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ABSTRACT

Creating an immersive experience in a collaborative virtual
environment, or CVE, involves more than just high defini-
tion graphics and expensive hardware. An immersive ex-
perience requires participant’s input to be translated in a
timely fashion to the local environment as well as to others
connected across the internet. A well designed prediction
algorithm will reduce the lag caused by virtual environment
hardware and communications networks. The purpose of
this experiment was to test the quality of an adaptive expo-
nential smoothing algorithm at predicting human arm move-
ment in a CVE. The results show that adaptive exponential
smoothing performs as well as or better than dead reckon-
ing at position estimation. When applied to a CVE adaptive
Holt’s exponential smoothing can help to reduce the overall
lag of the system without being as computationally complex
as many other techniques.

Categories and Subject Descriptors

H.5.1 [Information Systems]: Multimedia Information
Systems—artificial, augmented, and virtual realities; C.2.2
[Computer Systems Organization]: Network Protocols—
applications; I.5.4 [Computing Methodologies]: Appli-
cations—signal processing, waveform analysis

General Terms

Algorithms, Design, Human Factors

Keywords

Virtual reality, dead reckoning, exponential smoothing, dis-
tributed systems, state prediction, signal processing

1. INTRODUCTION
For a CVE to be truly immersive a user’s avatar must

respond to changes in state in a timely and accurate manner.
Any delay or jitter in conveying a user’s new state can cause
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a reduced sense of immersion and responsiveness [12, 13,
11, 4, 9]. In extreme cases this disconnected feeling can
even lead to participants becoming disoriented or sick [14].
To reduce the local delay high quality hardware components
can be used, but some degree of latency will always exist. In
addition, the communication lag from interconnecting CVEs
across the internet will cause a delay for remote users. No
matter what hardware or technology is used some amount
of delay is inevitable and must be dealt with in the design of
the virtual environment. One key technique used to mitigate
the effects of latency in a CVE is state prediction. Prediction
algorithms are used to predict the current state of an avatar,
either local or networked, given past states so the virtual
environment can respond without waiting for the current
state to be communicated to it. When combined with other
visual techniques prediction algorithms can greatly increase
the responsiveness of a CVE allowing for a more immersive
and enjoyable experience.

The local delay found in a CVE is typically small and
mainly caused by the hardware sensors and their communi-
cation back to the software. Additional delay is often added
to the system when low pass filtering techniques are used
to smooth out the noisy signals obtained from the sensors.
Since system designers have no control over the internals
of the hardware or their drivers it is up to prediction algo-
rithms in the software to mask the system’s delay. No tech-
nique has been adopted by industry as a standard so each
hardware vendor tends to develop their own techniques. In
the research literature particle filters, neural networks, and
various forms of kalman filters have been studied and found
to be adequate prediction techniques [16, 1, 7, 18, 19]. One
of the drawbacks with virtual environment research vividly
displayed on this topic is the inherent complexity of virtual
environments has caused no standard research method. Re-
searchers vary in the type of hardware utilized, the type of
movement studied, and even the complexity of the move-
ment studied. Such a diverse set of literature helps to give
a broad understanding but the results are not conclusive for
every virtual environment developed.

In contrast, dead reckoning, the prediction technique used
in internetworking virtual environments across the internet,
is well studied and fairly uniformly adopted in industry and
academia [15, 2, 3, 5]. Dead reckoning has its roots in large
scale military simulations, but was later adapted for use in
the online game industry where it has since become popu-
lar. Dead reckoning is a prediction technique that uses an
entities position, velocity, and potentially its acceleration
and jerk to calculate the entities future position. In essence
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dead reckoning is an extrapolation technique used to reduce
network delay and bandwidth. Precious bandwidth is saved
because an entity only needs to transmit new information
when its current position strays further than an error bound
away from its predicted location. Although dead reckoning
is well understood in online gaming its application to human
movement signals has not been studied extensively.

In short, many complicated prediction techniques have
been shown to work for local signal prediction, but dead
reckoning is preferred in networked environments where the
delay can be much larger. Dead reckoning is a relatively
simple technique that requires no special mathematical li-
braries or large SDKs. Another prediction technique that is
similar to dead reckoning in its simplicity and ease of im-
plementation is exponential smoothing [6, 10]. Exponential
smoothing is a technique that has many different variations
but in general it uses a sum of weighted past samples to
predict future samples. The term exponential comes from
the fact that the weight, or value applied to the past sample,
exponentially decreases the further in the past the sample is.
This gives recent samples, which are more likely to be close
in value to the predicted sample, a much higher weight than
older samples. Dead reckoning can be thought of as a case of
exponential smoothing that only uses a single previous sam-
ple instead of multiple samples. The use of multiple samples
makes the algorithm behave as a low pass filter smoothing
out high frequency components along with predicting the
future value.

The degree of filtering, or smoothing, is controlled by the
value of the smoothing parameter which also controls the
prediction error. When picking the smoothing parameter a
difficult tradeoff must be made between the amount of fil-
tering and the precision of the predicted value. An example
of a signal and its prediction by an exponential smoothing
predictor can be seen in Figure 1. In this case the predictor
has a low smoothing parameter, α = 0.4, causing the filter
to act more as a low pass filter than an accurate predictor.
The high frequency component of the original signal is no-
ticeably diminished in the predicted signal, but the accuracy
of the prediction is also decreased.

Figure 1: Exponential smoothing predictor with ex-

cessive filtering.

The application of exponential smoothing for state pre-

diction in virtual environments has been rather sparse. Al-
though exponential smoothing is a well known and highly
regarded technique it is mainly used in the management re-
search community. In the research paper by LaViola double
exponential smoothing, a form of exponential smoothing,
was compared to kalman filtering for state prediction in a
virtual environment [8]. The research concluded that double
exponential smoothing was an acceptable means of position
estimation in virtual environments, and double exponential
smoothing performed comparably to kalman filtering with
a much faster execution time. The main drawback stated
in the paper was the optimal estimation of the smoothing
parameter. The optimal smoothing parameter was found in
the experiment using a searching algorithm which can po-
tentially be computationally expensive and is dependent on
the searched data set. In addition once the optimal smooth-
ing parameter was found it was constant and did not adapt
to the signal. In Section 2 of this paper a form of exponen-
tial smoothing called Holt’s exponential smoothing is dis-
cussed along with an adaptive approach for calculating the
smoothing parameters. Section 3 discusses the virtual en-
vironment used along with the experiments performed to
collect human movement data. Finally Section 4 analyzes
exponential smoothing versus dead reckoning at predicting
the human movements captured.

2. PREDICTION ALGORITHMS
One of the key weaknesses in using double exponential

smoothing is that a fixed value must be chosen for the smooth-
ing parameter. Using a search algorithm to find the optimal
smoothing parameter can help to narrow down the parame-
ters to choose from, but an expert is still required for analy-
sis of the data. Often times small changes in the smoothing
parameter can have a large effect on the error of the pre-
dicted signal. In addition to the computational time spent
finding the optimal parameter, researchers will often need to
spend time manually analyzing the predicted signal to find
the truly optimal parameter. An alternative form of expo-
nential smoothing similar to double exponential smoothing
but requiring multiple smoothing parameters, that can po-
tentially be made adaptive, is Holt’s exponential smoothing.
Holt’s exponential smoothing uses a different smoothing pa-
rameter for each degree of differentiation used for predic-
tion. For example if only the previous position is used for
prediction, a variation commonly called simple exponential
smoothing and shown below in Equation 1, then only one
smoothing parameter needs to be defined (α). If both the
previous position and velocity are used for prediction then
two smoothing parameters need to be defined; one parame-
ter for the position prediction term and one for the velocity
prediction term. Tying each smoothing parameter to a dif-
ferent degree of differentiation allows fine tuning of the al-
gorithm and for some individuals this makes the algorithm
more intuitive to tweak.

ŝt+k = αst + (1 − α)ŝt−k (1)

Holt’s exponential smoothing is a simple technique that
can be described by in Equations 2-4. The equations de-
scribe the estimated position, p̂t+k, and the estimated ve-
locity, v̂t+k, for one axis of an entities state given the known
position, pt. For a virtual environment in 3D space each
of the three different axes would have its own separate set
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of equations. The k step ahead predicted position, ŝt+k,
is simply the addition of the estimated position and veloc-
ity terms. Since this form of exponential smoothing only
uses velocity in addition to position there is only one addi-
tional smoothing parameter compared to simple exponential
smoothing (α, γ). For each additional derivative term added
a new equation and smoothing parameter need to be added
to the set of equations. For example if the acceleration, ât,
was used in addition to the position and velocity the equa-
tions would change and one new equation and smoothing
parameter would need to be added (α, γ, φ). This can be
seen in Equations 5-8.

p̂t+k = αpt + (1 − α)(p̂t−k + v̂t−k) (2)

v̂t+k = γ(p̂t − p̂t−k) + (1 − γ)v̂t−k (3)

ŝt+k = p̂t+k + v̂t+k (4)

Even if Holt’s exponential smoothing is used instead of
double exponential smoothing the optimal smoothing pa-
rameters must be found. Since movement patterns will dif-
fer according to how the virtual environment is used, find-
ing parameters that will be optimal for all movements is
unlikely. For example, the optimal parameters found for a
precise hand movement will unlikely be the same as those
found for a fast twitch hand movement. To remedy these
problems the best solution is to make the smoothing pa-
rameters adaptive. By making the smoothing parameters
adaptive the data will dictate changes to the smoothing pa-
rameter so that they change with every new sample. This
was accomplished using the same Holt’s exponential smooth-
ing equations defined in equations 2-4 but by having the two
smoothing parameters change with time.

p̂t+k = αpt + (1 − α)(p̂t−k + v̂t−k + ât−k) (5)

v̂t+k = γ(p̂t − p̂t−k) + (1 − γ)(v̂t−k + ât−k) (6)

ât+k = φ(v̂t − v̂t−k) + (1 − φ)ât−k (7)

ŝt+k = p̂t+k + v̂t+k + ât+k (8)

The key difference in adaptive Holt’s exponential smooth-
ing is how the smoothing parameters are recalculated at ev-
ery new sample. The equations for the recalculation of the
position smoothing parameter can be seen in Equations 9-
12. First the prediction error, et, must be calculated as the
difference between the real position, pt, and the estimated
position, p̂t. From the error term two new terms are calcu-
lated that are used to calculate the new smoothing param-
eter. The numerator for the new smoothing parameter, Et,
is calculated from current and past error terms. Like the nu-
merator the denominator, Dt, is calculated from the current
and past errors terms except the absolute value of the error
terms is taken. The new smoothing parameter is simply the
absolute value of the ratio of the two smoothed error terms.
The only value that must be specified is β, the rate of change

of the smoothing parameter. Although this seems to sub-
stitute one parameter for another, the effect of the rate of
change parameter is much less volatile than the smoothing
parameter. For each level of differentiation the smoothing
parameter is calculated in this fashion with the only differ-
ence being the initial error term. If velocity, acceleration,
or jerk were used then a new set of calculations would be
needed for each smoothing parameter. In addition to be-
ing individually calculated for each differentiation term, the
new smoothing parameters are also calculated individually
for each axis making the algorithm very adaptable.

et = pt − p̂t (9)

Et = βet + (1 − β)Et−k (10)

Dt = β |et| + (1 − β)Dt−k (11)

αt+k =

∣

∣

∣

∣

Et

Dt

∣

∣

∣

∣

(12)

3. TESTING THE ALGORITHMS
In order to compare the different prediction algorithms

data needed to be collected from a CVE. An existing CVE
designed for close multiuser interaction was chosen as the
test bed. The CVE was designed for individuals to collab-
orate around a central virtual table top mainly using their
hands and arms for interaction. For dexterous hand manip-
ulations 5DT data gloves were used to sense a user’s fingers
extension and flexion and relay this information back the
CVE. For larger arm and body movements the CVE used
Nest of Birds magnetic trackers. Two magnetic tracking sen-
sors were attached to the back of the 5DT data gloves and
another one was placed on a pouch the user carried around
their midsection. This allowed the sensors to record the
user’s hand and central body location relatively accurately.
Two large displays were used to project the 3D virtual en-
vironment. Although HMDs would seem to produce a more
immersive experience, they were not used in order to reduce
the overall all delay the user experienced.

Figure 2: User donning CVE hardware sensors.

The software component of the virtual environment con-
sisted of a typical 3D virtual space including virtual objects
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that users could interact with. Although the virtual envi-
ronment was designed to allow all different types of objects
to be used, the research focused on the use of small intercon-
necting blocks resembling legos. The choice of blocks allowed
the users to build many different types of structures for in-
teraction, and the blocks were general enough to be used for
many different types of tests. In addition, the use of blocks
allowed the users to perform different types of movements
from large reaching movements, to fast twitch movements,
to very small manipulations. The only drawback to using
a multipurpose object such as a block was that object spe-
cific movements were excluded from the tests. For example,
movement patterns exhibited while using a virtual hammer
to strike a nail are hard to replicate with virtual blocks.
Overall it was determined that the general nature of the
virtual blocks was a better choice for studying algorithms
that can potentially be applied to many different types of
virtual environments.

Figure 3: Virtual environment software including

central table top and virtual blocks.

While collecting the data it was important that the sub-
jects of the experiment performed a wide variety of different
arm movements typically used in virtual environments so
that the algorithms could be thoroughly tested. Since the
vast majority of tasks done in a CVE involve reaching for
objects and manipulating them, the focus of the experiment
was around a simple task that involved both reaching and
manipulative movements for its completion. The experiment
started with the subject placing their right hand on a target
in the center of the virtual table top. Once the subject’s
hand was placed on the target a random number of blocks
were set at random locations on the table top. The subject
was instructed to pick three blocks and to stack them on
top of each other on the target where their hand started the
experiment. Once the last block was placed on the stack the
experiment log was saved and the subject was instructed to
repeat the experiment. The experiment was conducted with
three test subjects who repeated the task more than 100
times over the course of three days of testing.

In addition to the main stacking task previously described
the subjects were also instructed to perform a variety of
other tasks during the testing period. The alternative tasks
were not meant to replicate the movements found in the
stacking task, but were instead used to test more extreme
movements than those typically found in a virtual environ-
ment. By testing movements rarely seen in a CVE and com-

paring the results to those of the stacking task a better in-
dication of the generality of the predictive algorithms could
be found. Various different movements were recorded by the
three test subjects, but each of the different movements was
only recorded from two to six times.

Two types of movements that illustrate the more extreme
well are very quick movements and very intricate complex
movements. To collect a twitch type of movement, more
typical of movement found in a gaming system such as the
wii, a task was designed where the subject was asked to start
with their hand on a target in the center of the table as with
the stacking task. This time the subject was instructed to
attempt to catch or hit a falling virtual block, that fell from
a random location, before it hit the table. Once the subject
placed their hand on the target the experiment started and
the block was dropped. Since the block fell quickly, the sub-
ject had to perform a quick twitch movement to catch the
block. In addition, the random placement of the block’s ini-
tial position made the task more difficult so that the subject
could not anticipate the blocks location ahead of time.

The second type of movement captured focused on com-
plicated small manipulations. The subject was instructed to
tie their own shoes while donning the virtual reality equip-
ment. Instead of performing this movement in the virtual
world, which would currently be impossible with most vir-
tual environments, the subject performed the task in the
real world with the virtual environment equipment only used
for logging purposes. Even though tying ones shoes seems
like a simple task an actual analysis of all of the different
movements performed during the task reveals its complex-
ity. Once the subject tied their shoes the information was
logged and the task was repeated. Although the movements
necessary to tie one’s shoes are not currently possible in a
virtual environment the intricate movements will someday
be possible and represent movement just beyond the bounds
of current technology.

4. RESULTS
Once all of the data was collected it was tested against

Holt’s exponential smoothing, adaptive Holt’s exponential
smoothing, and dead reckoning to judge the effectiveness of
the different prediction algorithms. Before Holt’s exponen-
tial smoothing could be tested its optimal smoothing param-
eters needed to be found. First Holt’s exponential smoothing
was tested against all of the data with different prediction
intervals and different smoothing parameters to obtain an es-
timate of the best smoothing parameters for each prediction
interval. Each of the original signals was judged against its
predicted signal using Euclidean distance as the error metric.
After a rough estimate was found several predicted signals
were plotted for various prediction intervals and smoothing
parameters in order to better visualize the changes differ-
ent smoothing parameters made. Both the rough estimate
and an analysis of individual predicted signals were used to
find the optimal parameters. Finally the mean distance er-
ror of the stacking data was found and plotted for all three
prediction algorithms (Figure 4).

The algorithms were tested for their prediction capabili-
ties under 100 ms which is typically where they would be uti-
lized for both local and network prediction. Figure 4 shows
that both Holt’s exponential smoothing, HES, and adaptive
Holt’s exponential smoothing, AHES, can predict as well as
dead reckoning, DR, or better. Although Holt’s exponen-
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tial smoothing outperforms its adaptive version in predic-
tion under 40 ms it must be remembered that this is only
the case when optimal parameters are used for Holt’s ex-
ponential smoothing. When the prediction interval is large,
200 ms or greater, dead reckoning outperforms the other two
algorithms. The likely cause of the reduction in accuracy by
exponential smoothing is the fact that large prediction inter-
vals use samples that are further in the past for prediction.
The further in the past the samples used are the greater
the likelihood of the samples being uncorrelated with the
predicted sample and therefore unreliable for prediction.

Figure 4: Prediction error for the three state pre-

diction algorithms

Even though all of the algorithms can predict further
ahead than 100 ms, that level of prediction is seldom needed
for most situations. In case the algorithms need to predict
even further ahead the data was tested with prediction inter-
vals up to 500 ms and showed a steady increase in the error.
How this effects the original signal can be seen in Figure 5.
The figure shows a portion of the signal from the original
stacking task and the adaptive Holt’s exponential smooth-
ing algorithms prediction of the signal 200 ms in the future.
Clearly shown in the predicted signal is a small amount of
high frequency noise and some distortion of the signals en-
velope, but even at 200 ms the prediction algorithms works
fairly well. The most noticeable errors occur when the orig-
inal signal abruptly changes its direction such as at 17,700
and 19,800 ms. When the original signal is constant or has a
roughly linear slope the prediction algorithm works well ex-
cept for the addition of the high frequency noise. The high
quality of the algorithm at predicting a linear slope can be
attributed to the fact that velocity, or slope, is an integral
part of the algorithm. Given this it can be theorized that
also including acceleration into the algorithm would increase
the prediction accuracy even more. Unfortunately this was
not found to be the case as the added acceleration terms
tended to add more high frequency noise to the predicted
signal.

Comparing the quality of prediction for the different move-
ments using adaptive Holt’s exponential smoothing did il-
lustrate some interesting results. The stacking tasks had
many natural long reaching movements followed by short
manipulative movements. On the other hand the catching
task had one quick twitch movement where the subject’s

Figure 5: Adaptive Holt’s exponential smoothing

predicting 200 ms ahead.

hand shot out trying to catch a block. Although these tasks
seem quite different the average distance error was similar
for both. This result tends to reinforce the concept that
reaching movements tend to have similar Gaussian speed
envelopes with the peak being the defining difference [17].
Although the peak speed of the movements were different it
is likely the low frequency nature of the two signals makes
them easy to predict with exponential smoothing.

The same result was not true for the shoe tying task. In
this task the average error was much higher than the stack-
ing task. As expected the average error increased with the
further in the future the algorithm predicted, but Figure 6
clearly shows a much steeper curve for the shoe tying move-
ment. Similar results occurred for dead reckoning illustrat-
ing both algorithms difficulty at predicting sharp intricate
movements. The likely cause for the greatly increased error
is the higher frequency of the signals that make prediction
further ahead more difficult. Only very short term predic-
tion can be done because of the lack of correlation between
samples in longer intervals. The threshold for quality predic-
tion is therefore highly dependent on the type of movement
exhibited as much as the algorithm used for prediction. The
results suggest that adaptive Holt’s exponential smoothing
and dead reckoning are good algorithms for the majority
of movements, but very intricate movements may require a
different prediction algorithm.

5. CONCLUSIONS
A CVE like any virtual environment requires state pre-

diction algorithms to combat the delays inherent in the sys-
tem. Dead reckoning and other complex techniques have
been proposed and implemented to accomplish this with var-
ious degrees of success. One simple technique that has been
experimented with and shown to work well is exponential
smoothing. The only problem with exponential smoothing
is that the smoothing parameters which dictate the precision
of the prediction are static. By using an adaptive exponen-
tial smoothing algorithm state prediction was accomplished
without the need for a static smoothing parameter.

Adaptive exponential smoothing was shown to be able to
predict as well as dead reckoning and even somewhat better
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Figure 6: Adaptive Holt’s exponential smoothing

quality of prediction for different movements.

for some prediction intervals. In addition adaptive exponen-
tial smoothing was shown to be able to predict typical CVE
signals up to 200 ms in the future relatively accurately. Al-
though adaptive exponential smoothing was able to predict
more extreme twitch movements both dead reckoning and
adaptive exponential smoothing failed to predict intricate
movements very far into the future. For short prediction in-
tervals adaptive exponential smoothing can predict intricate
movements reasonably well, but longer prediction intervals
have too little correlation between samples. Further research
needs to be done to find better prediction algorithms that
will work on intricate movements as was as normal move-
ments in a CVE.
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