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ABSTRACT
For the M/G/1 model, we look into a preemptive prior-
ity scheme in which the priority level is decided by a lot-
tery. Such a scheme has no effect on the mean waiting
time in the non-preemptive case (in comparison with the
First Come First Served (FCFS) regime, for example). This
is not the case when priority comes with preemption. We
derived the resulting mean waiting time (which is invari-
ant with respect to the lottery performed) and show that
it lies between the corresponding means under the FCFS
and the Last Come First Served with Preemption Resume
(LCFS-PR) (or equivalently, the Egalitarian Processor Shar-
ing (EPS)) schemes. We also derive an expression for the
Laplace-Stieltjes transform for the time in the system in this
model. Finally, we show how this priority scheme may lead
to an improvement in the utilization of the server when cus-
tomer decide whether or not to join.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Queueing theory, Stochas-
tic Processes
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priority queues,preemption,performance evaluation

1. INTRODUCTION
The M/G/1 queueing model is one of the most researched
model in operations research and in the performance eval-
uation area of computer sciences. In this model customers
arrive to a single server queue with accordance to a Pois-
son process with rate denoted by λ per unit of time. Ser-
vice times are independent and identically distributed with
cumulative distribution function G. Denote by G∗(s) the
Laplace-Stieltjes transform (LST) of the service time, namely
G∗(s) = E(e−sX) where X ≥ 0 is a random variable repre-
senting a single service time. This distribution is not limited
to belong to any specific family of distributions (such as the

exponential family). Denote by x and x2 the first and sec-
ond moments of service times, respectively. We denote λx
by ρ and assume for stability that ρ < 1. It is well-known
that ρ is the server utilization level, namely the proportion
of time where the server is busy.

There are various possible service regimes. The most known
one is First Come First Served (FCFS). Under this regime
the mean waiting time in the system (queueing plus service),
denoted by E(WFCFS), equals

E(WFCFS) =
λx2

2(1− ρ)
+ x. (1)

This is the well-known Khintchine-Pollaczek formula, which
is apparently the most important queueing result. See, e.g.,
[6], p.60. It is well-known (and easily argued by Little’s rule)
that this value for the mean waiting time does not vary with
the service regime as long as preemption (i.e., interrupting
service during its execution) is not allowed and as long as
non-anticipation (i.e., order of service is not based on prior
knowledge of the actual service times) is assumed.

Two other well-known service regimes are that of Last Come
First Served with Preemption Resume (LCFS-PR) and Egal-
itarian Processor Sharing (EPS). Under the former regime
last to arrive have preemptive priority over those who have
arrived earlier. Customers might be preempted while in ser-
vice and when they return to service, it is resumed from the
point where is was interrupted last. Under the EPS regime,
the server splits its service capacity evenly among all those
who are present in the system at any given time instant.
This means that if n customers are present, they all receive
a service of length Δt/n during a period of length Δt (as-
suming Δt is short enough and no change in n occurs). It
is well known that under these two schemes the mean time
in the system for a customer whose service time equals x, is
x/(1 − ρ). See, e.g., [6], p.63. In particular, the mean time
in the system equals

x/(1− ρ). (2)

Since we are concern in this article only with mean values,
we next refer only to the LCFS-PR regime but whatever we
derive is applicable to the EPS regime as well. In particu-
lar, we denote by E(WLCFS−PR) the common mean waiting
time.

Which of the two regimes, FCFS or LCFS-PR, is better?



From the question regarding the mean waiting time the an-
swer is clear: Comparing (1) with (2), FCFS comes with a

lower mean time in the system, namely λx2

2(1−ρ)
+ x < x

1−ρ
,

if and only if CoV(X) < 1, where CoV(X) =
√

x2 − x2/x.
The opposite is the case where CoV(X) > 1. They are equal
when CoV(X) = 1, which is for example the case where ser-
vice times follow exponential distribution.1

Nevertheless, mean time in the system is not necessarily
the single criterion to look at. FCFS looks fair and the
norm in many cases. It also does not discriminate between
customers based on their service requirement (which can
be looked at a plus or a minus depending on the eye of the
beholder). In particular, long jobs may need to hang around
for a long time. Thus, FCFS can be the preferred discipline
even when CoV(X) > 1, i.e., when it comes with a higher
mean waiting time. On the other hand, LCFS-PR and EPS
have the theoretical advantage that the mean waiting time
exists even in the case where the second moment of service
does not exists (or, less formally, when x2 = ∞).

We next suggest a queueing regime which can be looked
as the ‘middle of the road’: The resulting mean time in
the system lies between the corresponding means under the
FCFS and LCFS-PR regimes. Thus, in the case where
CoV(X) > 1, by adopting the suggested scheme, one can do
better in terms of reducing the mean sojourn time in com-
parison with the FCFS regime, without having to ‘starve’
the long jobs in the same scale as the LFCS-PR or the EPS
regimes do.

The regime we define will be called Preemptive Random Pri-
ority (PRP). Under this scheme each arrival draws a ran-
dom number which is uniformly distributed between zero
and one. This number determines his preemptive priority
level. We adopt the convention that the lower is the num-
ber drown, the higher the priority is. Specifically, one who
draws a value of p is served before one who draws a value of
q when p < q, possibly preempting the latter if found in ser-
vice upon the arrival of the former. A preempted customer
resumes service when his turn (based, again, on his priority
parameter) comes, from the point where it was interrupted
last. Denote by E(WPRP ) the resulting mean time in the
system. We show in the next section that E(WPRP ) lies
between E(WFCFS) and E(WLCFS−PR) (where, of course,
the complete order is determined by comparing the service
coefficient of variation of X to one). Note that had pre-
emption not been allowed, the resulting mean waiting value
would coincide with that of FCFS. Also note that since all
continuous lotteries are monotone transformations of each
other, the assumption of priorities determined by a uniform
distribution is without loss of generality.

Remark. Note that in order to operate the PRP regime
there is no need to maintain the order in which customers
which are currently present had arrived (as is the case of the

1Its easy to see that CoV(X) < 1 (CoV(X) > 1, respec-

tively) if and only if x2/2x < x (x2/2x < x, respectively).
This means that the mean residual service time of a cus-
tomer who is currently in service is smaller (larger, respec-
tively) than the mean service time of a ‘fresh’ customer. For
more on this concept see, e.g., [6], Chapter 2.

FCFS and the LCFS-PR regimes) or the order in which they
receive service last (as in the case EPS regime when looked
as the limit of the round-robin scheme).

We are aware of two references in which the PRP regime is
used. These are [2] and [4] (see also [5], pp.102-104). There,
PRP is not assumed but rather turned out to be the result-
ing regime when customers have the option to pay in order
to get a preemptive priority parameter. The more they pay,
the higher is their preemptive priority level, reducing their
mean waiting costs. In the latter reference, customers have
also the option to opt out under a standard cost/reward as-
sumption. Minding the trade-off between length of wait and
the level of payment, and noticing that other customers face
a similar dilemma, their equilibrium behavior is to pay a
random amount (having some specific distribution) result-
ing overall in the PRP regime. In the latter model some
will opt out and, interestingly, in the case of an exponential
service time (i.e., an M/M/1 model), the fraction of those
who join coincide with the socially optimal joining rate. The
M/M/1 case is also dealt with in [7]. It is shown there that
if the regime imposed is that of PRP and customers decide
whether or not to join after drawing and inspecting their pri-
ority parameters, then the resulting equilibrium joining rate
coincides with the socially optimal rate. Finally, the reader
is referred to Part VII of [3] for a comprehensive summary
on various queueing regimes.

2. MAIN RESULTS
Theorem 2.1. The mean waiting time in the preemptive

random priority (PRP) M/G/1 queue equals

E(WPRP ) =
ρ+ (1− ρ) ln(1− ρ)

(1− ρ)ρ2
λx2

2
− ln(1− ρ)

ρ
x (3)

or, alternatively,

E(WPRP ) =
1

1− ρ

x2

2x
− ln(1− ρ)

ρ
(x− x2

2x
). (4)

In particular, E(WPRP ) is bounded between E(WFCFS) and
E(WLCFS−PR). Specifically, if CoV(X) < 1 then

E(WFCFS) < E(WRPR) < E(WLCFS),

where the inequalities are reversed in the case where CoV(X) >
1.

See Figures 1 and 2 below for two examples.

Proof. Denote by P the random priority level that an ar-
bitrary customer draws. Tag a customer and set his priority
parameter to p. It means that a mass of size p gets pre-
emptive priority over him. Then, by, e.g., [9], p.125, or [6],
pp.76-77, his mean time in the system, equals

E(W |P = p) =
λp

2(1− pρ)2
x2 +

1

1− pρ
x. (5)

Clearly, E(WPRP ) = E(E(W |P )). Our proof for (3) and (4)
is completed by integrating the right-hand-side of (5) with



respect to p from p = 0 through p = 1. The second part
of the theorem is immediate knowing all three values and
using a little bit of algebra.

Clearly, limρ→0 E(WPRP ) = x and limρ→1 E(WPRP ) = ∞.
The following corollary says what is the relative performance
of the PRP in comparison with the FCFS and the LCFS-PR
regimes under heavy traffic. Its proof is straightforward and
hence omitted.

Corollary 2.2.

lim
ρ→1

E(WPRP )

E(WLCFS−PR)
=

x2

2x

and

lim
ρ→1

E(WPRP )

E(WFCFS)
= 1.

ρ

W

FCFS
PRP

LCFS − PR

Figure 1: Mean waiting times under the three ser-
vice regimes in the case x̄ = 1 and CoV (X) = 0 as a
function of ρ.
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W
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Figure 2: Mean waiting times under the three ser-
vice regimes in the case x̄ = 1 and CoV (X) = 2 as a
function of ρ.

3. DISTRIBUTION OF TIME IN THE SYS-
TEM

Before moving on we like to introduce the concept of a stand-
by customer. We define a stand-by customer as one who
is singled out to receive service only when the system is
otherwise empty. In particular, he is always preempted from

service when someone else arrives. Using the terminology of
the previous section, he is the one, and only one, who has
drawn a priority parameter 1. Likewise, from the point of
view of the customers who possesses a priority parameter
less than or equal to p, the customer with parameter p is a
stand-by customer. Note that a stand-by customer does not
inflict any extra waiting on any of the other customers. An
economist would say here that his decision whether or not
to join the queue does not come with any externalities.

Our interest in this section is in the LST of the time in the
system under the PRP regime. Below we deal first with the
M/M/1 case and then with the more general M/G/1 cases.
Admittedly, one can derive the former case from the latter
but with a minimal cost in space we do the special case first
while utilizing its special features and then we switch to the
more general case.

3.1 The M/M/1 case
Let B∗(s) denoted the LST of a busy period in an M/M/1
queue. It is well-known that if the arrival rate is λ and μ is
the service rate (recall that μ−1 = x) then (assuming λ < μ)

B∗(s) =
λ+ μ+ s−√

(λ+ μ+ s)2 − 4λμ

2λ
. (6)

See, e.g. [6], p.91.

Lemma 3.1. The LST of the time in the system for a
stand-by customer in an M/M/1 queue equals

(1− ρ)B∗(s)
1− ρB∗(s)

(7)

where B∗(s) can be read from (6).

Proof. A customer who sees upon his arrival n ≥ 0 cus-
tomers, has to stay in the system for time which is the sum of
n+ 1 independent and identically distributed busy periods.
The (conditional) LST is then (B∗(s))n+1. The probability
of seeing this number is (1−ρ)ρn, n ≥ 0. See, e.g.,[6], p.120.
Hence, the unconditional LTS equals

∞∑
n=0

(1− ρ)ρn(B∗(s))n+1 =
(1− ρ)B∗(s)
1− ρB∗(s)

as required.

Remark. The mean time in the system for a stand-by cus-
tomer is 1/[(1−ρ)2μ] (see [6], p.64), while its variance equals
[1+2ρ]/[(1−ρ)4μ2]. We omit a detailed proof for the latter
fact.

As said, a customer who draws a priority parameter of p,
his time in the system is as that of a stand-by customer in
an M/M/1 but with an arrival rate of λp or, equivalently,
with a traffic intensity of pρ. Using (7), we conclude that
the LST of his time in the system, denoted next by T ∗

p (s),
equals

T ∗
p (s) =

(1− pρ)B∗
p(s)

1− pρB∗
p(s)



where from (6),

B∗
p(s) =

λp+ μ+ s−√
(λp+ μ+ s)2 − 4λpμ

2λp
. (8)

Finally, the corresponding LST of the sojourn time o a ran-
dom customer equals ∫ 1

p=0

T ∗
p (s) dp.

As of now, this is the most explicit expression we were able to
derive for the LST of the sojourn time of a random customer
in M/M/1 under the PRP regime.

3.2 The M/G/1 case
It is well known that the LST of the time in the system for
a customer in a FCFS M/G/1 equals

W ∗(s) = (1− ρ)
sG∗(s)

λG∗(s) + s− λ
(9)

where G∗(s) is the LST for a single service time. See, e.g.,
[6], p.86. Note that this is also the LST of the total workload
which is held in the system upon arrival instants (as well
as at any random instant). We denote by B∗(s) the LST
of a standard busy period. There is no explicit expression
for this transform (the case of an M/M/1 considered is the
previous section (see (6)) is an exception). Yet, it is known
that B∗(s) obeys the condition

B∗(s) = G∗(s+ λ(1−B∗(s))). (10)

This identity can lead to the finding of all the moments of a
busy period. See, e.g., [6], p.92, for the first two. They are

x/(1 − ρ) and x2/(1 − ρ)3, respectively. Consider now the
time in the system of a stand-by customer. We next look
for the LST of his time in the system.

Theorem 3.2. Denote by T ∗(s) the LST of the time spend
in the system by a stand-by customer in an M/G/1 queue.
Then,

T ∗(s) = (1− ρ)
(s+ λ(1−B∗(s)))B∗(s)

s
.

We next give two proofs for this theorem.

Proof. It is possible to see that his time there coincides
with a non-standard busy period, namely a busy period
whose first service time is different than that of all others
(whose distribution is G(x)). Moreover, this first service
time is in fact the total work he finds in the system (in-
clusive is own) upon his arrival. Note that the LST of this
‘special service’ appears in (9). One can find in the litera-
ture the LST of a non-standard busy period. Specifically,
denoting by G0(s) the LST of the special service, then the
LST of the non-standard busy period equals

G0(s+ λ− λB∗(s)).

See, e.g., [6], p.95. All needs to be done now, is to use W ∗(s)
as given in (9) as G0(s). We can hence conclude, after some
algebra (and with the help of (10)) that

T ∗(s) = W ∗(s+ λ− λB∗(s))
= (1− ρ) (s+λ−λB∗(s))G(s+λ−λB∗(s))

λG∗(s+λ−λB∗(s))+s−λB∗(s)
= (1− ρ) (s+λ(1−B∗(s)))B∗(s)

s
,

(11)

as required.

Proof. In the case where he arrives to an empty system,
a probability 1− ρ event, his conditional LST equals B∗(s).
Otherwise, a probability ρ event, he needs to wait for the
residual of the running busy period. This comes with a LST
of (1−B∗(s))/(sE(B)) where E(B), the mean busy period,
which equals x/(1− ρ). See, e.g., [6], p.30. This needs to be
multiplied by B∗(s) due to the busy period which initiates
as soon as he enters service for the first and is concluded
upon his departure. In summary,

T ∗(s) = (1− ρ)B∗(s) + ρ
1−B∗(s)

sx
(1− ρ)B∗(s). (12)

The rest is algebra.

Theorem 3.3. The mean sojourn time of a stand-by cus-
tomer in an M/G/1 queue equals

λx2

2(1− ρ)2
+

x

1− ρ
. (13)

We next suggest three proofs for this theorem.

Proof. Take the derivative with respect to s in (12) and
insert s = 0. The call for the L’Hospital rule will be required.
In particular, the second moment of the busy period will be
required. It equals x2/(1−ρ)3 (see, e.g. [6], pp.92). We omit
any further details.

Proof. Upon arrival, the amount of work found by the
stand-by customer (or by any body else) and inclusive of his
own, equals

λx2

2(1− ρ)
+ x. (14)

This needs to be divided by 1− ρ in order to find the mean
time until the system is emptied for the first time (see,
e.g. [6], p.63), an instant of time which coincides with the
instant in which the stand-by customer departs.

Proof. A third way is to look into the model as one
with preemptive priority with two classes. All are in the
high priority class, while a single customer (who represents
a zero arrival rate class) is inferior. Both classes of course

share the same first two moments x and x2. See, e.g.,[9],
p.125 or [6], p.76-77, which gives the mean sojourn time for
customers of both classes. For the inferior class who has an
arrival rate of zero, this means coincides with (13).

Remark. From [8], we learn that the expected marginal
externalities that a customer inflicts on others in case of a
FCFS regime, equals

λx2

2(1− ρ)2
.

To this we need to add his own mean sojourn time, which
is stated in (1), in order to find out the total social costs



inflicted by an arrival. As we can see, we do not get the
same value that we got for the mean time in the system for
a stand-by customer. Yet, the two coincide in case of an ex-
ponential service time (something which can be checked with
minimal algebra). The reason behind that is that in com-
paring systems, one with an extra customer and the other
without, under the same arrival and service processes, one
gets always one more customer in the former case from one’s
arrival until the system is empty for the first time, only if
one assumes exponential service times. Hence, the mean
time for a stand-by customer and mean added social costs
coincide in case of exponential service. This is not the case
under a general service distribution.

For a customer who draws a priority level of p, the LST
of his time in the system is as above where λ is replaced
by λp. Specifically, denote this LST by T ∗

p (s) and conclude
from (11) that

T ∗
p (s) = (1− pρ)

(s+ λp(1−B∗
p(s)))B

∗
p(s)

s
.

where B∗
p(s) is the LST of the busy period but with an

arrival rate of λp, rather than λ.2 Likewise, when we look
for the mean value, we need to replace in (13) λ with λp and
ρ with pρ. In particular, the corresponding mean equals

pλx2

2(1− pρ)2
+

x

1− pρ
(15)

The following theorem is now immediate.

Theorem 3.4. Denote by T ∗
PRP (s) the LST of the so-

journ time of a customer in a PRP M/G/1 queue. Then,

T ∗
PRP (s) =

∫ 1

p=0

(1− pρ)
(s+ λp(1−B∗

p(s)))B
∗
p(s)

s
dp.

As for the mean value, we can by-pass the need to have in
hand first the LST. Firstly, it was derived independently in
Theorem 2.1. Secondly, we use (15) and derive

E(WPRP ) =

∫ 1

p=0

(
λpx2

2(1− pρ)2
+

x

1− pρ
) dp.

Of course, one should get the same result.

4. EQUILIBRIUM BEHAVIOR AND SERVER
UTILIZATION

Assume now that customers gain a value of R due to service
completion and it costs each one of them C per unit of time
in the system (service inclusive). Thus, R−CW is the mean
net return from joining when W denotes the mean time in
the system. Without loss of generality, we assume that not
joining comes with a zero reward (otherwise, one would need
to shift R accordingly). It would then makes sense to assume
that one joins if and only if one’s net gain from joining is
positive. Consider W now as a function of the arrival rate
and denote it hence by W (y) when y is the arrival rate.
Assume now that λ, which as of now will be looked at as
the potential arrival rate, is such that R − CW (λ) < 0. In

2See (8) for the case of M/M/1.

other words, if all join, one is better off not joining. As-
sume also that R > Cx, namely the reward is larger than
the cost of time due just to the time in service. Then, one
is better off joining when no-body else does that. We have
reached a circular reasoning. The Nash equilibrium concept
from non-cooperative game theory deals with such cases. In
particular, it implies that each customer should join with a
probability of pe where pe solves R−CW (λpe) = 0. Indeed,
when all join with a probability of pe, one is indifferent be-
tween joining and not, and hence one is willing to randomize
between the two options with any probability, pe inclusive.
For more on this concept in the context of queues, see [1, 5].

Assuming that customers behave in accordance with such
an equilibrium behavior is somewhat sad news: Those who
join, as well as those who do not join, end up with nothing.
Nothing is also the social gain, or the consumer surplus,
here. Moreover, changing the function W (for example, by
changing the queue regime or by changing the service rate),
does not lead to any individual or social gain. Indeed, for
commuters who use a road which is usually jammed, adding
another lane will not help: Once this is done, more com-
muters will use the road, leading to the same (slow) traffic
speed.

The previous paragraph implies that indeed from the cus-
tomers point of view it indeed does not matter which queue-
ing regime is used. But this is certainly not the case from
the point of view of the server (or the one who owns the ser-
vice facility). This is the case since the server utilization in
equilibrium, which equals λpex, may vary with the regime
due to the simple reason that pe varies with it.

Theorem 4.1. Denote by pFCFS
e the Nash equilibrium

joining probability under the queueing regime is FCFS. De-
fine pPRP

e and pLCFS−PR
e in a similar fashion. Then, if

CoV(X) < 1,

pFCFS
e < pPRP

e < pLCFS−PR
e .

The inequalities are reversed when CoV(X) > 1.

The proof of this theorem is now straightforward and we
omit the details. An example for a consequence from this
theorem is that if CoV (X) > 1 and the current norm is to
use FCFS, switching to PRP will decrease the server utiliza-
tion (and hence the server might be useful for some other
functions) without effecting the social benefit. Of course,
one might imagine cases in which one likes to increase the
server’s utilization. Hence, such a switch will be recom-
mended in the case where CoV(X) < 1.
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