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ABSTRACT
Service systems using a highest-bidder-first (HBF) policy
have been studied in queueing literature for various applica-
tions and in economics literature to model corruption. Such
systems have applications in modern problems like schedul-
ing jobs in cloud computing scenarios or placement of ads on
web pages. However, using a HBF service is like using a spot
market and may not be preferred by many users. For such
users, it may be good to provide a simple scheduler, e.g.,
a FIFO service. Further, in some situations it may even be
necessary that a free service queue operates alongside a HBF
queue. Motivated by such a scenario, we propose and ana-
lyze a service system with a FIFO server and a HBF server in
parallel. Arriving customers are from a heterogeneous pop-
ulation with different valuations of their delay costs. They
strategically choose between FIFO and HBF service; if HBF
is chosen, they also choose the bid value to optimize an in-
dividual cost. We characterize the Wardrop equilibrium in
such a system and analyze the revenue to the server. We see
that when the total capacity is fixed and is shared between
the FIFO and HBF servers, revenue is maximised when the
FIFO capacity is non zero. However, if the FIFO server is
added to an HBF server, then the revenue decreases with
increasing FIFO capacity. We also discuss the case when
customers are allowed to balk.

Keywords
Highest-bidder-first, queueing theory, game theory, Wardrop
equilibrium, balking, revenue maximization.

1. INTRODUCTION
Consider a service system with a single server into which
customers from a heterogeneous population arrive, wait in a
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queue if the server is busy and depart after receiving service.
The heterogeneity of customers is captured by different costs
per unit delay. In such a scenario the server can increase its
revenue by providing differential service with different prices
for different grades of service. One way of providing such dif-
ferential service is to let arriving customers purchase their
priority and the server use priority scheduling with higher
prices being accorded higher priorities. The arriving cus-
tomers are essentially placing a bid for the priority level
that they want. This model has applications to several sys-
tems where bids can be placed and a scheduling mechanism
based on the bid values can be used, e.g., [1, 5] suggest such
a model for the spot market in cloud computing services.

Bidding for priorities has also been called bribing in some of
the early literature. Queueing systems in which customers
can purchase priorities have been studied in [14, 10, 13, 2,
7, 12]. The bribing model for priority in queues, introduced
in [12] is as follows. Customers arrive according to a Pois-
son process of rate λ and each arrival, without observing the
queue occupancy, offers a bid for service that is independent
of all other offers. Service discipline is highest-bidder-first
(HBF) preemptive (or non preemptive) priority. For this
system, the expected delay as a function of the offered price
is derived in [12]. An immediate extension is when the bid
value of each customer depends on its delay cost, i.e., there
is a bidding policy mapping delay cost to a bid value. In this
scenario, since customers have different valuations for their
delays, a natural model would be to have selfish customers
that will choose their bids to minimize their total cost, i.e.,
the sum of delay cost and price paid for priority. This leads
to a game theoretic situation in which equilibrium (or sta-
ble) bidding policies, policies from which a customer has no
incentive to deviate, are of interest.

In a single server system, [12] shows that in an equilibrium
bidding policy the bids are an increasing function of delay
cost; closed form expressions for equilibrium bidding policies
are obtained in [13] and [10]. Providing prioritized service
requires additional resources and, especially in cloud com-
puting like systems, this may be at the cost of doing ‘useful
work.’ Further, it is not always feasible to expect that cus-
tomers will bid; they may prefer obtaining a FIFO service
for free or at a fixed price. This motivates the first system
that we consider—a two server system in which one server
uses FIFO scheduling and arrivals to the second server have
to bid for priorities. An arriving customer selfishly makes
two decisions—the server to use and, if it chooses the HBF
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server, the value of its bid. For this system, we first ob-
tain equilibrium strategies (routing and bidding) and show
that the equilibrium routing policy is of threshold type; cus-
tomers with delay cost above a threshold choose the priori-
tizing server while those below the threshold choose to wait
for their turn in the FIFO queue and obtain a free service.

In the above system, an obvious interest is in the impact
of having a parallel FIFO server on the total revenue. Nu-
merical results show that if the total capacity is fixed and
is split between the FIFO and HBF servers, then having a
FIFO server increases revenue substantially; a formal proof
has been elusive. On the other hand, if additional capacity
is allocated to a FIFO server, then we formally show that
the revenue will be less than that with a single HBF server
for any type profile.

Finally, we briefly consider the case when arriving customers
can balk, i.e., not join the queue. This can happen when
the reward for receiving service is lower than the cost of
obtaining it (sum of delay cost and the bid). Such a system
with just the HBF server is analyzed in [13, 10] where it was
shown that if customers bid strategically, those with delay
costs above a threshold will balk. Our interest is to try
to retain these balking customers and possibly increase the
revenue by adding a free server; such an option is motivated
by the argument that customers with lower delay costs will
prefer the FIFO server which decreases congestion at the
HBF server. This in turn incentivises some high delay cost
customers to not balk and instead join for service at the
HBF server. We present a preliminary analysis of such a
balking system and compare its revenue to a system with
only the HBF server.

The work of [11] is closely related to the work of this paper.
In [11], bidding is a mechanism to self-regulate the arrival
process into a single-server HBF queue and the focus is on
homogeneous customers. The social welfare has customers
balking if the value of service is lower than the total cost,
sum of bid and waiting costs. It is shown when customers
balk, at equilibrium, the social welfare objective coincides
with the server profit maximizing objective. Further, when
the service times are assumed exponential, it is shown that
the service rate that maximizes the servers revenue is lower
than the socially optimal service rate. These were shown
to also be true when there are a discrete set of customer
types. There are two main differences between the model
of [11] and that of this paper. First, we focus much of our
attention on the case when there is no reward for service and
hence the customers cannot balk; the customer objective
is to minimize its total cost. Second, we always assume
heterogeneous customers with a continuum of classes.

There are also similarities between the model that we con-
sider and that of [1]. The latter has an infinite server queue
and a K-server queue in parallel. The K-server queue is a
preemptive HBF server like the one that we have described
and is the spot market. Since the infinite server queue has
no waiting time, the charge for service from that queue can
be high and hence attract customers with high waiting time
costs. Further, the customers have a value for the service
received and can balk (not join the queue) if this value is
lower than the cost (sum of delay cost and charge for ser-

vice). Thus in the revenue maximizing regime of [1] the
arrival rate to the HBF queue is zero. In the model consid-
ered in this paper, customers with low delay costs use the
free FIFO service and the revenue maximising regime shares
the total capacity between the two queues suitably.

Finally, we remark that the highest-bid-first discipline al-
lows for a continuum of prices; alternatively, one can allow
a fixed number of priorities and fix the price of each of the
priorities. Such systems are considered in [2, 14, 4]. Systems
with multiple FIFO queues, each with its own server were
considered in, among others, [9, 6] and such a system with
an admission price for each queue was analyzed in [8]. We
will not be interested in such systems in this paper.

The rest of the paper is organized as follows. In Section 2
we describe the notation, recap some results from literature
and characterize properties of the revenue for a single HBF
server. In Section 3 we first characterize the equilibrium
routing and bidding policy when a FIFO and a HBF server
are in parallel. Numerical results for the case when the total
capacity is shared between the FIFO and the HBF server
are presented. We then analyze a system in which the FIFO
server is added to the HBF server. In Section 4, we analyze
the system in which customers balk. We conclude with a
discussion in Section 5.

2. NOTATION AND PRELIMINARIES
In this section we set up the notation and recap some results
from literature for the single server system using the highest-
bidder-first (HBF) priority discipline. For such a system we
also characterize the revenue rate.

Customers arrive to a service system according to a homoge-
neous Poisson process of rate λ. Service times of customers
are i.i.d. random variables with distribution G(·) and unit
mean. Associated with each arriving customer is a random
variable V, 0 ≤ a ≤ V ≤ b < ∞, representing its cost
per unit delay. V are i.i.d. with distribution F (v) that is
absolutely continuous in (a, b). V is also called type of the
customer and F (v) is called the type profile. A single server
serves with rate μ and utilization ρ := λ

μ
using HBF non pre-

emptive priority discipline. The type of a customer is private
information but G(·), F (v), λ and the service rates of the
servers are assumed to be common knowledge. Further, the
customer does not know its service time. Each customer is
assumed to be infinitesimally small and does not affect the
system dynamics on its own. Customers do not balk, i.e., all
arriving customers receive service. Further, once a customer
has made the choice of the queue and the bid if joining the
HBF queue, then it cannot change either of these; it also
does not renege and it leaves the system only after receiving
the service.

Like in [10, 13, 7, 12]. we assume oblivious bidding, i.e.,
an arriving customer bids for its priority without observing
the queue occupancy; service is non preemptive with higher
priorities for higher bids. Thus on a service completion, the
next customer is the one in the queue with the highest bid.
Preemptive service can be analysed identically to the non
preemptive case and we do not discuss it further.

X(v) is the bidding policy, i.e., customers of type v bidX(v).



W (x) is the expected waiting time (time in queue excluding
service time) of a customer that bids x. The expected total
cost of receiving service for a customer of type v is

C(v) := X(v) + v

(
W (X(v)) +

1

μ

)
.

Customers behave strategically and choose their bids to min-
imize their individual costs. A bidding policy is an equilib-
rium policy if no individual customer can unilaterally devi-
ate from it and lower its total cost C(v).

Let BX(x) denote the distribution of the bids under bid-
ding policy X, WX(x) the expected waiting time (time in
queue excluding service time) of a customer that bids x, and
CX(v) the total cost to customer of type v under policy X.
Let W0 be the expected waiting time added to that of an
arriving customer due to residual service time of a customer
in service. W0 is the product of the residual service time and
probability that an arriving customer sees a busy server, i.e.,

W0 =
λ

2

∫
∞

0

τ2dG(μτ).

Following [10], we obtain

XE(v) =

∫ v

0

2ρW0y

(1− ρ+ ρF (y))3
dF (y) (1)

as an equilibrium bidding policy. Property 1 below summa-
rizes the properties of XE(v) that have been derived in [12],
[13], [10]. Note that the X(v) in the following is actually
XE(v) but we drop the superscript E to simplify notation.
Further, B(·), W (·), and C(·) depend on X(v). Once again,
we do not explicitly capture this dependence in the notation.

Property 1. 1. X(v) is continuous and strictly in-
creasing in v. Further B(X(v)) = F (v).

2. W (v) is strictly decreasing in v. Further,

W (v) = μ2W0

(μ−λ(1−F (v)))2
where W0 is as above.

3. C(v) :=minx

{
x+ v

(
WX(x) + 1

μ

)}
is continuous and

strictly increasing concave.

4. dC(v)
dv

= W (x) + 1
μ

and dX(v)
dv

+ v dW (v)
dv

= 0

LetRX(λ, F (v)) be the revenue rate for a system with arrival
rate λ, type profile F (v), and an equilibrium bidding policy
X(v). Also, wherever applicable, to indicate the dependence
on the service rate of the server, we also use the alternative
notation of RX(λ, F (v), μ) to denote the revenue rate when
the server serves with rate μ. Clearly,

R(λ, F (v)) = λ

∫
v

X(v)dF (v).

The following lemma characterizes the equilibrium revenue
function where we obtain the direction of change of the rev-
enue when one of arrival rate, service rate and type profile
is changed while keeping the other parameters unchanged.

Lemma 1. 1. If λ1 < λ2, then

R(λ1, F (v)) < R(λ2, F (v)).

2. Let μ1 and μ2 be two service rates with μ1 < μ2. Then

R(λ, F (v), μ1) > R(λ, F (v), μ2).

3. Let F1(v) be a type profile and let F2(v) = F1(v − v0)
with v0 > 0. For this case

R(λ, F1(v)) < R(λ, F2(v)).

4. Let F2(v) = F1(v/c) with c > 1. Then

R(λ, F1(v)) < R(λ, F2(v)).

5. Let F1(v) be a type profile and define

F2(v) :=

⎧⎨
⎩
0 v < a1∫

v
a1

dF1(w)
∫
b
a1

dF1(w)
v ≥ a1

Then R(λ, F1(v)) < R(λ, F2(v)).

We provide informal arguments and omit formal proofs as
they are quite straightforward from the analysis in [12], [13],
[10]. The first and second statements are complimentary—
increasing the arrival rate or decreasing the service rate in-
creases the revenue. This happens because increasing λ (or
decreasing μ) introduces more congestion and more compe-
tition. Thus all customers have to bid higher to ‘stay in
place.’ This is also evident in (1) where the denominator of
the integrand increases with increasing λ and decreasing μ.
For the case of increased λ there are also more arrivals. The
third statement says that if the type profile is ‘shifted to
the right,’ i.e., the delay cost of every customer is increased
by a fixed quantity v0, then the revenue rate is increased.
This is because, every one has an increased delay cost and
hence every one has to bid higher than before to, once again,
stay in place. This is also seen in (1) where there is a y in
the integrand and the integration range is over larger values
of y. The fourth statement says that ‘stretching’ the type
profile increases the revenue rate. Once again, every one
bids higher than before and the reasoning is similar to the
preceding case. The last statement concerns the case when
arrival rate is kept constant but the types below a cutoff
are removed from the population. This also causes every
one to bid higher because they are all competing with more
customers of the same type.

3. A SYSTEM WITH A FIFO AND A HBF
SERVER

We now analyze a service system with two servers. One
server uses the non preemptive HBF discipline and serves
at rate μ1. The second server uses the FIFO discipline and
serves at rate μ2. Customers choosing the HBF server will
have to bid at least M, M ≥ 0, while the FIFO service is
free. Customers arrive according to a homogeneous Poisson
process of rate λ and the type profile is F (v). In this section
we will assume that all arrivals will have to receive service
from one of the two servers and they cannot balk. Thus an
arriving customer now has to make the following decisions
on arrival. Which server to use, and, if it chooses the HBF
server, then the value of its bid. We will assume oblivious
decisions, i.e., the arrivals make the choices without observ-
ing the queue occupancy. We now characterize the structure
of these choices.
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μ2μ1
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1 − p(v)

λ, F (v)

Figure 1: System with a HBF server and a FIFO

server.

Consider the choices made by a customer of type v. First, let
p(v) : [a, b] → [0, 1] be the routing policy, i.e., the probability
that it chooses the FIFO server. Next, let M +X(v) be the
bid if it chooses the HBF server. With this, the expected
total cost of receiving service for a customer of type v is

C(v) := X(v) +M + v

(
W (X(v)) +

1

μ1

)
.

The pair (p(v), X(v)) is the strategy of a customer of type
v and it is an equilibrium strategy if no customer can uni-
laterally deviate and lower its C(·).

Given (p(v), X(v)) , we see that λ2 := λ
∫

∞

0
p(v)dF (v) is

the arrival rate to the FIFO server and λ1 = λ − λ2 is
the arrival rate to the HBF server. Define ρi := λi/μi.
All customers that choose the HBF server experience a bid-
dependent waiting time, denoted by W1(v) for a customer
of type v, and all those that choose the FIFO server expe-
rience the same expected waiting time, denoted by W2. Let
D1(v) := W1(v)+

1
μ1

and D2 := W2+
1
μ2

be the expected so-
journ times in, respectively, the HBF and the FIFO servers.
Fig. 1 illustrates this notation.

Let us now consider the equilibrium strategy for this system.
Since this is a non atomic system and all customers choose
individually optimal strategies, the equilibrium is a Wardrop
equilibrium, first described in [15] and used extensively in
transportation systems. This means that at equilibrium the
following is true.

If p(v) = 1, then vD2 ≤ M +X(v) + vD1(X(v)).
If p(v) = 0, then vD2 ≥ M +X(v) + vD1(X(v)).
If 0 < p(v) < 1, then vD2 = M +X(v) + vD1(X(v)).

(2)

The following theorem characterizes the equilibrium strat-
egy for this system.

Theorem 1. Using v1 determined below, define pE(v),

F1(v), and W0 as follows.

pE(v) =

⎧⎪⎨
⎪⎩
0 for v > v1,

t for v = v1,

1 for v < v1.

(3)

F1(v) :=

⎧⎪⎪⎨
⎪⎪⎩

0 v < v1∫
v
v1

dF (x)
∫
b
v1

dF (x)
v1 ≤ v ≤ b,

1 v > b,

(4)

W0 =
λ1

2

∫
∞

0

τ2dG(μ1τ), (5)

XE(v) =

∫ v

0

2ρ1W0y

(1− ρ1 + ρ1F1(y))
3 dF1(y) (6)

For the routing and bidding policy (pE(v), XE(v)) deter-
mined as above, let D1(v) be the bid-dependent expected so-
journ time in the HBF server and D2(λ2) be the expected
sojourn time in the FIFO server when the arrival rate to it
is λ2.

v1 is determined as follows.

• If using v1 = a in (3)–(6) satisfies M+aD1(a) < aD2,
then set v1 = a.

• Else if using v1 = b in (3)–(6) satisfies M + bD1(b) >
bD2 then set v1 = b.

• Else find v1 which when used in (3)–(6) satisfies

M + v1D1(v1) = v1D2. (7)

(pE(v), XE(v)) is an equilibrium strategy with v1 defined as
above. Further, v1 is unique.

Proof. We will prove that the Wardrop conditions of (2)
are satisfied for the choice of pE(v) and XE(v) as described
in (3)–(6).

With pE(v) as in (3), the arrival rate to the HBF server is

λ1 = λ
∫ b

v1
dF (τ). The type profile of the customers choosing

the HBF server will be as in (4). From the previous section
(and from [12, 13, 10]) we know that those that decide to
join the HBF server will have to use the bidding policy as
in (6) for individual optimisation.

With bidding policy as in (6) for those that choose the HBF
server, we will now verify that pE(v) of (3) satisfies the
Wardrop condition of (2). First consider the case when v1 �=
a, b. In this case, for any v < v1 we see that

M = v1(D2 −D1(v1)) > v(D2 −D1(v1)).

This verifies the Wardrop condition of (2) for v < v1 i.e.,
pE(v) = 1 is the optimum choice for v < v1.

For a customer of type v1 + ε for some ε > 0,

C(v1 + ε) ≤ C(v1) + ε
dC(v1)

dv
= C(v1) + εD1(v1)

The inequality is from the concavity of C(v) (item (3) of
Property 1) and the equality is from item (4) in Property 1.



For v = v1, X
E(v1) = 0 and the preceding inequality leads

to

C(v1 + ε) ≤ M + (v1 + ε)D1(v1)

= v1D2 + εD1(v1) < v1D2 + εD2. (8)

Both the equality and inequality above follow from (7). Af-
ter rearranging the terms we have

M + (v1 + ε)D1(v1) < (v1 + ε)D2

which is substituted in (8) to get

C(v1 + ε) < (v1 + ε)D2. (9)

Hence a customer of type v1 + ε will have a lower cost with
the HBF server than with the FIFO server. This verifies
that p(v1 + ε) = 0 is optimum for v = v1 + ε. Since ε is
arbitrary, pE(v) = 0 for all v > v1 is also verified.

For the cases when v1 = a (resp. v1 = b) we can use similar
arguments to show that pE(v) = 0 (resp. pE(v) = 1) is an
equilibrium policy.

We will now show that v1 satisfying (7) is unique. We need
only consider the case when v1 �= a, b. Observe that D1(v1)
is a strictly decreasing function of v1 while D2 is strictly
increasing in v1. Further as v1 �= a, b the following comple-
mentary conditions must be true.

D1(a) +
M

a
≥ D2

D1(b) +
M

b
≤ D2

Hence there exists a unique v1.

Corollary 1. In the class of routing policies p(v) that re-
sults in F1(v) (the profile of the customers choosing the HBF
server) being absolutely continuous, a Wardrop equilibrium
routing policy is of the threshold type.

Proof. From Theorem 1, C(v1) ≤ v1D2 implies C(v1 +
ε) < (v1 + ε)D2 i.e., if a customer of type v joins the HBF
server, then for a ε > 0 a customer of type v + ε also joins
this queue.

Theorem 1 shows that the arrival rate to the HBF server can
be less than λ and that the type profile of these customers
is truncated on the left. From Lemma 1 the former reduces
the revenue while the latter increases it. This prompts us
to investigate the effect of the parallel FIFO server on to-
tal revenue. Two scenarios present themselves immediately.
First, we can let the total service rate be fixed (say unity)
and share it between the HBF and the FIFO servers, i.e.,
μ1 + μ2 = 1. The second scenario of interest is when μ1 = 1
and we add additional service capacity in the form of a FIFO
queue of service rate μ2. In both cases, we investigate the
revenue as a function of μ2.

3.1 HBF and FIFO Servers Sharing Capacity
We present a sample of the numerical results that we have
obtained. We assume M = 0 and that the total service ca-
pacity of unity is shared between the HBF and FIFO servers,
i.e., μ1+μ2 = 1. Service time distribution is exponential with
unit mean and HBF server is non-preemptive. From (5),
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Figure 2: Revenue as a function of μ1 for three dif-

ferent example F (v) and different λ.



W0 = λ1

μ2

1

. We consider the following three different F (v), all

of which correspond to a = 0 and b = 100.

1. F (v) = v
100

for 0 ≤ v ≤ 100.

2. F (v) = v0.5

10
for 0 ≤ v ≤ 100

3. F (v) = v2

104
for 0 ≤ v ≤ 100

For these three examples, in Fig. 2 we plot the revenue as
a function of μ1 for λ = 0.3, 0.5, 0.7. The graphs are rather
self explanatory and we will not dwell on the details, except
pointing out the two observations the stand out from these
examples.

1. The revenue can actually increase if some of the ca-
pacity is allocated to a FIFO server. This in itself
is not very surprising because there is no balking in
the system and all arriving customers have to take the
service. That the magnitude of the increase was sub-
stantial seems surprising.

2. The HBF server needs a minimum μ1 before it can
generate any revenue. Once again, it appears that this
minimum is substantial.

3.2 Adding a FIFO Server to an HBF Server
We now compare the revenue when a FIFO server is added
to the HBF server. Let S1 be a system with a single HBF
server of rate μ1 and S2 be a system with a HBF server
of rate μ1 and a FIFO server of rate μ2. Customers arrive
according to a Poisson process into the system, they have a
type profile F (v) and make selfish choices of the server and
the bid. In S1, customers follow the strategy described in
[10, 13] and in S2 they follow that outlined in Theorem 1.
We need additional notation.

In all quantities of interest a superscript Si will indicate the
system that is being referred. For example, RSi(·, ·), will
be the revenue in system Si. F

S1(v) = F (v) and FS2(v) =
F1(v) will be the type profile of customers choosing the HBF
server in systems S1 and S2 respectively. λi will denote the
arrival rate to the HBF server in Si. Clearly, λ1 = λ and
λ2 = λ(1− F (v1)) where v1 is as obtained from Theorem 1.
DS2(v), CS2(v) will denote the sojourn time and the total
cost respectively for a customer joining the HBF server of
S2.

We first show that the mean waiting time for customers of
type v > v1 is lower in S2 than in S1 and then characterize
the revenue.

Lemma 2. For a customer of type v > v1, we have
WS1(v) > WS2(v). Further

dWS1(v)

dv
<

dWS2(v)

dv
.

Proof. From item 1 of Property 1, the bids are mono-
tonic in v. Now consider a customer of type ṽ ≥ v1. In both
S1 and S2, the arrival rate of customers of priority v > ṽ to

the HBF queue is the same. Thus the denominator in the ex-
pression for W (v) (see item (2) in Property 1) is the same for

both S1 and S2 but WS1

0 > WS2

0 . Hence WS1(v) > WS2(v).

Now from the expression for W (v) in item (2) in Property 1
we have for i = 1, 2

dWSi(v)

dv
=

−2μ2
1λiW

Si
0 dFSi(v)

(μ1 − λi(1− FSi(v)))3
.

As earlier, the arrival rate of customers of priority v > v1 to
the HBF queue is the same i.e.,

λ1(1− F (v)) = λ2(1− F1(v)).

Since WS1

0 > WS2

0 , and the remaining terms are the same
for both S1 and S2 the lemma is true.

This sets us up for the main result of this subsection.

Theorem 2. Adding a FIFO server of service rate μ2

does not increase the revenue i.e.,

RS1(λ1, F (v)) ≥ RS2(λ2, F1(v)).

Proof. In the first part of the proof, we will prove by
contradiction that for all v > v1, XS1(v) ≥ XS2(v). Sup-
pose the claim is not true and there exists a v2 > v1 such
that

XS1(v2) < XS2(v2). (10)

Since the bidding policy XSi(v) is increasing in v,

XS1(v1) ≥ XS2(v1) = 0. (11)

Therefore from (10) and (11), there exists a v∗ such that

XS1(v∗) = XS2(v∗) (12)

where for all v < v∗,

XS1(v) > XS2(v).

Recall that for all v > v1, from Lemma 2 we have

dWS1(v)

dv
<

dWS2(v)

dv
.

Therefore, for all v > v1, from item (4) in Property 1 we get

dXS1(v)

dv
>

dXS2(v)

dv
. (13)

From (12) and (13), for all v ≥ v∗ we have

XS1(v) ≥ XS2(v). (14)

But this contradicts the assumption of (10) on v2 as v2 > v∗.
This implies that for all v,

XS1(v) ≥ XS2(v). (15)



The revenue in S2 is given by

RS2(λ2, F1(v)) = λ2

∫ b

v1

(
M +XS2(v)

)
dF1(v)

=
λ2

1− F (v1)

∫ b

v1

(
M +XS2(v)

)
dF (v)

= λ

∫ b

v1

(
M +XS2(v)

)
dF (v)

≤ λ

∫ b

v1

(
M +XS1(v)

)
dF (v)

≤ λ

∫ b

a

(
M +XS1(v)

)
dF (v)

= RS1(λ1, F (v)).

The second equality is from the definition of F1(v) in (4),
the third equality is from the definition of λ2 and the first
inequality is from (15). This completes the proof.

4. WHEN ARRIVALS BALK
In this section we assume that each customer receives a
fixed reward for obtaining the service from the system. In
this case, a type v customer whose total cost of receiv-
ing service, C(v), exceeds P has no incentive to join the
system and will balk. In such a system the v∗ satisfying
P = X(v∗) + v∗W (v∗) +M is the highest type of customer
receiving service; all customers with v > v∗ will balk.

As in the previous section, we will compare two systems S1

and S2 and to simplify the analysis, we will assume F (v) =
v/b and a = 0. Let vu,1 and vu,2 be the highest type customer
joining the HBF server of, respectively, S1 and S2. Let F1(v)
and F2(v) denote the type profile and λ1 and λ2 denote the
arrival rate to the HBF server in S1 and S2 respectively.
Since the arrivals balk, we have

F1(v) =
F (v)− F (a)

F (vu,1)− F (a)

F2(v) =
F (v)− F (v1)

F (vu,2)− F (v1)

λ1 = λ(F (vu,1)− F (a))

λ2 = λ(F (vu,2)− F (v1)).

We first state the following lemma that compares vu,1 and
vu,2.

Lemma 3. vu,1 ≤ vu,2.

Proof. The proof is by contradiction. Suppose vu,1 >
vu,2. Recall the balking condition

P = X(v∗) +
v∗

μ1
+M.

Since P , M and μ are constant and vu,1 > vu,2 we have

XS1(vu,1) < XS2(vu,2). (16)

At v = v1,

XS1(v1) > XS2(v1) = 0. (17)

Therefore from (16) and (17), there should exist a v2 ≤ vu,2
which satisfies

XS1(v2) = XS2(v2). (18)

From item (4) of Property 1, we have for i = 1, 2

dWSi(v)

dv
=

−2μ2
1λiW

Si
0 dFi(v)

(μ1 − λi(1− Fi(v)))3
.

From the definition of F1, F2, λ1 and λ2 we have

dWS1(v)

dv
=

−2μ2
1λW

S1

0 dF (v)

(μ− λ(F (vu,1)− F (v)))3
(19)

dWS2(v)

dv
=

−2μ2
1λW

S2

0 dF (v)

(μ− λ(F (vu,2)− F (v)))3
. (20)

Since vu,1 > vu,2 and a < v1, we have λ1 > λ2 and from the
definition of W0 we have

WS1

0 > WS2

0 . (21)

Also vu,1 > vu,2 implies

F (vu,1)− F (v) > F (vu,2)− F (v). (22)

Therefore from (19), (20), (21) and (22),

dWS1(v)

dv
<

dWS2(v)

dv
.

Substituting the above in item (4) of Property 1, we have

d(XS1(v))

dv
≥

d(XS2(v))

dv
. (23)

From (18) and (23), we have, for all v > v2

XS1(v) ≥ XS2(v).

Therefore

XS1(vu,2) ≥ XS2(vu,2).

Now since X(v) is increasing, for vu,1 > vu,2,

XS1(vu,1) ≥ XS1(vu,2).

Hence

XS1(vu,1) ≥ XS2(vu,2).

However this contradicts (16).

Hence vu,1 ≤ vu,2.

Note that this lemma is true for arbitrary choice of F (v)
since the proof technique does not make use of F (v) = v/b.
Having characterized the threshold v∗ for the two system, we
will now analyze their revenue for the case when F (v) = v/b.

First consider the revenue for S1.

RS1(λ1, F1(v)) = λ1

∫ vu,1

0

(
M +XS1(v)

)
dF1(v)

= λ1

∫ vu,1

0

(
M +XS1(v)

)
F (vu,1)− F (a)

dF (v))

=
λ

b

∫ vu,1

0

(
M +XS1(v)

)
dv.



where the first and the second equality follow from the def-
inition of F1(v) and λ1 respectively.

Similarly the revenue for S2 is given by

RS2(λ2, F2(v)) =
λ

b

∫ vu,2

v1

(
M +XS2(v)

)
dv.

The preceding arguments prove the following theorem that
compares the revenue from the two systems.

Theorem 3. If∫ vu,1

0

(
M +XS1(v)

)
dv >

∫ vu,2

v1

(
M +XS2(v)

)
dv,

then

RS1(λ1, F1(v)) > RS2(λ2, F2(v))

otherwise

RS1(λ1, F1(v)) ≤ RS2(λ2, F2(v)).

5. DISCUSSION
The primary motivation for our models in this paper are
from the need for new pricing and auction mechanisms in
on-demand resource provisioning, e.g., cloud computing sys-
tems. An additional interest is, like in [12] and in [13], the
economic aspects of bribing. While [13] assumed that the
full capacity was auctioned, we investigate the economics of
‘partial corruption’ in which some of the population is pro-
vided an ‘honest service’ via the FIFO queue. In this setting
M (the minimum bid) is interpreted as the ‘social reward’
to a customer for doing the right thing, i.e., for not bribing.
The results of Fig. 2 provides the intuitively appealing in-
terpretation that it might be more rewarding to be partially
corrupt than to be fully corrupt. Further, ‘small’ levels of
corruption does not pay.

There is of course more work to be done. Formal proofs for
the numerical findings of Fig. 2, a better understanding of
the system of Section 3.2, and analysing the balking system
in more detail are on our immediate agenda.

An alternate system where the bid value determines the
share of the server capacity in a processor sharing system
has also been analysed by us in [3]. A comparitive under-
standing of these systems with direct application to service
provisioning cloud computing and wireless communication
systems are also of interest.
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