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ABSTRACT

Tele-immersive systems, are growing in popularity and so-
phistication. They generate 3D video content in large scale,
yielding challenges for executing data-mining tasks. Some
of the tasks include classification of actions, recognizing and
learning actor movements and so on. Fundamentally, these
tasks require tagging and identifying of the features present
in the tele-immersive 3D videos. We target the problem
of 3D feature extraction, a relatively unexplored direction.
In this paper we propose Samera, a scalable and memory-
efficient feature extraction algorithm which works on short
3D video segments. The focus is on relevant portions of
each frame, then uses a flow based technique across frames
(in a short video segment) to extract features. Finally it is
scalable, by representing the constructed feature vector as
a binary vector using Bloom Filters. The results obtained
from experiments performed on 3D video segments obtained
from Laban Movement Analysis (LMA) show that the com-
pression ratio achieved in Samera is 147.5 as compared to
the original 3D videos.

1. INTRODUCTION
Tele-immersion systems provide a way for users in dis-

tributed geographical locations to collaborate with each other
in a shared virtual space that combine audio and video.
Tele-immersive systems, by their very nature, generate large
amount of 3D video content hence represent testbeds where
data-mining techniques are desired for performing several
tasks, notably in classification and categorization of 3D videos.
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As an example, our current Tele-immersive Environments
for EVErybody (TEEVE) system [16] allows for collabora-
tive dance classes. Let us assume that the user wishes to
search through the 3D video recordings, what kind of move-
ments are being performed by each of the dancers she would
then simply interact with an interface and she would easily
get a categorized list of movements performed, and their cor-
responding dancers from the system. Another task could be
to mine activity patterns from the recorded 3D video data-
sets. For example, to find out which dancers in the stored
3D videos are performing a particular dance move.

As a precursor to performing these tasks, we need an ef-
ficient way to tag and recognize features in the videos ob-
tained from the recordings in the tele-immersive system. An
important aspect of these videos is their 3D nature. The
existing algorithms for feature extraction in the computer
vision community are currently being focused on 2D videos,
and the topic of feature extraction in 3D is relatively unex-
plored.

3D videos present several difficulties while processing and
this factor is compounded in the videos obtained from TEEVE.
First, any feature vector for 3D videos would need to account
for depth information present in these videos. This gives an
added complexity to the feature vector description. Sec-
ond, even if current feature extraction techniques were to be
used for our requirements, they would not be scalable simply
because of their in-memory requirements while processing.
Thirdly, is that TEEVE generates videos which are noisy in
nature and it becomes a challenging task to identify the ac-
tors or movements from these videos. As an addition, there
could be practical difficulties of using the feature vectors ob-
tained for several of the data-mining tasks mentioned. The
feature vectors themselves may need to be pre-processed in
a particular format (according to the application require-
ments).

Thus, an important question becomes: Can we investigate
solutions to the feature extraction problem that works well
for noisy 3D videos, is scalable, has low in-memory require-
ments, is reasonably accurate, and requires a low amount of
(post feature-extraction) pre-processing? We answer these
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questions in the paper.
We present Samera, a scalable and memory-efficient fea-

ture extraction algorithm for short video segments obtained
from a TEEVE system. The main contributions of Samera
are that it:

1. Provides a novel frame descriptor representation that
is compact, and handles depth information present in
3D videos.

2. Is scalable to large workloads.

3. Has low in-memory requirements, even for large work-
loads.

4. Performs well for a diverse set of workloads, that have
a high degree of noise.

Figure 1: A high-level flow diagram of Samera.

A flow diagram of Samera is shown in Figure 1. Sam-
era is run off-line after collecting the short video segments
for training and testing purposes from TEEVE in a single
machine. While the terms, and exact technical description
are explained in Section 3, we give a brief overview of the
architectural steps followed in its feature extraction process.
Earlier, we had mentioned that the video segments obtained
are very noisy, and in many video segments the actors are
barely recognizable even to the naked human eye. So, to fo-
cus our feature-extraction only on the actor and ignore the
background, we perform some form of background subtrac-
tion here. In addition, many actors are of different sizes,
and perform similar actions. A good feature extraction al-
gorithm must be size and distance-independent and should
recognize the actor and actor movements regardless of these
two. We construct a bounding box around each actor for
this purpose. Next, we need to account for actor move-
ments in all directions along with temporal aspects of these
video segments. We use an information-flow based technique

along with Principal Component Analysis (PCA) to obtain
the motion summaries and a frame descriptor representing
this. Finally, to make the obtained feature vectors more
scalable, we do a transformation using Bloom Filters to ob-
tain a binary vector representing the features of the short
video segment.

Figure 2: System Overview of Samera.

The rest of this paper proceeds as follows: Section 2 briefly
describes related work in feature extraction techniques, Sec-
tion 3 and 4 describe Samera while Section 5 shows perfor-
mance results with workloads obtained from TEEVE and
finally Section 6 concludes the work and outlines scope for
further research, especially in data-mining.

2. RELATED WORK
Related work in feature extraction and representation are

abundant, especially in approaches which use local inter-
est points in video images. Some techniques include SIFT,
Harris Detector, p-LSA model and so on [11]. Another set
of techniques includes using behavioral similarity features
such as intensity. Some examples of this technique include
the integral video method by [10] using motion energy re-
ceptive fields, and a tensor canonical correlation analysis
method. These are collectively called patch-based meth-
ods. Other methods such as the bag-of-words representation
model provide a concise way of describing multiple features
and which can be used for matching similarity of different
videos. Statistics based approaches like histograms have also
been effective. The distance measures used for all these sta-
tistical approaches include KL-Divergence and χ2 techniques
are also in use.

Location invariant feature matching and extraction is an
important task which has gained popularity in many feature
extraction algorithms developed today. One of the first sub-
stantial research gains in this were obtained by Schmid et al.
[4]. Some more work in this area was done by Lowe [6] who
achieved scale invariance. Some work using wavelet coeffi-
cients for feature extraction was done by Shokoufandeh et al
[13]. There are also many valuable papers in shape descrip-
tion techniques. Two prominent ones are [14] and [9]. A
survey of existing research in shape description is provided
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Figure 3: For our feature extraction we use four information channels namely: Horizontal flow, Vertical flow,
Depth flow and silhouette. In each channel, similar to our previous step, the measurements are resampled to
fit into normalized (120 × 120) box while maintaining aspect ratio. The normalized bounding box is divided
into 2 × 2 grid. Each grid cell is divided into 18-bin radial histogram (20◦ per bin). Each of the 4 channels
is separately integrated over the domain of each bin. The histograms are concatenated into 288 dimensional
frame descriptor. 5-frame blocks are projected via PCA to form medium scale motion summaries. For the
immediate neighborhood, the first 50 dimensions are kept and for the two adjacent neighborhoods the first
10 dimensions are kept. The total 70-dimensional motion summary is added to the frame descriptor to form
the motion context. Finally, they are represented as a binary vector output of Bloom filter.

in [14] and a review of three-dimensional shape-searching
techniques is provided in [9].

From a survey of existing work for 3D videos we found
the feature extraction techniques to be quite insufficient.
One of the early techniques of feature extraction from 3D
objects was [8]. However this technique focused only on
graphical models obtained from sources such as scanners,
multiple cameras and so on. Another technique [1] com-
puted facial features from frontal and profile view images
of a person, and used this further to reconstruct 3D facial
models. Most recently, [15] developed a similarity search
and retrieval scheme for 3D videos. However their technique
worked only on 3D models which are free from noise.

3. SAMERA: SYSTEM DESCRIPTION
In this section we give a high-level overview and system

description of Samera. Figure 2 shows our system. Samera
consists of 4 major components. The first one is the tele-
immersive system called TEEVE where real-time 3D videos

are recorded. The next one is a database where these videos
are stored. Next and the most important component is the
Samera processor. The final component represents the ex-
tracted feature vectors obtained from Samera.

When a user interacts with the tele-immersive environ-
ment the 3D videos are generated, recorded and stored in
real-time in the database of 3D videos. These videos can
then be processed offline by Samera to generate the feature
vectors. Once the feature vectors are obtained we need not
worry about the original 3D videos. In this way the database
continuously collects the 3D videos in real-time while the
processing is done by Samera off-line.

To understand the characteristics of the video frames that
we use for our evaluation purposes, we provide an overview
of the relevant components of the tele-immersive environ-
ment [16]. Tele-immersion is aimed at enabling users in
geographically distributed sites to collaborate in real time
in a shared simulated environment as if they were in the
same physical room. The capturing of 3D videos in a tele-
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immersive system consists of a series of C 3D cameras (where
C is the number of cameras), each 3D camera consisting of
four 2D cameras, organized around the subject (or the ac-
tor) and synchronized. At a given point of time, each camera
captures one frame of depth image from its viewpoint and
provides a 3D video frame. At that time instant, the remote
renderer uses C 3D reconstructed frames to show the same
scene from different viewing angles. The cameras have a
360o coverage around an actor, and this enables a viewer to
view the actor from any viewing direction. The 3D recon-
structed frames are recorded as videos.

4. FEATURE EXTRACTION AND REPRE-

SENTATION
In this section, we present our algorithm for extracting

features. A feature, in our context, is an entity that is in-
ferred to abstract a group of frames (obtained from a short
video segment). Thus, a feature represents the temporal
aspects of a frame along with motion in three directions
along with shape of the person as a sequence of bits. The
three dimensions refer to the horizontal and vertical compo-
nent of a video, and the depth value associated with them.
These are referred to as x, y, and z directions respectively.
The video segments consists of multiple frames that are se-
quenced temporally. We use those frames for extracting the
features. The feature extraction is a two-step process where
we first focus on the relevant portions of each frame, and
then proceed to a flow-based technique across frames. The
process of feature extraction is explained in Figure 3.

4.1 3D Feature Vectors
The background in the captured videos contains a lot of

unnecessary information that is not relevant to the task of
actor identification and merely acts as noise for feature ex-
traction. In order to focus on the actor without worrying
about the background, we perform background subtraction.
A model of the background is made from initial few frames
for every camera and the background subtraction is done
based on the difference of the current frame with respect
to the background model. Once the portion of the frame
with the actor is extracted out, the portion remaining is
the silhouette. Based on the way we capture images, if a
rotation is performed by an actor the user would view the
actor with the same viewing direction with respect to some
other camera as the previous camera. Because our feature
vector is a combination of feature vectors of several different
cameras, this leads to rotation invariance. Further, actions
performed by actors located at different distances from the
camera should be treated as the same actions. These actors
appear to be of different sizes depending on their distances
from the camera. Therefore, to make them size indepen-
dent, a bounding box is created around the actor and it is
normalized to make the person seem distance-independent.
This is shown in Figure 3 by boxes around the actor in the
frame.

The captured 3D videos contain movements of actors made
in the three directions, namely x, y, and z. We need a way to
capture the amount of movement made by them. Flow based
techniques [7], which we adopt for use in our paper, help us
in achieving this goal. A flow represents different amount
of movements made by different body parts in those direc-
tions. In addition, different body shapes for different actions

need to be considered to distinguish body shapes from one
another. For this, we use a silhouette mask.

Our frame descriptor is a histogram of the silhouette and
of the optic flow inside the normalized bounding box. We
scale the larger side of the bounding box to a fixed size R
preserving the aspect ratio. The scaled box is then placed
at the center bottom of an R × R square box padded with
zeros. The rescaling of this bounding box makes the object
size invariant. We use this transformation to resample the
values of the flow vectors and of the silhouette.

In order to extract the features, we use flow based tech-
niques [7] in x, y, and z direction. From Figure 3, we can
see that four different kinds of flows are extracted, labeled as
Fx, Fy, Fz and silhouette. We design our features to capture
appearance and motions of small portions of the person. To
capture this, we use the concept of radial bins [2]. The con-
cept of radial bins lets us take into account different features
that are located at various distances from the point where
the measurement is made. The radial bins are shown for
each of the quarter portions of flows in Figure 3.

The optic flow measurements are split into horizontal (x),
vertical (y) and depth (z) channels. To reduce the effect of
noise each channel is smoothed using a median filter [12].
This gives us three real-valued channels Fx, Fy and Fz. The
silhouette gives us the fourth (binary) channel S. Each of
the four channels is histogrammed using the same technique.
The normalized bounding box is divided into 2 × 2 sub-
windows. Each sub-window is then divided into 18 pie slices
covering 20 degrees each. Belongie et al [2] have used the
concept of pie slices and found these values to be suitable.
Intuitively, if the number of pie slices is less then informa-
tion is lost and finer details are not captured. On the other
hand, if the number of pie slices is high then it becomes
computationally challenging to extract the features.

The center of the pie is in the center of the sub-window
and the slices do not overlap. The values of each channel are
integrated over the domain of every slice. The result is a 72
(2 × 2 × 18)-dimensional histogram. By concatenating the
histograms of all 4 channels we get a 288-dimensional frame
descriptor. By doing this we are able to take small-local
body motions of the actor into account.

The captured movements in these videos represents views
from different cameras. Feature vectors are obtained for
the images captured from each camera’s view. We need a
way to make the feature vectors seem independent of each
camera’s location (since they are capturing the images of the
same actor regardless of their location). In order to combine
multiple camera views, the 3D feature vectors from all the
cameras are concatenated in order to make a single feature
vector. The resulting histograms are normalized in order to
represent them in the same range.

4.2 Taking Motion (Temporal Aspects) Into Ac-
count

In addition to the extracted features from a current frame,
we need to consider the motion made by the actors in the 3D
videos. Motion takes place over time, and we need a way
of taking this into account while constructing our feature
vectors. We use a number of frames around the current
frame (including past and future frames) to achieve this goal.

We use 15 frames around the current frame and group
them into 3 groups of 5 frames: past, current and future.
The choice of 15 frames is ideal for taking local temporal

Digital Object Identifier: 10.4108/ICST.IMMERSCOM2009.6219 
http://dx.doi.org/10.4108/ICST.IMMERSCOM2009.6219 



aspects into account and without involving much compu-
tational overhead. In essence, it is like a short video seg-
ment. Previous work such as Shape Context [2] and 30-
pixel men [7] have found this choice suitable. Since each
block consists of 5 frames and each frame is represented
using 288-dimensional frame descriptor, stacking them to-
gether results into a block descriptor, which is a 1440 di-
mensional vector. This block descriptor is then projected
onto the first N principal components using principal com-
ponent analysis (PCA). We keep the first 50, 10 and 10 di-
mensions for the current, past and future blocks respectively.
These parameters are chosen based on a Gaussian distribu-
tion around the current frame so that the current block gets
maximum weight and past and future frames receive lesser
weight. The resulting 70-dimensional context descriptor is
appended to the current frame descriptor to form the final
358-dimensional motion context descriptor.

4.3 Representation Framework Using Bloom
Filters

Now that we have obtained the final feature vectors, we
need to refine them in a way which will be more scalable
as well as be quick enough for further processing. The large
number of feature vectors deters us from using them directly.
Each frame feature vector consists of a 288-dimensional frame
descriptor. If we were to consider 15 frames for compari-
son we would get 288 × 15 = 4320 features which would be
computationally difficult to process. To solve this, we use
Bloom filters [3] and represent the resulting feature vector
as a binary vector. Bloom filter is a unique data struc-
ture which provides for space-compaction by testing for set-
memberships. This consists of a number of hash functions
which map key-values to individual positions of the data
structure. Initially all elements in this structure are set to
zero. Whenever a value is hashed to a particular location,
that position is set to 1. Another advantage of using Bloom
filters is that the probability of false positives is very low [3].

So, in order to represent a frame as a Bloom filter, we add
the 358 elements of the frame in an empty Bloom filter and
it serves as a representation of the frame.

Table 1: Value of various parameters used in exper-
imental evaluation

Symbol Parameter Value

C Number of 3D cameras 12
h Number of hash functions 10
m Number of bits in Bloom filter 1000000

5. EXPERIMENTAL EVALUATION

5.1 Workloads
The workloads for our experiments are from the tele im-

mersion setup. The workloads that we use are the dancer’s
data for Laban Movement Analysis [5]. This provides a di-
verse set of videos for our purposes. Since LMA provides
a systematic method of categorizing different basic move-
ments, different movements can be composed using these
basic categories. Therefore it is a general representative of
different movements actors can make. LMA styles are di-
vided broadly into three categories: dream state, mobile

state and rhythm state. Each of these states is further di-
vided into two subcategories. Dream state is divided into
free & light and bound & strong. Mobile state is divided into
free & quick and bound & sustained, whereas the rhythm
state is divided into strong & sustained and light & quick.

5.2 Results
Here we describe the results of experiments done on the

workloads using Samera. We evaluate the following metrics
here: 1) Accuracy of feature extraction on the workloads
with and without Bloom Filters, and 2) Memory require-
ments and scalability aspects of using Samera.

From each of the six sub-categories Laban Movement Anal-
ysis, one video was selected. We removed the last portions
of videos from LMA and used the remaining starting portion
to train a classifier. We use individual video frames and the
idea is that if the classification is accurate, then it will iden-
tify those frames to the correct class. The removed portions
were used for testing the feature extraction algorithm and
we tested each for the category to which it belongs. Each
of the trained videos were taken as a category in itself. We
used original feature vectors from each frame without using
the Bloom filter. This is used to test the effectiveness of
our feature extraction algorithm which in turn affects the
classification accuracy (of the images).

For the purposes of classification, we train an SVM clas-
sifier for the training data. This classifier was then used to
allocate labels to the remaining portion of the video. A label
was assigned to each of the frames of the testing video.The
frame label on the complete testing video segment was as-
signed as the majority of the labels.

We used libSVM1 to train an SVM classifier. We used the
rbf kernel with γ = 0.00012367 and ρ = −0.121748. These
values are obtained using cross-validation on training data
and the classifier was performing best for these values. The
obtained results are shown in Table 2. The results show the
total number of frames that were used for testing purposes.
From the results, we can see that for different categories, the
percentage of frames that were correctly identified by SVM
of that category is around 70%. A match is considered as
correct if a frame is identified to be of same category as
it was trained. There is some variation in the results for
different categories. The lowest results are around 65% and
the highest accuracy is around 80%.

Next, we looked at how the performance of the SVM clas-
sifier is affected by using the binary vector obtained from the
Bloom filter as a feature vector. The results obtained from
this are shown in Table 2. In most cases the accuracy re-
sults obtained using Bloom filters outperform those without
using them.

We now show that the memory requirements of Samera us-
ing Bloom Filters are much less than the original videos. The
original videos obtained from TEEVE are of size 640 × 480
pixels. Each pixel needs 5 bytes for representation-3 for
color and 2 for depth. The total bits required then becomes
640 × 480 × 5 × 8 = 11.71 Mbits. This is for one cam-
era cluster. We have 12 cameras in our experimental setup
and thus the total size required then becomes 140.6 Mbits.
However the Bloom filter representation of Samera requires
around 0.95 Mbits. The compression ratio which is defined
as the ratio of size of original data to compressed data is now
140.6/0.95 = 147.5. Since the reduction in memory usage by

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm
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Table 2: Results of analysis of feature extraction and Bloom filter over LMA
Without Bloom Filter With Bloom Filter

LMA Style Total frames Number of correct % correct Number of correct % correct

Dream State:
Free & Light 245 173 70.6% 188 76.7%
Dream State:

Bound & Strong 208 148 71.1% 134 64.4%
Mobile State:
Free & Quick 234 185 79.1% 196 83.7%
Mobile State:

Bound & Sustained 228 154 67.5% 174 76.3%
Rhythm State:

Strong & Sustained 298 193 64.7% 198 66.4%
Rhythm State:
Light & Quick 273 188 68.8% 193 70.7%

Samera is significant, it is scalable to larger workloads. From
these results we can see that using Bloom Filters not only
improves accuracy, but also reduces the memory overhead
significantly.

6. CONCLUSIONS
In this paper we have addressed the important problem

of extracting features from the 3D videos present in tele-
immersive systems. Feature extraction in 3D videos presents
several challenges including that of noise, handling depth in-
formation, scalability of processing to name a few. We have
presented Samera, a scalable and memory-efficient feature-
extraction algorithm to address these issues and challenges.
Our algorithm, though currently capable of only working
over short video segments, can be easily scaled to larger
workloads. We showed the quality, memory-efficiency, the
ability to handle noise as well as the scalability of Sam-
era in our performance analysis with some diverse work-
loads. From our results we show that using Bloom Filters
not only improves accuracy, but also reduces the memory
overhead significantly. The next logical step here, as we
mentioned earlier in our introduction, would be to perform
several data-mining tasks such as classification, categoriza-
tion and activity-mining.
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