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ABSTRACT
Multi-camera systems have been evolving as next genera-
tion video cameras with applications including 3D recon-
struction, image-based rendering, free viewpoint, and 3D
TV. Quantifying visual quality of multi-camera systems is
fundamental in developing these applications. In this pa-
per, image distortion types in multi-camera systems are in-
vestigated where distortion is classified as either geometric

or photometric. Examples and measurements are presented
showing that single-view objective image quality measures
are not adequate for perceptual assessment of multi-camera
images. A new algorithm that characterizes the type of dis-
tortion in a given image captured by a multi-camera sys-
tem is proposed and evaluated. The new algorithm is based
on the edge intensity summation (EIS). A new EIS -based
structural similarity (EISSM) quality measure is proposed.
EISSM is shown to capture the perceptual fidelity that is
not fully grasped by PSNR and SSIM.
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1. INTRODUCTION
With the rapid improvement in electronic and computing
technologies and dropping costs of cameras, multi-camera
systems have been evolving as next generation video cam-
eras. The goal of these systems is to expand users ex-
perience beyond what can be offered by a single camera.
The multi-view video includes video sequences captured by
several cameras simultaneously but at different locations
or from different angles [1]. Applications of multi-camera
systems include but are not limited to panoramic videos,
free-viewpoint video, 3D TV, virtual view synthesis, ob-
ject tracking, and stereoscopic video [1] [2]. In panoramic
videos the image plane is expanded to cover larger areas
and other kinds of planes such as cylindrical and spherical.
Free-viewpoint video allows the user to navigate through the
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image by choosing his/her own viewpoint. For example, in
3DTV a scene is captured using a multiple camera. In this
application, 3D scene reconstruction gives the user the im-
pression of a 3D view. Similarly, stereoscopic video produces
a 3D impression by providing two views, one for each eye.
These applications and others can be useful in many fields
including surveillance, sightseeing, advertisement, distance
learning, medical training, and entertainment [1] [3].

Challenges in multi-camera applications are numerous where
the processing chain may include image capturing, camera
calibration, scene presentation, coding, transmission, ren-
dering, and display. Although each of these processes is a
challenge by itself, all of them require some type of image
quality measurement to provide a feedback to the designer
or the user [2]. For example, if video compression algorithms
are designed for such video sequences, a quality measure is
needed to compare these algorithms. Similarly, an image
quality measure may prove valuable for accurate calibration
of the multi-camera systems for both camera position and
color properties.

Unlike images captured by single cameras where the dis-
tortion can be homogeneous across the image plane, images
generated by multiple cameras may not only differ in content
but also in quality of the captured images. Moreover, the
quality of the rendered views is influenced by the camera
configuration, the number of cameras, and the calibration
process [2]. A special feature of images captured by multi-
camera systems is that visual distortion may result from
geometric corrections or calibrations. In this paper, distor-
tion types in multi-camera systems are characterized and
compared. Examples and measurement are presented show-
ing that single-view objective image quality measures are
not adequate for perceptual assessment of images produced
by multi-camera systems. Moreover, a new algorithm that
characterizes the type of distortion in a given image cap-
tured by a multi-camera system is proposed and evaluated.
To achieve this goal,an edge intensity summation (EIS) is
defined and a new EIS-based structural similarity (EISSM)
quality measure is proposed. EISSM is shown to capture the
perceptual fidelity that is not fully grasped by PSNR and
SSIM.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of prior work on image quality assessment
for single and multi-camera systems. Distortion types in
multi-camera systems are classified in Section 3 . The per-
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formance of some contemporary objective quality measures
(PSNR and SSIM) is evaluated in section 4. Then we pro-
pose a technique to detect distortions of multi-camera using
the edge intensity summation (EIS) in section 5. In section
6 we propose a EIS -based structural similarity to improve
SSIM performance over multi-camera distortion types. Fi-
nally, we conclude our work in Section 7.

2. PRIOR ART
Degradation of visual quality of images may occur during ac-
quisition, processing, compression, and transmission. Video
and image processing algorithms are evaluated using objec-
tive metrics or through subjective testing in a controlled
environment. The best method of quantifying perceptual
image quality is subjective evaluation. Subjective quality
assessment is expensive, tedious and not applicable in en-
vironments, which require real-time processing. Objective
image quality on the other hand automatically predict the
perceived image quality and are more desirable [4].

Quantifying the visual fidelity of a distorted image has pri-
marily been based either on the properties of the images or
on specific information the human visual system (HVS) at-
tempts to extract when viewing an image. A well-known
example of the former is the mean-squared error (MSE),
which is known as the peak signal-to-noise ratio (PSNR).
PSNR is solely based on the differences in intensity. It is ev-
ident that PSNR is not the most accurate metric for image
quality [4]. On the other hand, HVS-based metrics employ a
frequency-based decomposition, which take into account the
detectable visual thresholds of distortions[5]. Other metrics
quantify visual fidelity based on the structural content such
as object boundaries and regions of high entropy. Some of
the HVS-based metrics include Sarnoff just noticeable dif-
ferences (JND) [6] , Watson’s digital video quality (DVQ)[5]
and Wang et al’s Structural SIMilarity (SSIM)[7]. SSIM
index computes the mean, variance and covariance of small
blocks inside an image. SSIM assumes that the human visual
system is highly adapted to extract structural information
from the viewing field [7]. In [8] an edge based-structural
similarity was proposed to improve performance of SSIM
over highly blurred images.

User experience and image quality are dependent on hu-
man perception in different environmental conditions and
multimedia device capabilities. One such environment is
multi-camera system. In stereoscopic 3D video systems hu-
mans perceive good quality 3D video if one of the eyes is
experiencing a high quality video [9] . The authors in [10]
assumed that PSNR of the second view is less important
for 3D visual experience and proposed a new quantitative
measure for stereo video quality as weighted combination
of two PSNR values and a jerkiness measure. In [11] the
authors addressed the the need to decide which camera or
subset of available cameras to use in a given instant of time
in surveillance applications. They introduced new measure
named Quality-Of-View (QOV) that takes into account view
angle and distance from subjects to evaluate each camera
view performance. The authors in [12] proposed a objec-
tive quality measure for 3D free-view point video quality.
The measure attempts to quantify visual artefacts arising
from inaccurate sampling of appearance in capturing sys-
tem or through an inexact 3D scene representation. The

quality measure adopts Hausdorff distance to quantify the
mis-registration between two images.

The fore mentioned quality metrics of multi-camera camera
systems are application specific and tend to measure only
one related visual aspect of multi-camera image visual qual-
ity.Therefore, a quality measure is required that can quan-
tify all multi-camera image distortion types. This measure
has to account for perceptual fidelity in such images beside
taking into account how they were acquired and displayed.

Photometric and geometric distortions are common in multi-
camera systems. Photometric distortions are the variations
in brightness levels and color gamut across the entire dis-
played image. The source of this variation can be the cam-
era system or the post processing applications. Geometric
distortions are the misalignments and discontinuities due to
geometric errors. The source of these errors can be the cam-
era system internal properties, positioning or post processing
applications. We will discuss these distortions in detail next.

3. DISTORTION TYPES IN MULTI-CAMERA

SYSTEMS
In this paper, the distortion types in multi-camera systems
are classified into photometric or geometric distortion. Each
of these types have a different impact on the overall image
quality. The overall image in the paper is defined as the full
mosaiced image or a set of images projected independently.
As a first step toward deriving an effective image quality
measure for multi-camera systems, one has to characterize
each of these distortion types and better understand their
nature and impact.

3.1 Photometric Distortion
Photometric distortion in a single camera is defined as the
degradations in perceptual features that are known to at-
tract visual attention such as noise, blur, and blocking arti-
facts. Photometric distortion can be intrinsic to the acqui-
sition device or extrinsic due to applications such as lossy
compression, transmission over error prone channels, or im-
age enhancements. Quantifying the perceptual quality of
these distortion types is essential to improvements or de-
velopments of new video or image applications and hence
have motivated the development of contemporary image and
video quality metrics.

In multi-camera systems individual cameras looking at dif-
ferent parts of the scene may experience different types and
levels of distortion. These variations may be intrinsic due to
the differences among individual cameras or extrinsic due to
different level of coding or post-processing that each camera-
video stream may experience. Human perception is sensitive
to abrupt local changes in images. This type of distortion
will be referred to as the variational photometric distortion.
This distortion is especially obvious around overlapping and
content rich areas of the captured images.

In order to explain the effect of photometric distortion on
an image captured by a multi-camera system, simulation is
used. A single digital camera was used to capture high-
resolution images. The captured image was split into mul-
tiple sub-images. Targeted distortion was then applied on
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Figure 1: (a) Top: original images before compositing. The middle image is JPEG compressed with Q =5.
Bottom: the resulting image after compositing. The yellow markers show the borders of the overlapping
areas. (b) Close up views of the regions in red boxes in the images in (a).

(a) Parallel (b) Convergent (c) Divergent

Figure 2: Examples of spatial camera configuration
for multi-camera systems.

each sub-image independently. The effect of the different
types of distortion on a multi-camera application are demon-
strated by an image mosaic algorithm that applies a multi-
resolution spline [13]. An example of photometric distor-
tion in multi-camera applications is shown in figure 1. Fig-
ure 1(a) demonstrates a possible variational photometric
distortion in a three-camera with different levels of JPEG
distortions. The original image was split into three sub-
images: left, middle, and right. The overlap regions are as
shown in the figure between yellow markers. The left and
right image are kept unchanged. The middle is distorted
by applying JPEG compression with Q = 5. The three im-
ages (left, JPEG-middle, and right) were mosaiced together
using the multi-resolution spline algorithm. The resulting
composited image is shown at the bottom Figure 1(a). The
images shown in Figure 1(b) are close-ups that show that the
variation in the image quality is reflected into perceptually
noticeable abrupt change in the composited image. Abrupt
changes in image quality are perceptually annoying and can
affect negatively our judgement of the overall quality of the
image especially at areas with important details such as the
human face in Figure 1(b)at the bottom.

3.2 Geometric Distortion
In multi-camera systems a scene is captured by N cameras
where each individual camera’s position and orientation can
vary depending on the application. In Figure 2, some of the
possible camera configurations are shown. In multi-camera

applications and reconstructions, the knowledge of the cam-
era calibration and scene geometry is important. However,
changes in a camera position or orientation as well as errors
in estimating the camera parameters or the scene geometry
can lead to geometric distortions. Geometric distortion in
multi-camera system is defined as structural disparity such
as discontinuity and misalignment in the observed image due
to geometric errors. Geometric errors can occur during the
mapping, which may include rotation and translation. This
type of distortion is going to be referred to as planar dis-

tortion. Geometric distortion can also occur in the mapping
from the 3D world to the 2D plane of the image. This type
of distortion is going to be referred to as perspective distor-

tion. Figure 3 shows examples that illustrate the types of
geometric errors as well as the original image. The image in
Figure 3(b) is subject to perspective distortion which can be
seen at the white buildings in the back. The buildings look
smaller and more to the right side than the original image
in 3(a). The image in Figure 3(c) is rotated clockwise by 10
degrees. In multi-camera systems such errors can also occur
when mapping a single camera plane to another reference
camera in the system.

To simulate the geometric distortions in multi-camera sys-
tem geometric errors were applied to the generated views
and then composited into a single image mosaic. Figure 4
is a close-up view that demonstrates perspective and pla-
nar distortions in a three-camera system. The perspec-
tive and planar distortions in Figure 4 are visible on the
right eye in the top image and the thumb in the bottom
image. We notice the disparity due to perspective distor-
tions is represented by distortion in the face (top) and a
shrinkage on the thumb (bottom). On the other hand pla-
nar distortion results in an misalignment seen all over the
face and the hand area. Hence, geometric distortions in
single camera translates to misalignment and discontinu-
ities in the multi-camera image. Unlike photometric dis-
tortions where distortions translate as abrupt changes occur
across the whole image, geometric distortions are percep-
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(a) (b) (c)

Figure 3: Geometric distortions in single cameras: (a) No distortion (b) Perspective (c) Planar(rotation)

no distortion Perspective Planar

Figure 4: Geometric distortions in a multi-camera
system.

tually attracting around connecting edges and overlapping
areas. Next we will study the performance of two objective
single view quality metrics over multi-camera images.

4. PSNR AND SSIM PERFORMANCE WITH

MULTI-CAMERA IMAGES
In the previous section we investigated the types and prop-
erties of distortions in multi-camera systems. In this section
we will investigate if the two objective PSNR and SSIM can
quantify the perceptual quality of these distortions. Peak
signal-to noise ratio (PSNR) is the most widely used ob-
jective metric due to its low complexity and clear physical
meaning. It quantify the image quality by measuring the
error in intensity between two different images. SSIM pro-
posed by Wang et al [7] and has attracted a lot of attention
in literature. SSIM is based on the assumption that HVS
is highly adapted to extract structural information from the
view. SSIM is defined as:

SSIM(i, j) = f(l(i, j), c(i, j), s(i, j)) (1)
where l(i, j) is the luminance comparison, c(i, j) is the con-
trast comparison , s(i, j) is the structure comparison, i is
the reference image and j is a distorted image.

Looking into the results shown in Figure 5, image (b) has
lower SSIM and PSNR than images (c) and (d). However,
the visual quality of image (b) is very similar to original
image (a), unlike images (c) and (d) where the perceptual
quality is obviously different than (a). Also we notice the in
both images (c) and (d) the distortion level is not uniform
where the left and right side of the image experience two
different levels of distortion. Similarity, we applied these
measures to several images in our database. In all these
experiments we concluded that both SSIM and PSNR do
not adequately capture the perceptual fidelity of the multi-
camera system’s image. In next section we will present a
new technique that allows us to detect the distortion type
in a multi-camera image.

5. DETECTION OF DISTORTION TYPES
5.1 EIS - Edge Intensity Summation
In photometric distortion a captured image is subject to in-
tensity errors at various pixel locations. These errors can
result in erosion of image details. A fair estimate of these
erosions are the spatial edges. In [14] the edge information
is described by the locations of variations of intensity values
and the related intensity values at these locations. When
an image is blurred the locations of the intensity variations
are preserved however the intensity values of these varia-
tions are reduced. Also photometric distortions such as noise
and quantization introduce new intensity variations without
changing the location of the original edge information. In
contrary to photometric distortions, in geometric distortions
the intensity values do not change only the pixel locations
do. As a result, the location of the spatial edges are changed
but the relative intensity variations in the image are pre-
served. Considering this observation, we propose using the
edge intensity summation to predict the type distortion in a
camera system. Edge information of an image can be derived
by applying edge detection filters on the luminance compo-
nent of the image. The edge intensity summation (EIS) of
an M × N image is defined as:

E = edge(I) (2)

EIS =

M∑

i=1

N∑

j=1

E(i, j) (3)

where, E is an edge intensity binary image of the same size
as I with 1’s where the function finds edges in I and 0’s

Digital Object Identifier: 10.4108/ICST.IMMERSCOM2009.6156 
http://dx.doi.org/10.4108/ICST.IMMERSCOM2009.6156 



(a) PSNR = ∞ dB, SSIM = 1 (b) PSNR = 16.1395 dB, SSIM = 0.4587

(c) PSNR = 28.18 dB, SSIM = 0.8500 (d) PSNR = 22.5442 dB, SSIM = 0.6782.

Figure 5: Reconstructed Images:(a) No distortion (b) Perspective distortion (c) JPEG distortions (d) Blurred.

elsewhere. The edge intensities are computed on 32×32 non-
overlapping blocks. In this paper the Canny edge detection
method was used [15]. Canny’s method is less likely than
the others to be fooled by noise, and more likely to detect
true weak edges. Hence, it is a proper method to compute
the edge intensity. The results of edge intensity summation
for seven different images are shown in Table 1. For each
image eight different instances of distortion were applied.
The EIS for the original image, and the distorted images
were calculated. The variations in the distorted image EIS

relative to the original image were also computed.

5.2 Using EIS to Identify Source of Distortion
At first look into results, we notice that for geometric distor-
tions there is a very slight loss in the |EIS| value (3% to 7%)
and these results reflects the amount of information that
might be lost around the borders of the image in planar and
perspective distortions. On the other hand we notice that
the |EIS| value decreases in the order of (24% to 50%) in a
blurred image and increases in the order of (14% to 209%)
for JPEG distortions.

By setting a threshold of 10% to the changes in EIS values
we can predict the source of distortion with high level of
accuracy. In this we assumed that there is only one type
of distortion at each instant. However, when an image is
experiencing more than on type of distortion the changes in
EIS reflect the most dominant type distortion. For instance
when an image experiences a geometric distortion and blur
at the same time the EIS values can be the blur. The choice
of the block size was motivated by the processing speed.
Table 2 shows the variations in EIS value for an 8× 8 block
size. The results are similar to 32 × 32 block size case but

Table 3: EISSM values for examples of Figure 5.
Subjective evaluation of these images show that (b)
has the best quality and (d) the worst.

Image PSNR SSIM 4EIS EISSM
(b) 16.14 0.4587 0.0199 0.8118
(c) 28.18 0.8500 0.2983 0.6721
(d) 22.54 0.6782 0.3853 0.4957

with different range values. Next, we will use EIS to derive
an EIS -based structural similarity for multi-camera system.

6. EIS-BASED STRUCTURAL SIMILARITY
In this paper we will use the EIS information to improve
SSIM performance for geometric type distortions. SSIM is
defined as:

SSIM(i, j) = [l(i, j)]α.[c(i, j)]β .[s(i, j))]γ (4)
where α > 0, β > 0 and γ > 0 are parameters that de-
pends on the relative importance of the three components.
To obtain the EIS-based structural similarity (EISSM ) the
structural comparison component is replaced by EIS com-
parison component. We define (EISSM ) as:

EISSM(x, y) = (l(x, y))α
.(c(x, y))β

.(1 −4EIS)γ (5)

4EIS = |
EIS(I) − EIS(J)

EIS(I)
| (6)

where, I is the undistorted image and J is the distorted
version of the image. The EISSM values of the example of
Figure 5 are shown in Table 3. The EISSM values in the
table better reflect the order perceptual quality of the dis-
torted images with more accurate estimate of the perceptual
distortions due to geometric distortions.
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Table 1: The percentage change in EIS values for various distortion sources with 32 × 32 blocks.
Image Undistorted Geometric Distortion Photometric Distortion

EIS Planar Perspective Blur JPEG
2 degrees 5 degrees Outward Inward r=6, σ=3 r=4, σ=2 Q=5 Q=10

Emily 369724 -4 -6 -5 -3 -24 -19 109 47
Cabinet 188774 -6 -6 -5 -5 -46 -36 140 43
Group 177156 -4 -4 -4 -3 -40 -30 63 14
F18 89479 -7 -7 -5 -5 -51 -41 205 123

Waterfront 102468 -4 -5 -3 -4 -44 -32 96 40
CNN 204093 -5 -5 -4 -7 -41 -34 193 130
CNN2 208509 -6 -6 -4 -5 -42 -34 209 135

Table 2: The percentage change in EIS values for various distortion sources with 8 × 8 blocks.
Image Undistorted Geometric Distortion Photometric Distortion

EIS Planar Perspective Blur JPEG
2 degrees 5 degrees Outward Inward r=6, σ=3 r=4, σ=2 Q=5 Q=10

Emily 399674 -4 -5 -4 -5 -8 -9 221 174
Cabinet 190059 -2 -1 -1 -1 -5 -12 289 196
Group 176128 -3 -2 -3 -3 -12 -11 267 191
F18 78457 0 0 -1 -1 -14 -13 316 297

Waterfront 108237 -6 -6 -6 -6 -13 -14 249 204
CNN 180636 -1 -2 -1 -1 -14 -16 310 285
CNN2 183261 -2 -2 -2 -2 -16 -18 311 297

7. CONCLUSION
In this paper we characterized the distortion types in multi-
camera systems and classified them into geometric or pho-
tometric. Then we show that each distortion type affects
the edge information. We proposed using the edge intensity
summation (EIS) to detect the type of distortion. Then,
we proposed EIS-based structural similarity (EISSM) to im-
prove the performance of SSIM to quantify the geometric
and photometric distortions. The ongoing investigation aims
at using the conclusion from this paper to develop a robust
quality measure for multi-camera images.
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