minimum
delay variation for any derived set of paths which includes
at least one path from {p1, p2, ..., pj} in the j-th iteration.
Therefore, when the search terminates it will find the min-
imum delay variation for any derived set of paths P , since
any such P would include at least one path from the whole
set of paths (i.e., P) or Pl.

